International Journal of Pure and Applied Mathematics

5 downloads 0 Views 107KB Size Report
1,2School of Mathematical Sciences. Faculty of Science and Technology. University Kebangsaan Malaysia. Selangor Darul Ehsan, Bangi, 43600, MALAYSIA.
International Journal of Pure and Applied Mathematics ————————————————————————– Volume 62 No. 3 2010, 337-346

ON DIFFERENTIAL OPERATOR FOR MULTIVALENT FUNCTIONS Maslina Darus1 § , Rabha W. Ibrahim2 1,2 School

of Mathematical Sciences Faculty of Science and Technology University Kebangsaan Malaysia Selangor Darul Ehsan, Bangi, 43600, MALAYSIA 1 e-mail: [email protected] 2 e-mail: [email protected] Abstract: In this article we define a differential operator for multivalent functions in an open disk. Further, we define some classes containing this operator. Partial sums are considered. AMS Subject Classification: 30C45 Key Words: differential operator, multivalent functions, partial sums 1. Introduction Let T (p) denote the class of functions f of the form ∞ X p an z n+p (p ∈ N, z ∈ U ), f (z) = z +

(1)

n=1

which are analytic and p-valent (multivalent) in the open unit disk U = {z : z ∈ C and |z| < 1}. Let bePgiven two functions f, g ∈ T (p), f (z) = z p + P ∞ n+p and g(z) = z p + ∞ n convolution or Hadamard n=1 an z n=p+1 bn z . Then their P∞ p product f (z) ∗ g(z) is defined by f (z) ∗ g(z) = z + n=1 an bn z n+p (z ∈ U ). Define a function ϕp (a, c; z) as follows ∞ X (a)n n+p p z , c 6= 0, −1, −2, ..., ϕp (a, c; z) := z + (c)n n=1 where (a)n is the Pochhammer symbol. Received:

June 23, 2010

§ Correspondence

author

c 2010 Academic Publications

338

M. Darus, R.W. Ibrahim Assuming that a = k + p > 0 and c = 1 for k = 0, 1, 2, ... in ϕp (a, c; z) yields ∞ X (k + p)n n+p p z . (2) ϕp (k + p, 1; z) = z + (1)n n=1

Next we define the following differential operator Dλk : T (p) → T (p) by ∞ X an z n+p , D0 f (z) = f (z) = z p + n=1

1 Dλ,p f (z) = (1 − λp)f (z) + λzf ′ (z) = z p +

∞ X

(1 + λn)an z n+p , (3)

n=1

.. . k f (z) = z p + Dλ,p

∞ X

(1 + λn)k an z n+p

(z ∈ U ),

n=1

where 

 p ∈ N, k ∈ N0 , λ ≥ 0 .

Again by applying convolution product on (2) and (3) we have the following operator zp k k f (z) = Dλ,p f (z) ∗ Dλ,p (1 − z)k+p ∞ X (k + p)n = zp + (1 + λn)k an z n+p (4) (1)n = zp +

n=1 ∞ X

C(n, k)(1 + λn)k an z n+p

(z ∈ U ),

n=1

where C(n, k) :=

(k+p)n (1)n .

k f (z), when λ = 0, p = 1, was introduced by Remark 1. The symbol Dλ,p Ruscheweyh [2] and when λ = 0, see Goel and Sohi [1].

f ∈ T (p) is said to be p-valent starlike of order µ, 0 ≤ µ < p if o n A′ function zf (z) ℜ f (z) > µ (z ∈ U ), this class is denoted by Sp∗ (µ). A function f ∈ T (p) is n o ′′ (z) said to be p-valent convex of order µ, 0 ≤ µ < p if ℜ 1 + zff ′ (z) > µ (z ∈ U ), this class is denoted by Cp (µ). A function f ∈ T (p) is said to be in the class Sp∗ (µ, λ) of order µ, where n z[Dk f (z)]′ o 0 ≤ µ < p if ℜ Dkλ,pf (z) > µ (z ∈ U ). A function f ∈ T (p) is said to be λ,p

ON DIFFERENTIAL OPERATOR FOR... n in the class Cp (µ, λ) of order µ, where 0 ≤ µ < p if ℜ 1 +

339 k f (z)]′′ z[Dλ,p k f (z)]′ [Dλ,p

o



(z ∈ U ). For 0 ≤ α < p and β ≥ 0, let Sp∗ (α, β, λ) be the subclass of T (p) consisting of functions of the form (1) satisfying the analytic criterion z[D k f (z)]′ n z[D k f (z)]′ o λ,p λ,p ℜ − α > β − p (5) (z ∈ U ). k k Dλ,p f (z) Dλ,p f (z) Also, for 0 ≤ α < p and β ≥ 0, let Cp (α, β, λ) be the subclass of T (p) satisfying the analytic criterion k f (z)]′′ z[D k f (z)]′′ o n z[Dλ,p λ,p − α > β − (p − 1) (z ∈ U ). (6) ℜ 1+ k k ′ ′ [Dλ,p f (z)] [Dλ,p f (z)]

The main aim of this work is to study coefficient bounds and extreme points of the general classes Sp∗ (α, β, λ) and Cp (α, β, λ). Partial sums fm of functions f in the classes Sp∗ (α, β, λ) and Cp (α, β, λ) are considered.

2. The Classes Sp∗(α, β, λ) and Cp(α, β, λ) In this section we obtain a sufficient condition and extreme points for functions f in the classes Sp∗ (α, β, λ) and Cp (α, β, λ). Theorem 1. A sufficient condition for a function f of the form (1) to be in Sp∗ (α, β, λ), 0 ≤ α < p, β ≥ 0 is ∞ X [(1 + β)n + (p − α)]C(n, k)(1 + λn)k |an | < p − α (z ∈ U ). (7) n=1

Proof. It suffices to show that z[D k f (z)]′ n z[D k f (z)]′ o λ,p λ,p − p − ℜ − p ≤ p−α β k f (z) k f (z) Dλ,p Dλ,p

(z ∈ U ).

z[D k f (z)]′ z[D k f (z)]′ n z[D k f (z)]′ o λ,p λ,p λ,p β − ℜ − p − p ≤ (1 + β) − p k k k Dλ,p f (z) Dλ,p f (z) Dλ,p f (z) P (1 + β) ∞ nC(n, k)(1 + λn)k |an ||z|n+p P∞n=1 ≤ 1 − n=1 C(n, k)(1 + λn)k |an ||z|n+p P nC(n, k)(1 + λn)k |an | (1 + β) ∞ P∞ n=1 . ≤ 1 − n=p+1 C(n, k)(1 + λn)k |an |

340

M. Darus, R.W. Ibrahim

This last expression is bounded above by (p − α) if ∞ X [(1 + β)n + (p − α)]C(n, k)(1 + λn)k |an | < p − α, n=1

and the proof is complete. In the same manner we can obtain the next result. Theorem 2. A sufficient condition for a function f of the form (1) to be in Cp (α, β, λ), 0 ≤ α < p, β ≥ 0 is ∞ X (n + p)[n(1 + β) + (p − α)]C(n, k)(1 + λn)k |an | < p(p − α). (8) n=1

Proof. It suffices to show that for p ∈ N 0 ≤ α < p, β ≥ 0, z ∈ U z[D k f (z)]′′ o n z[D k f (z)]′′ λ,p λ,p β − (p − 1) − (p − 1) ≤ p − α, − ℜ k f (z)]′ k f (z)]′ [Dλ,p [Dλ,p z[D k f (z)]′′ n z[D k f (z)]′′ o λ,p λ,p β − (p − 1) − ℜ − (p − 1) k f (z)]′ k f (z)]′ [Dλ,p [Dλ,p z[D k f (z)]′′ λ,p − (p − 1) ≤ (1 + β) k ′ [Dλ,p f (z)] P k n+p−1 (1 + β) ∞ n=1 n(n + p)C(n, k)(1 + λn) |an ||z| P ≤ p|z|p−1 − ∞ (n + p)C(n, k)(1 + λn)k |an ||z|n+p−1 P∞ n=1 (1 + β) n=1 n(n + p)C(n, k)(1 + λn)k |an | P ≤ . k p− ∞ n=1 (n + p)C(n, k)(1 + λn) |an | This last expression is bounded above by (p − α) if ∞ X (n + p)[n(1 + β) + (p − α)]C(n, k)(1 + λn)k |an | < p(p − α) (p ∈ N). n=1

This completes the proof.

3. Partial Sums In this section, applying methods used by Silverman [3] and Silvia [4], we will investigate the ratio of a function defined in (1) to its sequence of partial sums m X p an z n+p (z ∈ U ) (9) fm+p (z) = z + n=1

ON DIFFERENTIAL OPERATOR FOR...

341

when the coefficients are small enough in order to satisfy either condition (7) or (8). More precisely, we will determine sharp lower bounds for o n f ′ (z) o n f ′ (z) o n f (z) o n f m+p m+p (z) ,ℜ ,ℜ ′ and ℜ . ℜ fm+p (z) f (z) fm+p (z) f ′ (z) n o In the sequel, we will make use of the fact that ℜ (1+w(z)) (1−w(z)) > 0 (z ∈ U ) if and P∞ n only if w(z) = n=1 cn z satisfies the inequality |w(z)| < |z|. Theorem 3. Let f given by (1) satisfy (7). Then n f (z) o >1 ℜ fm+p (z) p−α , (10) − [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k where z ∈ U , p > α, m = 0, 1, 2, ....

The result is sharp for every m with the extremal function p−α f (z) = z p + [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k × z m+p+1 . (11) Proof. Assume that f ∈ T (p) satisfies (7). By setting [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k p−α n f (z) × fm+p (z) o  p−α − 1− [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k P Hm+p+1 ∞ an z n Pmn=m+1 n := 1 + , 1 + n=1 an z where w(z) =

Hm+p+1 [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k . p−α Thus we find that P w(z) − 1 Hm+p+1 ∞ n=m+1 |an | Pm P ≤ 1 (z ∈ U ) ≤ w(z) + 1 2 − 2 n=1 |an | − Hm+p+1 ∞ n=m+1 |an | :=

342

M. Darus, R.W. Ibrahim

if and only if 2Hm+p+1

∞ X

|an | ≤ 2 − 2

m X

|an |

n=1

n=m+1

which is equivalent to m X

|an | + Hm+p+1

n=1

∞ X

|an | ≤ 1.

(12)

n=m+1

In order to see that f (z) = z p +

z m+p+1 Hm+p+1

(z ∈ U ) πi

gives a sharp result, we observe that for z = re m+p (z ∈ U ) that z m+p 1 f (z) =1+ →1− as z → 1− . fm+p (z) Hm+p+1 Hm+p+1 This completes the proof. Theorem 4. Let f given by (1) satisfy (7). Then o nf m+p (z) > ℜ f (z) [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k , (p − α) + [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k (13) where z ∈ U , p > α, m = 0, 1, 2, .... The result is sharp for every m with an extremal function given by (11). Proof. Assume that f ∈ T (p) and satisfies (7). Write w(z) =  [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k  1+ p−α nf m+p (z) × f (z) o [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k − (p − α) + [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k P  ∞ n 1 + Hm+p+1 n=m+1 an z P =1− , n 1+ m n=1 an z

ON DIFFERENTIAL OPERATOR FOR...

343

where Hm+p+1 is defined in Theorem 3 This yields that P w(z) − 1 (1 + Hm+p+1 ) ∞ n=m+1 |an | Pm P ≤ 1 (z ∈ U ) ≤ w(z) + 1 2 − 2 n=p+1 |an | − (1 + Hm+p+1 ) ∞ n=m+1 |an | if and only if

2[(1 + Hm+p+1 )

∞ X

|an |] ≤ 2 − 2

m X

|an |

n=2

n=m+1

or m X

|an | + (1 + Hm+p+1 )

∞ X

|an | ≤ 1,

(14)

n=m+1

n=p+1

which gives (13). The bound in (13) is sharp for all m ∈ N with the extremal function given by (11). This completes the proof. Theorem 5. Let f given by (1) satisfy (7). Then n f ′ (z) o ℜ ′ ≥1 fm+p (z) (m + p + 1)(p − α) , (15) [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k where z ∈ U , p > α, m = 0, 1, 2, .... −

Proof. Assume that f ∈ T (p) satisfies (7). Write w(z) =

 − 1−

[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k p−α n f ′ (z) × ′ fm+p (z) o (m + p + 1)(p − α)

[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k P∞ n+p Hm+p+1 P∞ n+p n n 1 + (m+p+1) n=1 p an z n=m+1 p an z + = Pm n+p 1 + n=1 p an z n Hm+p+1 P∞ n+p n n=m+1 p an z (m+p+1) =1+ , P n+p n 1+ m n=1 p an z

where Hm+p+1 is defined in Theorem 3. This implies Hm+p+1 P∞ n+p w(z) − 1 n=m+1 p |an | m+p+1 ≤ P P H w(z) + 1 2 − 2 m n+p |an | − m+p+1 ∞ n=1

p

m+p+1

n+p n=m+1 p |an |

≤ 1 (z ∈ U )

344

M. Darus, R.W. Ibrahim

if and only if m ∞ X n Hm+p+1 X n |an |] ≤ 2 − 2 |an |, 2[ m+p+1 p p n=p+1

n=m+1

i.e. m+p X n=1

∞ Hm+p+1 X n n |an | + |an | ≤ 1. p m+p+1 p n=m+1

We therefore obtain (15). The result is sharp with functions given by (11). The proof of Theorem 5 is completed. Theorem 6. Let f given by (1) satisfy (7). Then n f ′ (z) o ≥ ℜ m′ f (z) [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k . (m + p + 1)(p − α) + [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k (16)

Proof. Assume that f ∈ T (p) satisfies (7). Consider “ [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k ” w(z) = (m + p + 1) + p−α n f ′ (z) m × f ′ (z) o [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k − k (m + p + 1)(p − α) + [(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1)) Hm+p+1 P∞ (1 + m+p+1 ) n=m+1 n+p an z n p . =1− Pm n+p 1 + n=2 p an z n

This implies that Hm+p+1 P∞ w(z) − 1 ) n=m+1 n+p (1 + m+p+1 p |an | ≤ Pm n+p P H m+p+1 w(z) + 1 2 − 2 n=1 p |an | − (1 + m+p+1 ) ∞ n=m+1

n+p p |an |

if and only if 2[(1 +

∞ m X X Hm+p+1 n+p n+p ) |an |] ≤ 2 − 2 |an |, m+p+1 p p n=m+1

n=1

i.e. m X n+p

n=1

p

∞ X Hm+p+1 n+p |an | + (1 + ) |an | ≤ 1. m + p + 1 n=m+1 p

≤1 (z ∈ U )

ON DIFFERENTIAL OPERATOR FOR...

345

We therefore obtain (16). The result is sharp with functions given by (11). The proof of Theorem 6 is complete. In the same manner as the proof of Theorems 3-6, we can show the following results: Theorem 7. Let f given by (1) satisfy (8). Then n f (z) o >1 ℜ fm+p (z) p(p − α) − (m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k (z ∈ U ). (17) The result is sharp for every m with the extremal function f (z) = z p + p(p − α) (m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k × z m+p+1 . (18) Theorem 8. Let f given by (1) satisfy (8). Then nf o m+p (z) ℜ > f (z) (m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k . p(p − α) + (m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k (19)

The result is sharp for every m with the extremal function given by (18). Theorem 9. Let f given by (1) satisfy (8). Then n f ′ (z) o ℜ ′ ≥ 1− fm+p (z) p(m + p + 1)(p − α) . (m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k (20) Theorem 10. Let f given by (1) satisfy (8). Then ℜ

n f ′ (z) o m ≥ f ′ (z)

(m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k . p(m + p + 1)(p − α) + (m + p + 1)[(1 + β)(m + p + 1) + (p − α)]C(m + p + 1, k)(1 + λ(m + p + 1))k (21)

346

M. Darus, R.W. Ibrahim Acknowledgments

The work here was supported by UKM-ST-06-FRGS0107-2009, MOHE Malaysia.

References [1] R.M. Goel, N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357. [2] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115. [3] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221-227. [4] E.M. Silvia, Partial sums of convex functions of order α, Houston J. Math., 11, No. 3 (1985), 397-404.