Intro to MRI Physics

50 downloads 2471 Views 3MB Size Report
(1) Read Chapters 1 5. (1) Read Chapters 1-5. (2) Watch “MRI-Made Easy” video . ... echo-planar imaging (EPI) by Peter Mansfield. Fast MRI. First human-body ...
I t d ti Introduction to M Magnetic ti Resonance R Imaging I i (MRI) Physics Ph i David C. Zhu, Ph.D. Cognitive Imaging Research Center Departments of Psychology and Radiology

Reading assignment for next three lectures: (1) Read Chapters 1-5. 15 (2) Watch “MRI-Made Easy” video.

~ 1937

Began the concept of magnetic resonance by Isidor Rabi

~1945

Felix Block and Edward Purcell discovered magnetic resonance

~1972

Paul Lauterbur introduced spatial gradients to provide spatial information

~1976

1982 Early 1990s

IIntroduction t d ti off echo-planar imaging (EPI) by Peter Mansfield

Nobel price in 1944 Nobel price in 1952

Beginning g g of MRI Nobel price in 2003 Fast MRI

First human-body 1.5T by GE

MRI technology p ggrowth Rapid

Discovery of BOLD contrast

Basis of fMRI

Goals 1. Basic concepts of MRI 2. Basic meanings of TE, TR, T1, T2, T2*, k space, EPI

An atom

e-

p+ n

Nucleus

C Common elements l t usedd in i MRI: MRI 1H, 13C, 23Na, 31P

Hydrogen

Nucleus

e-

p+

( we have a lot of H2O)!

Spin Physics 1H

classically:

((proton) t )

N Angular Momentum (spin spin)

S Magnetic dipole Magnetic field B Quantized to lower and higher energy states with a Boltzmann distribution: ~ 3 ppm/T excess in lower energy. Bloch Equation:

  B  = Larmor frequency = 42.58 MHz/T for proton

  128 MHz at 3 T

dM  M  B dt M = magnetization = net magnetic moment for all spins in a sample

E = h ,

h = 6.626 x 10-34 J S

JT Bushberg, JA Seibert, EW Leidholdt Jr., and JM Boone. The Essential Physics of Medical Imaging

A happy volunteer after surviving a fMRI session

Magnet Gradient coils RF coils Subject body

Superconducting electromagnets -261C Zero resistance it

Coil for the static magnetic field

Gradient Coil

RF coils (Transmit and Receive)

surface coil

volume coil

phased-array coil

Magnetic Resonance Imaging Hardware Interface in Control Room fMRI stimulus presentation system

3T magnet Room

Equipment Room: Gradient amplifiers RF amplifier P l sequence generator Pulse t Image reconstruction

Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Processes (T2 becomes T2* if local field is inhomogeneous)

Z

Z M

S i fan Spins f outt (dephasing)

B0

T2 decay Y

Initial 90 RF excitation X

TR = time of repetition

Y

Longitudinal magnetization re-growth T1 recovery

T2 decay and T1 recoveryy continue

Back to equilibrium state

Z

X

vector summation

T2 decay deca and T1 recovery continue

TE = time of echo Y

RF X

T2* Decay and T1 Recovery Movie 1

http://www.stanford.edu/class/ee369b/Site/Movies.html

T2* Decay and T1 Recovery Movie 2

| M xy (t ) || M xy (0) | e

Tt * 2

S  kM 0 (1  e

 Tt

M z (t )  M 0 (1  e 1 )

 TR T 1

)e

 TTE* 2

Courtesy of Brian Hargreaves. http://www-mrsrl.stanford.edu/~brian/mri-movies/

Gradient Echo TR = 3s

TE = 6.9 ms

TE = 45 ms

Spin Echo Techniques (Obtain the effect of T2 instead of T2* )

Z

Z

Spins p fan out ((dephasing) p g)

M B0

T2 Initial 90 90 RF excitation

Y

180 RF excitation

* decay

Y

TE/2 X

X

Z

Z

Y

Y

TE/2 X

X

Z

Y

128 MHz

X

Z

Z

Y

Y

X

X

128.0001 MHz

127.9999 MHz Z

Y

X

Explanation of T2* decay

3.000 T

3.000 T

3.000 T

3.000 T

3+10-6

T

3+2×10-6 T

3.000 T 3-10-6 T

After 3 ms

After Af 3 ms

3.000 T

3.000 T

3.000 T

3.000 T

3+10-6 T

3.000 T

3+2×10-6 T

3-10-6 T

Vector sum

Vector sum

Spin Echo Technique

Courtesy of Brian Hargreaves. http://www-mrsrl.stanford.edu/~brian/mri-movies/

Spin Echo

Proton density weighted

T2 weighted

T1 weighted

TE = 13 ms

TE = 90 ms

TE = 13 ms TR = 900 ms

TR = 3 s

S  kM 0 (1  e

 TR T 1

)e

 TE T 2

Laboratory Frame

Courtesy of Brian Hargreaves. http://www-mrsrl.stanford.edu/~brian/mri-movies/

Rotating Frame

Courtesy of Brian Hargreaves. http://www-mrsrl.stanford.edu/~brian/mri-movies/

Long T1 T2

Relaxation time

Short Molecular motion: Molecular size: Molecular interactions:

fast

slow large

intermediate intermediate

ll small

bound

intermediate

free

JT Bushberg, JA Seibert, EW Leidholdt Jr., and JM Boone. The Essential Physics of Medical Imaging

B

Slice Selection B  B0  Gz  Z B0  Gz  Z1

2Gz  Z1



- Z1

   0  Gz  Z B0

Z

Z1

 0  Gz  Z1

B0  Gz  Z1

- Z1

2Gz  Z1

 0

Z1

 0  Gz  Z1

(a)

RF with a narrow bandwidth

(b)

Slice-select gradient

Gradient coils Y

M Magnet Z

X Excite a slice of tissue

B0

RF coil

B0

Z

Spatial encoding using a gradient pulse

Z

Gx x

  Gx  X 1  t Yrot

   0  Gx  X Xrot

 0  Gx  X1

(b) At X1

- X1

0

X1

X

 0  Gx  X1

Z

  Gx  X 1  t (a)

Yrot

Phase offset relative to rotating g frame at 0

0  B0

Xrot (c) At –X1

TR (time of repetition) TE ((time of echo)) X gradient

Tx/2 Gx

Tx/2

Tx/2 t

Gx

t=0 Gy

Y gradient

Z g gradient

Gradient Echo Sequence Ty

Gz Tz Tz/2

RF

Data Acquisition Data acquisition window

Acquire signal (Fourier Transform)

Frequency domain (k space)

Inverse Fourier Transform Space domain

Dr. Seiji Ogawa

cycles/millimeter millimeter

Transformation

Britney Spears on earth

Britney Spears on Mars

ky (ky = 1/yfov)

K space (Spatial Frequency Domain)

(yres-1)/2 1st ky line 2nd ky line

X gradient

Tx/2

Tx/2

Gx

3rd ky line

Gx

Tx/2 t t=0

(xres-1)/2

-(xres-1)/2

Y gradient

kx (kx = 1/xfov)

Gy

Ty  Tt

M xy ( x, y, t )  M xy ( x, y,0)e 2 e  i 2k x x e (kymax-2)th ky line (kymax -1)th ky line (kymax)th ky line -(yres-1)/2

kx  ky 



 i 2k y y

t

G d  2 0



2

x

t

 G d 0

y

S (t )  k0  M xy ( x, y, t )dxdy

http://www.revisemri.com/tutorials/what_is_k_space/

EPI Pulse Sequence

X Grad

Y Grad

Z Grad

RF

Time

Regular EPI Sequence gxepw

X ggradient

gxep1

gxepdw

gyep1

Y gradient

gyepb

gzk gzrf1

Z ggradient

gz1

RF Time

K space Typical 64  64

EPI Pulse Sequence

TE

Ky

X Grad

63rd Ky line Y Grad

33rd Ky line Z Grad

Kx RF

Time

2nd Ky line 1st Ky line

30 slices

Slice #30 Slice #1

Slice #3

Sli #2 Slice Slice #29

2 sec = TR

2 sec

Repeat many times ti

2 sec 2 sec

Bimanual finger tapping motor study (P ≤ 10-7) (12 s resting and then 24 s finger tapping at 1 Hz, TR = 2 s)

Goals 1. Basic concepts of MRI 2. Basic meanings of TE, TR, T1, T2, T2*, k space, EPI

Artifacts due to back-and-forth trajectory in k space

Susceptibility artifacts

Image artifacts due to field variation Normal

Variation along X

Variation along Y

Variation along l Z

Another common technique for fMRI: spiral imaging