introduction - BAP - University of Alberta

0 downloads 0 Views 3MB Size Report
The combination of time–of–flight (TOF) ICP–MS with a laser ablation sample introduction ...... of faience beads, Archaeometry, 14, 27-40. Baumler .... Phillips, P., J. A. Ford, and J. B. Griffin, 1951, Archaeological Survey in the Lower Mississippi.
No Stone Unburned: A Compositional Analysis of Obsidian Microdebitage by Laser Ablation TOF–ICP–MS By Ian Scharlotta, William Gilstrap, and Hector Neff

Ian Scharlotta, Department of Anthropology, University of Alberta, Edmonton, Alberta, T6G 2H4, Canada ([email protected]) William Gilstrap, Department of Archaeology, University of Sheffield, Sheffield, United Kingdom Hector Neff, Department of Anthropology and Institute for Integrated Research in Materials, Environments, and Societies (IIRMES), California State University, Long Beach, CA, USA

ABSTRACT Obsidian is an effective material for the study of prehistoric raw material use and exchange due to the high degree of homogeneity and redundancy of obsidian materials and manufactured objects in the archaeological record. The destructive nature of many analytical techniques often impedes compositional research because of the damage that may occur to priceless archaeological artifacts. The combination of time–of–flight (TOF) ICP–MS with a laser ablation sample introduction system provides a highly efficient means of chemically characterizing obsidian. This study shows that sample size limit capabilities of TOF-ICP-MS analysis of obsidian can reach less than 100 μm. Sampling and analysis of microartifacts enables researchers to overcome problems of sampling bias with very little damage to the valuable existing materials within the archaeological record and expands the potential for chemical compositional analyses in archaeology.

Keywords: Microdebitage; Time–of–flight; laser ablation; ICP–MS; obsidian; provenance analysis

INTRODUCTION

The development and application of new analytical techniques to archaeological obsidian in recent years has highlighted the importance of careful consideration of the scale limits of archaeological research. Concerns over the destructive nature of archaeological research are ongoing; being compounded by the availability of multiple analytical approaches and uncertainty over what future analyses may become available. Artefacts are only as valuable as the data they contain, but potential damage, both intentional and accidental to archaeological materials used for analysis require careful consideration of the explanatory power of the analysis results relative to risks to the artefact. One way to minimise the impact of analyses on the archaeological record itself is to minimise the scale of artefacts used for analysis. Methodological and technological improvements have granted ever-greater access to microscaled artefacts, or artefacts below 1mm at their maximum dimension or long-axis. The fragmentary debris from the formation, maintenance, handling, use, and post-depositional processes of materials such as lithics, pottery and metal can provide the same compositional information as their larger cousins while leaving the larger artefacts unaltered.

The consideration of microdebitage as a valuable artefact category for archaeological study did not emerge until the rise of Processual Archaeology. Before that time, the objectives of generating seriations, establishing chronologies and tracking the transmission of cultural traits promoted an emphasis on attributes observed on large artefacts (e.g., Phillips et al., 1951). This interest in primarily stylistic characteristics left microscopic components of artefact assemblages without any distinguishing stylistic traits largely ignored. By the 1960’s, new questions about

the functions of different artefacts and the processes of culture change led archaeologists to explore smaller size classes, getting down to the molecular and atomic levels. Archaeologists found that traits on smaller artefacts could reflect both stylistic and functional aspects, as well as technological processes (e.g., Keeley, 1974a, b; MacDonald and Sanger, 1968; Sonnenfeld, 1962; Tringham, 1978), establishing microanalysis as an important part of archaeological studies.

Compositional analysis of artefacts through methods such as optical emission spectroscopy and neutron activation analysis (NAA), allowed researchers to use smaller artefacts to answer new questions regarding the sources of raw materials and the formulas for their creation (e.g., Harbottle, 1970). Important as this research was, compositional analysis remained fairly specialised until the 1980’s when microscopic analyses became more common within archaeological research (e.g., Aspinall et al., 1972; Caley, 1964; Harbottle, 1970; Keeley, 1974a, b; MacDonald and Sanger, 1968; Newton and Renfrew, 1970; Otto and Witter, 1952; Phillips et al., 1951; Sonnenfeld, 1962; Stone and Thomas, 1956; Tringham, 1978; Wilmsen, 1968).

Knut Fladmark (1982) coined the term “microdebitage,” defined as particles less than 1.0 mm in their longest dimension. Fladmark (1982) brought the analysis of microartefacts into a new light, emphasising the propensity for microscale lithic manufacturing debris to permeate the working environment and the potential for this microdebitage to produce a long-lasting signature of past cultural activity. Another key contribution by Fladmark (1982) was the importance of identifying debitage from naturally occurring phenomena in any attempt at small-scale lithic analysis. This expanded previous work on the differentiation of use-related damage from

naturally occurring impacts seen on larger artefact classes (e.g., Hayden, 1979; Keeley, 1974a, b, 1980; Nance, 1971; Odell, 1975; Sheets, 1973; Tringham et al., 1974). Fladmark’s seminal work led to new approaches for studying smaller artefact categories through traditional archaeological research methodologies such as examining site formation processes and the spatial distribution of lithic production (e.g., Hull, 1987; Stein and Teltser, 1986; Vance, 1985, 1986, 1989).

Microsampling of rhyolitic glasses has been a concern in the field of microtephra studies within geological research (e.g., Blockley et al., 2005a; Eastwood and Pearce, 1998; Pearce et al., 1996; Pearce et al., 1999; Pearce et al., 2004; Pollard et al., 2006; Westgate et al., 1994) and during the past decade new techniques have been developed for extracting microlithics from volcanic tephra for the purpose of chemical analysis (e.g., Blockley et al., 2005b; Madella et al., 1998; Turney, 1998; Turney et al., 2004). Microfractions of tephra deposits are routinely removed from original tephra matrices through the means of heavy liquid separation techniques (Blockley et al., 2005b; Callahan, 1987; Duyvesteyn et al., 1994; Hanan and Totten, 1996; Munsterman and Kerstholt, 1996; Turney, 1998) additionally, geologists are able to accurately characterise chemical compositions of the microfraction with astounding results (Jones, 2008; Pearce et al., 1996; Pearce et al., 1999; Pearce et al., 2004). The concerns of these studies in geology can be indirectly linked to new concerns in the study of microartefacts in archaeology by the volcanic nature of obsidian stone tools. Obsidian microdebitage, like rhyolitic tephras, can be extracted from anthropogenic sediment deposits by heavy liquid mineral separation and can be accurately characterised by chemical analysis.

Due to its accessibility, and potential distribution within anthropogenic soils, geochemical applications on obsidian microdebitage have significant benefits for archaeologists. Geoarchaeological studies have examined the impacts of various formation processes on small artefacts (e.g., Goldberg and Whitbread, 1993; Grayson, 1986; Madsen, 1992; Sherwood et al., 1995; Stein and Teltser, 1986; Teltser and Kovacik, 1991). Accounting for post-depositional effects, microdebitage has proven a useful class in aggregate analyses of debitage (e.g., Ahler, 1989; Baumler and Davis, 2004; Hall, 2004; Kontogiorgos and Leontitsis, 2005; Peacock, 2004; Root, 2004). With the development of these new approaches, concerns began to arise about the collection and interpretation of microartefact data. Some of these concerns revolved around the boundaries that should define microartefacts, and more specifically chipped stone tool microdebitage, as a class of artefacts and what information these artefacts could contain (e.g., Baumler and Downum, 1989; Dunnell and Stein, 1989).

Notably absent from microdebitage studies to date has been provenance research. Aside from a recent study by Eerkens et al. (2007), little consideration has been given to the provenance data of small or microscale artefacts. Microartefacts have much to offer researchers that large artefacts cannot provide. Including microartefacts increases overall sample size, enables researchers to reduce biases stemming from curation, and provides better estimates of lithic variety in any archaeological collection. The key to making microartefact provenance analysis part of routine archaeological research is the establishment of fast, cost-effective, accurate geochemical sourcing methods. Pearce et al. (2004) have demonstrated the current size limit (approximately 40 µm) for matching a single piece of microdebitage with a known chemical source using quadrupole inductively coupled–plasma mass–spectrometry (ICP–MS), however

left unanswered whether this scale is effective for archaeological provenance research. To this end, we have focused on the use of laser–ablation time–of–flight ICP–MS (LA–TOF–ICP–MS) to assess the parameters of this new class of artefacts in routine chemical compositional analysis. Using a GBC OptiMass 8000 Time–of–Flight ICP–MS coupled with a New Wave UP–213 laser ablation sample introduction system we were able to distinguish between the relative elemental abundances of five different obsidian source groups using samples at scales of approximately 90 µm in diameter.

ICP–MS

ICP–MS has been a method of increasing interest to provenance researchers in recent years and is quickly becoming the new “gold standard” for inorganic analysis in earth and environmental sciences (Pollard et al., 2007). The major limitation to the potential of ICP–MS machinery is their method of mass detection. Most ICP–MS units use quadrupole mass filters to differentiate between atomic masses of the charged ions (Pollard et al., 2007; Speakman and Neff, 2005). While this is highly effective and reliable technology, based on the idea that the entire mass range will be scanned in a matter of seconds, the problem with this approach is that it records the atomic masses in sequential (linear) fashion, requiring a constant ion stream to read the entire sequence, meaning that the sample must be continually ablated while the mass range is scanned. Even if the mass range is scanned in a fraction of a second, this approach has high levels of background noise, hindering the resulting detection limits. Speakman and Neff (2005) demonstrated the ability of LA–ICP–MS to match NAA’s analytical results and accurately characterise artefacts below 1mm in diameter, with the added advantages of reduced speed and

costs. Pearce et al. (2004), substantiated that the theoretical limit for geochemical fingerprinting lay in the relationship between sample introduction and analysis time. The result of their work was that with special laser modulation, a 40µm diameter piece of obsidian could be ablated for the necessary 60 seconds and accurately analysed for 25 elements.

An alternate approach used to detect varying atomic masses is through measurement of the time– of–flight (TOF) of charged ions as they pass through the detector. Charged ions travel at different velocities based on their masses (Pollard et al., 2007). The time–of–flight approach measures all ions from the sample that is introduced and does not require that the entire mass spectrum be read in linear fashion resulting in all ions from a signal are read regardless of the strength of the signal. There is no need for constant sample introduction (or ablation) for accurate measurements to be taken, thus altering the limitations of sample introduction and analysis time noted above. The result is that accurate measurements with much higher resolution can be achieved even through the introduction of smaller samples (Pollard et al., 2007; Speakman and Neff, 2005). Laser ablation time–of–flight inductively coupled mass spectrometry (LA–TOF–ICP–MS) is not the only analytical approach proven effective for provenance research, however, it is an effective and capable means of sampling microdebitage as demonstrated in the following sections of this paper.

SOURCING MICROARTEFACTS

A LA–TOF–ICP–MS approach to microartefacts offers sizeable benefits to the analysis of archaeological materials, most significantly in provenance studies. Sourcing smaller scale

artefacts has enabled researchers to address new kinds of archaeological questions. For example, aspects of human behaviour such as source-utilisation and exchange patterns for obsidian materials can be examined without the presence of any larger obsidian artefacts. By adding microdebitage portions of the assemblage, the likelihood of recovering the statistically significant quantities of comparable artefacts necessary to perform provenance research are substantially increased. Second, enabling analysis of the smallest sizes of obsidian artefacts that can be mechanically manipulated expands and augments the traditional size-grade approach to debitage analysis (Andrefsky, 2001).

While the full potential of compositional variability analysis of microdebitage has yet to be reached, important topics of recent study include discussing the biases that can be associated with the introduction of new size-range classifications and the consequences of such oversights in past research (e.g., Ahler, 1989; Baumler and Davis, 2004; Eerkins et al., 2007; Hall, 2004; Root, 2004). Eerkens et al. (2007) have demonstrated the potential pitfalls for any provenance study that systematically ignores particular size classes and thus limits interpretation. Similarly, Baumler and Davis (2004) highlighted the extent of the sampling bias for larger artefacts incurred by most current archaeological field methodologies, suggesting that sampling biases are a concern for provenance researchers and a topic that requires further study. The diversity of source materials at a given site must be known with the greatest possible accuracy to measure the impact of sampling biases on provenance research and is something that can be greatly enhanced using smaller classes of artefacts and a timely and cost-effective means of analysis (e.g., LA– TOF–ICP–MS).

Raw material source diversity at any given site provides the means to answer questions about impacts and implications of specific biases. Primary source material used within a lithic manufacturing zone can be more securely determined by including all possible size categories of artefacts. This information is supplemented by a knowledge of the extent that other artefacts classes are representative of the total material diversity present at a site. The processes for the preferential biasing of larger artefact classes (e.g. prehistoric usage and exchange) can additionally be identified through a raw material source comparison study.

Raw material variability can also indicate social trends. Accessing such data could enable discussions about cultural transmission and heritable preferences for raw materials and/or types of trade interactions. In the example of commodity production, the extent that different manufacturing zones exhibit materials from different sources provides insight into social structuring of interaction and potential exchange between groups (e.g., Eerkens and Bettinger, 2001; Eerkens and Rosenthal, 2004; Eerkins et al., 2007). In an example of craft specialisation, different spatial units within a site that exhibit diversity in the consumption or preferential utilisation of particular source materials, can indicate differential access to raw materials and/or traded materials, potentially reflected only in the microdebitage record. Due to its dangerous nature debitage was generally removed from its original context, often quite a far distance, and deposited secondarily (Clark, 1991). The presence of microdebitage is therefore a clear indication of in situ production activity (e.g., Moholy-Nagy, 1990), enabling a means to witness archaeologically significant in the development of craft production and specialization.

Identification of anomalous source groups through microartefacts provides another significant advantage. Virtually all lithic materials handled to any extent will be chipped or damaged in some minor fashion, leaving a physical marker that can be identified during analysis. Even if the tool itself is not recovered, debitage can provide ample material to investigate the source materials being used at a particular site. However, the nature of microdebitage creates the problem of how to separate it from archaeological deposits. The application of heavy liquid mineral separation coupled with other artefact extraction techniques (e.g. flotation, sieving, etc.) enables the extraction of obsidian microartefacts from anthropogenic deposits (Blockley et al., 2005b; Callahan, 1987; Hanan and Totten, 1996; Madella et al., 1998; Munsterman and Kerstholt, 1996; Turney, 1998). Potential organic contaminants can be removed by means of a simple acid bath.

Finally, enabling provenance studies of microartefacts allows researchers to collect the quantity of material necessary for analysis by excavating in a smaller area. At present, fairly extensive excavation or substantial existing collections are necessary to obtain reliable results for sourcing. Increasing overall artefact inventory by including smaller artefact classes vastly increases the number of available artefacts in a given volume of anthropogenic soils. Likewise, reduction in necessary excavation enables the application of multiple theoretical approaches to a single site without issues of collection sharing. For example, sampling a site with several auger or shovel test pits would enable an examination of source material diversity and variability through time and space without having significant impact on other excavation plans or upon the site itself if no further excavation was planned. Consequently, using microartefacts in sourcing and other studies has the additional benefits of minimising the destructive impact of archaeological record.

MATERIALS AND ANALYTICAL METHODS

This study is designed to determine the minimum size range and reproducible signal intensity that could be used in LA–TOF–ICP–MS under normal operating conditions for provenance research. This objective requires taking sample measurements from a continuously shrinking size range until the success of signal reproducibility and thus the ability to classify analytes was lost. Pearce et al. (2004) have already demonstrated the current limitations of characterising a single flake relative to a known source under special conditions, but this may not reflect expectations for successful provenance research in a mixed and/or complex assemblage of artefacts. Thus it is necessary to highlight that this method does not stretch the limitations of LA–TOF–ICP–MS, but emphasises the reproducibility of signal intensities at a scale below 1mm to assess the smallest scale that multiple samples can be analysed and accurately classified.

For the sample materials used in this analysis obsidian cobbles were directly procured from each of five different sources locations in or near California: Bodies Hills (CA and NV), Davis Creek (CA), Fish Springs (CA), Lookout Mountain (CA) and Queen (CA and NV) (Figure 1). These 5 sources were previously analysed for chemical composition and are included in obsidian databases at either the University of Missouri Research Reactor Center (MURR) or the Institute for Integrated Research in Materials, Environments and Society (IIRMES) at California State University in Long Beach. To confirm that the samples for this study matched the compositional signatures on record, they were analysed for 43 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn,

Fe, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, and U) using the GBC OptiMass 8000 Time–of–Flight ICP–MS coupled with a New Wave UP–213 laser ablation sample introduction system at the IIRMES lab. Samples from each of these five obsidian sources with known concentrations were then crushed into varying degrees of magnitude covering a range of >250μm (small pressure flakes), down to 250μm; 250μm>180μm, 180μm>125μm, 125μm>90μm, and finally 90μm scale and continuing on to larger scales until successful results were achieved. A significant number of the

samples in this range were not accurately classified. For the analysed samples in the 125>90μm and 180>125μm scales, jackknifed Mahalanobis classification yielded a 94.9% success rate (Table 1, Supplementary Material II). A small minority of samples in the 125>90μm size range were misclassified due to sample destruction. Some samples in the >90μm range were successfully classified, but many were so thin that the laser completely destroyed them before a usable signal could be obtained, thus making classification impossible. This is not the minimum size of a sample that can be analysed, only the minimum size at which multiple artefacts can be expected to yield useful data. Classification of microdebitage based on greatest long-axis measurement is perhaps somewhat misleading in this case. The limits of the methodology are based more on sample volume than on long-axis measurement. Using TOF–ICP–MS, the minimum ablation time was 10 seconds, not limited by the strength of the signal. Pearce et al. (2004) reported successful characterisation of microtephra flakes as small as 40 microns, yielding data on 25 elements from a 60 second analysis under exceptional operating conditions. With the TOF ICP–MS we accomplished similar results, gaining usable data for 43 elements in a 10 second analysis, though our conclusions were that 90 microns is the size limit of reasonable expectations for an archaeometric study. Thus Pearce et al. (2004) have clearly demonstrated that smaller samples can be effectively characterised, though as sample size gets smaller, the number of elements with useful data and the expectation of finding multiple flakes with sufficient volume for analysis is correspondingly reduced. With further laser modulation, this approach may be able to surpass the results of Pearce et al. (2004), and produce similar size results but with more elements, though this was not the specific intent of this experiment. It is also possible that difficulties with samples below 90 microns reflect issues of compositional homogeneity at this scale. Goffer (1980) noted fairly early in the history of obsidian

compositional research, that colours (i.e., red, gray) reflect differences in the compositional makeup of the material, but at what scale this renders obsidian into a heterogeneous matrix is uncertain.

Any concerns of heterogeneity have been quelled by testing the Lookout Mountain source, which exhibits colour and textural variability within the same flow source. Three aesthetically different fragments (pure black, slightly opaque black with straight lines of gray/white, and slightly opaque black with wavy gray lines) from the Lookout Mountain source were sampled and analyzed using a methodology similar that described above. The results of this test, as illustrated in Figure 6, indicate that while there are aesthetic differences, the chemistry remains unchanged. In sum, this research indicates that a minimum reliable size of 90μm for samples to be used successfully for provenance research.

CONCLUSION

Small and microscopic scale artefacts have long been understood to be a valuable class of artefact containing a significant amount data. Use of this class of artefact has largely been hampered by the technological and methodological means to effectively access this data. The development and refinement of technologies such as LA–TOF–ICP–MS and the statistical and explanatory structures necessary to interpret these data have been crucial in expanding the realm of possibilities with this oft-overlooked portion of the archaeological record.

LA–TOF–ICP–MS is not the only means of analysing microartefacts, though it is well-suited to analyse obsidian microdebitage down to below 100 microns in an efficient and cost-effective manner. The ramifications of this method for the researcher stretch beyond identifying areas of raw material procurement, enabling further understanding of new meaningful cultural questions. Obsidian microdebitage is a link to determining previously unidentified obsidian source consumption at a specific production site. Materials sampled from intermediate members of down-the-line trading chains can track the flow of raw materials or finished artefacts absent in between endpoints in long-distance trading scenarios. Where multiple raw material sources, or subsources, are available, microdebitage studies allow for investigations of human behaviour patterns such as source preference within a specific site or region or changes in preferences through time. These are but a few examples of alternative research topics that can be approached through this analytical method.

It is possible to extract and accurately characterise obsidian microdebitage at the scale of 90 microns and below from soils (e.g., anthropogenic deposits and tephra layers), it is significant to note that it is often not necessary to sample at this scale. This experiment is designed to show that LA–TOF–ICP–MS is methodologically capable of determining source provenience at the smallest scale we could attain with the tools in our laboratory (IIRMES) under normal operating conditions. Using a TOF ICP–MS we accomplished similar results as those indicated in Pearce et al. (2004), with very little laser manipulation. Their conclusion that samples as small as ~40 microns could be effectively characterised with 25 elements in a 60 second analysis strongly suggests that the hypothetical limits of the LA–TOF–ICP–MS have not been demonstrated herein, only the limitations of the equipment under normal operating conditions. Usable data for

43 elements was collected in a 10 second analysis using the TOF, though our conclusions were that 90 microns is the size limit of reasonable expectations for an archaeometric study. At such scales we must revert to caution with regard to the information we are seeking as compared to the data we are gathering. Artefacts smaller than 100 microns risk the effects of an array of post depositional processes that would be observable and avoidable on macro-scale artefacts, but for which we can do little on microartefacts. Having examined with the limits of current technology within an experimental archaeological problem, we are now prepared and implore others to advance this experiment by applying it to actual archaeological contexts.

ACKNOWLEDGEMENTS None of this research would have been possible without the funding provided by the National Science Foundation that allowed for the purchase of the Optimass 8000 TOF-ICP-MS (0321361) as well as the archaeometry grant (0604712) that funds the daily operations and maintenance of the IIRMES laboratory and enables student research to be conducted. We would like to extend special thanks to John Dudgeon and Clarus Backes for invaluable confidence, criticism and support for this body of research.

WORKS CITED Ahler, S. A., 1989, Mass Analysis of Flaking Debris: Studying the Forest Rather Than the Tree, Archaeological Papers of the American Anthropological Association, 1(1), 85-118. Andrefsky, W., Jr., 2001, Lithic Debitage: Context, Form, Meaning: Salt Lake City, University of Utah Press. Aspinall, A., S. E. Warren, J. G. Crummett, and R. G. Newton, 1972, Neutron activation analysis of faience beads, Archaeometry, 14, 27-40. Baumler, M. F., and L. B. Davis, 2004, The Role of Small-Sized Debitage in Aggregate Lithic Analysis, in Aggregate Analysis in Chipped Stone, 45-64, C. T. Hall, and M. L. Larson, eds., University of Utah Press, Salt Lake City. Baumler, M. F., and C. E. Downum, 1989, Between the Micro and Macro: A study in the interpretation of small-sized lithic debitage, in Experiments in Lithic Technology, 101116, R. Mauldin, and D. Amick, eds., International Series, Number 528, British Archaeological Reports, Oxford. Baxter, M. J., 1991, Principal component and correspondence analysis of glass compositions: an empirical study, Archaeometry, 33, 29-41. Baxter, M. J., 1994, Exploratory Multivariate Analysis in Archaeology: Edinburgh, Edinburgh University Press. Bishop, R. L., and H. Neff, 1989, Compositional data analysis in archaeology, in Archaeological Chemistry IV, 57-86, R. O. Allen, ed., American Chemical Society, Washington D.C. Blockley, S. P. E., J. J. Lowe, A. M. Pollard, S. D. F. Pyne-O'Donnell, I. P. Matthews, A. Stone, C. S. Lane, and C. J. Doherty, 2005a, The potential of micro-tephra stratigraphy for dating and correlating sediment sequences in Europe: detection, preservation and geochemical analysis, Geophysical Research Abstracts, 7(01279). Blockley, S. P. E., S. D. F. Pyne-O'Donnell, J. J. Lowe, I. P. Matthews, A. Stone, A. M. Pollard, C. S. M. Turney, and E. G. Molyneux, 2005b, A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments, Quaternary Science Reviews, 24(16-17), 1952-1960. Caley, E. R., 1964, Analysis of Ancient Metals: Oxford, Pergamon. Callahan, J., 1987, A nontoxic heavy liquid and inexpensive filters for separation of mineral grains, Journal of Sedimentary Petrology, 57(4), 765-766.

Clark, J. E., 1991, Modern Lacandon lithic technology and blade workshops., in Maya Stone Tools: Selected Papers from the Second Maya Lithic Conference, 251-265, T. a. S. Hester, H., ed., Prehistory Press, Madison. Davis, J. C., 1986, Statistics and Data Analysis in Geology: New York, John Wiley and Sons. Dunnell, R. C., and J. K. Stein, 1989, Theoretical Issues in the Interpretation of Microartifacts, Geoarchaeology, 4, 31-42. Duyvesteyn, W. P. C., N. L. Labao, H. Liu, and P. L. Shreshtha, 1994, Lithium metatungstate, 08/053,492, BHP Minerals International Inc., United States of America. Eastwood, W. J., and N. J. G. Pearce, 1998, Recognition of Santorini (Minoan) Tephra in Lake Sediments from Golhisar Golu, Southwest Turkey by Laser Ablation ICP-MS, Journal of Archaeological Science, 25, 677-687. Eerkens, J. W., and R. L. Bettinger, 2001, TECHNIQUES FOR ASSESSING STANDARDIZATION IN ARTIFACT ASSEMBLAGES: CAN WE SCALE MATERIAL VARIABILITY?(Statistical Data Included), American Antiquity, 66(3), 493. Eerkens, J. W., and J. S. Rosenthal, 2004, Are obsidian subsources meaningful units of analysis?: temporal and spatial patterning of subsources in the Coso Volcanic Field, southeastern California, Journal of Archaeological Science, 31(1), 21-29. Eerkins, J., W., J. R. Ferguson, M. D. Glascock, C. E. Skinner, and S. A. Weachter, 2007, Reduction Strategies and Geochemical Characterization of Lithic Assemblage: A Comparison of Three Case Studies from Western North America, American Antiquity, 72, 585-597. Fladmark, K., 1982, Microdebitage Analysis: Initial Considerations, Journal of Archaeological Science, 9, 205-220. Goffer, Z., 1980, Analytical Chemistry: A Sourcebook on the Applications of Chemistry to Archaeology: New York, Wiley-Interscience Publication. Goldberg, P., and I. Whitbread, 1993, Micromorphological Study of a Bedouin tent floor, in Formation Processes in Archaeological Context, 165-188, M. D. Petraglia, ed., Monographs in World Prehistory, Prehistory Press, Madison. Gratuze, B., 1999, Obsidian Characterization by Laser Ablation ICP-MS and Its Application to Prehistoric Trade in the Mediterranean and the Near East: Sources and Distribution of Obsidian within the Aegean and Anatolia, Journal of Archaeological Science, 26, 869881.

Grayson, D. K., 1986, Eoliths, Archaeological Ambiguity, and the Generation of “Middle Range” Research, in American Archaeology Past and Future: A Celebration of the Society for American Archaeology, 77-133, D. J. Meltzer, D. D. Fowler, and J. A. Sabloff, eds., Smithsonian Institution Press, Washington D.C. Hall, C. T., 2004, Evaluating Prehistoric Hunter-Gatherer Mobility, Land Use, and Technological Organization Strategies Using Minimum Analytical Nodule Analysis, in Aggregate Analysis in Chipped Stone, 139-155, C. T. Hall, and M. L. Larson, eds., University of Utah Press, Salt Lake City. Hanan, M. A., and M. W. Totten, 1996, Analytical techniques for the separation and SEM identification of heavy minerals in mudrocks, Journal of Sedimentary Research, 66(5), 1027-1030. Harbottle, G., 1970, Neutron activation analysis of potsherds from Knossos and Mycenae, Archaeometry, 12, 23-34. Harbottle, G., 1976, Activation analysis in archaeology, in Radiochemistry, 33-72, G. W. A. Newton, ed., The Chemical Society, London. Hayden, B., ed., 1979, Lithic Use-Wear Analysis: New York, Academic Press. Hull, K. L., 1987, Identification of cultural site formation processes through microdebitage analysis, American Antiquity, 52, 772-783. Jones, C., 2008, Trace Element Fingerprinting in the Gulf of Mexico Volcanic Ash, Kansas State University, Manhattan, 56 p. Keeley, L. H., 1974a, The Methodology of Microware Analysis: A Comment on Nance, American Antiquity, 39, 126-128. Keeley, L. H., 1974b, Technique and Methodology in Microware Studies: A Critical Review, World Archaeology, 5, 323-336. Keeley, L. H., 1980, Experimental Determination of Stone Tool Use: A Microware Analysis: Chicago, University of Chicago Press. Kontogiorgos, D., and A. Leontitsis, 2005, Microartefacts' weight estimation by Genetic Algorithm minimization, Journal of Archaeological Science, 32(8), 1275-1282. MacDonald, G. F., and D. Sanger, 1968, Some Aspects of Microscope Analysis and Photomicrography of Lithic Artifacts, American Antiquity, 33, 237-240. Madella, M., A. H. Powers-Jones, and M. K. Jones, 1998, A Simple Method of Extraction of Opal Phytoliths from Sediments Using a Non-Toxic Heavy Liquid, Journal of Archaeological Science, 25(8), 801-803.

Madsen, M. E., 1992, Lithic Size Distributions and Microartifacts, in Deciphering a Shell Midden, 193-210, J. K. Stein, ed., Academic Press, New York. Moholy-Nagy, M., 1990, The Misidentification of Mesoamerican Lithic Workshops, Latin American Antiquity, 1, 268-279. Munsterman, D., and S. Kerstholt, 1996, Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation, Review of Palaeobotany and Palynology, 91(1-4), 417-422. Nance, J. D., 1971, Functional Interpretations from Microscopic Analysis, American Antiquity, 36, 361-366. Neff, H., 2002, Quantitative Techniques for Analyzing Ceramic Compositional Data, in Ceramic Production and Circulation in the Greater Southwest: Source Determination by INAA and Complementary Mineralogical Investigations, 15-36, Monograph 44, D. M. Glowacki, and H. Neff, eds., The Cotsen Institute of Archaeology at UCLA, Los Angeles. Neff, H., 2003, Analysis of Mesoamerican Plumbate Pottery Surfaces by Laser AblationInductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), Journal of Archaeological Science, 30, 21-35. Newton, R. G., and C. Renfrew, 1970, British faience beads reconsidered, Antiquity, 44, 199206. Odell, G. H., 1975, Micro-Ware in Perspective: A Sympathetic Response to Lawrence H. Keeley, World Archaeology, 7, 226-240. Otto, H., and W. Witter, 1952, Handbuch der ätesten vorgeschichtlichen Metallurgie in Mitteleuropa: Leipzig, J. A. Barth. Peacock, E., 2004, Using Macro- and Microartifacts to Investigate the Function and Duration of Short-term Prehistoric Sites: An Example from North Mississippi Mississippi Archaeology, 39(1), 3-24. Pearce, N. J. G., J. A. Westgate, and W. T. Perkins, 1996, DEVELOPMENTS IN THE ANALYSIS OF VOLCANIC GLASS SHARDS BY LASER ABLATION ICP-MS: QUANTITATIVE AND SINGLE INTERNAL STANDARD-MULTIELEMENT METHODS, Quaternary International, 34-36, 213-227. Pearce, N. J. G., J. A. Westgate, W. T. Perkins, W. J. Eastwood, and P. Shane, 1999, The application of laser ablation ICP-MS to the analysis of volcanic glass shards from tephra deposits: bulk glass and single shard analysis, Global and Planetary Change, 21, 151171.

Pearce, N. J. G., J. A. Westgate, W. T. Perkins, and S. J. Preece, 2004, The application of ICPMS methods to tephrochronological problems, Applied Geochemistry, 19, 289-322. Phillips, P., J. A. Ford, and J. B. Griffin, 1951, Archaeological Survey in the Lower Mississippi Alluvial Valley, 1940-1947, in Papers 25, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, Mass. Pollard, A. M., C. Batt, B. Stern, and S. M. M. Young, 2007, Analytical Chemistry in Archaeology: Cambridge, Cambridge University Press. Pollard, A. M., S. P. E. Blockley, and C. S. Lane, 2006, Some numerical considerations in the geochemical analysis of distal microtephra, Applied Geochemistry, 21, 1692-1714. Root, M. J., 2004, Technological Analysis of Flake Debris and the Limitations of Size-Grade Techniques, in Aggregate Analysis in Chipped Stone, 65-94, C. T. Hall, and M. L. Larson, eds., University of Utah Press, Salt Lake City. Sheets, P. D., 1973, Edge Abrasion during Biface Manufacture, American Antiquity, 38, 215218. Sherwood, S. C., J. F. Simek, and R. R. Polhemus, 1995, Artifact Size and Spatial Process: Macro- and Microartifacts in a Mississippian House, Geoarchaeology, 10, 429-456. Sneath, P. H. A., and R. R. Sokal, 1973, Numerical Taxonomy: San Francisco, W.H. Freeman and Company. Sonnenfeld, J., 1962, Interpreting the Function of Primitive Implements, American Antiquity, 28, 56-65. Speakman, R. J., and H. Neff, eds., 2005, Laser ablation-ICP-MS in archaeology research: Santa Fe, University of New Mexico Press. Stein, J. K., and P. A. Teltser, 1986, Microartifact Analysis: A Tool for Understanding Site Formation Processes, Geoarchaeology, 4, 1-30. Stone, J. F. S., and L. C. Thomas, 1956, The use and distribution of faience in the Ancient East and Prehistoric Europe, Proceedings of the Prehistoric Society, 22, 37-84. Teltser, P. A., and J. Kovacik, 1991, Plowzone Structure of a Middle Woodland Settlement from Microartifacts: 56th Annual Meeting of the Society for American Archaeology. Tringham, R., 1978, Experimentation, Ethnoarchaeology, and Leapfrogs in Archaeological Methodology, in Explorations in Ethnoarchaeology, 169-199, R. A. Gould, ed., University of New Mexico, Albuquerque.

Tringham, R., G. Cooper, G. Odell, B. Voytek, and A. Whitman, 1974, Experimentation in the Formation of Edge Damage: A New Approach to Lithic Analysis, Journal of Field Archaeology, 1, 171-196. Turney, C. S. M., 1998, Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments Journal of Paleolimnology, 19(2), 199-206. Turney, C. S. M., J. J. Lowe, S. M. Davies, V. Hall, D. J. Lowe, S. Wastegard, W. Z. Hoek, B. Alloway, and S. a. I. Members, 2004, Tephrochronology of Last Termination Sequences in Europe: a protocol for improved analytical precision and robust correlation procedures (a joint SCOTAV–INTIMATE proposal), Journal of Quanternary Science, 19(2), 111120. Vance, E. D., 1985, Potential of microartifacts other than microdebitage: 50th Annual Meeting of the Society for American Archaeology. Vance, E. D., 1986, Microdebitage analysis in activity analysis: an application, Northwest Anthropological Research Notes, 20(2), 179-189. Vance, E. D., 1989, The Role of Microartifacts in Spatial Analysis, University of Washington, Seattle. Westgate, J. A., W. T. Perkins, R. Fuge, N. J. G. Pearce, and A. G. Wintle, 1994, Trace-element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronological studies, Applied Geochemistry, 9, 323335. Wilmsen, E. N., 1968, Functional Analysis of Flaked Stone Artifacts, American Antiquity, 33, 156-161.

FIGURE CAPTIONS Figure 1: Location of Californian obsidian sources analyzed in this study. Figure 2: Samples from Davis Creek at 180>125μm demonstrating 30μm diameter laser scars at 200x magnification. Figure 3: Signal peaks above background demonstrate signal collection for Aluminium. Peaks 1-7 are a source group. Peaks 8-17 represent debitage size range 180>125µm. Peaks 18-27 represent debitage size range of 125>90µm. Figure 4: The contrast of log10 transformed elemental concentrations, such as Barium and Lanthanum, illustrate that each group is distinctively separated by geographic source for all sampled specimens >90 microns. 95% (2σ) Confidence Ellipses. Figure 5: Log10 transformed Niobium and Cesium concentrations for samples >90 microns illustrate clear separation of each geographic source. 95% (2σ) Confidence Ellipses.   Figure 6: This plot contrasting log10 transformed Barium and Erbium concentrations of three different cobbles from the Lookout Mountain obsidian source illustrates the high degree of homogeneity of obsidian. Each specimen, ‘black’, ‘wavy’ and ‘lines’, were sampled three separate times. 95% (2σ) Confidence Ellipses.     TABLE CAPTIONS Table 1: Classification results for samples in size ranges 180>125µm and125>90µm with readable signals (Mahalanobis distance calculation and posterior classification success) showing a 94.5% success rate. Supplemental Material I: Average elemental composition results and external reproducibility estimates for obsidian standard materials. Supplemental Material II: Chemical compositional results for individual samples in size ranges 180>125µm and125>90µm in ppm concentrations.

Summary of Classification Success: Bodie Davis From: Hills Creek Bodie Hills 26 0 Davis Creek 0 26 Fish Springs 0 0 Lookout 0 0 Queen 0 1 Total 26 27

Fish Springs 0 1 27 1 1 30

Lookout Queen 0 1 0 0 0 0 25 0 0 25 25 26

Total 27 27 27 26 27 134

LA‐TOF Consensus Values Bodie Hills

Al As Ba Ca Ce Co Cr Cs Cu Dy Er Eu Fe Gd Hf Ho K La Li Lu Mg Mn Na Nb Nd Ni Pb Pr Rb Sb Sc Sm Sn Sr Ta Tb Th Ti Tm U V Y Yb Zn Zr

mean 72817.03 9.62 276.37 2585.96 46.27 0.07 0.00 8.53 0.41 0.96 0.70 0.20 4410.34 1.02 2.45 0.19 37551.75 26.52 52.22 0.14 410.86 415.97 26236.96 14.85 11.34 0.00 24.53 3.71 193.44 0.95 6.66 1.49 1.23 75.83 1.21 0.15 21.50 592.22 0.11 7.59 1.93 7.05 0.83 32.18 85.59

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

stdev precision 469.56 1.3% 0.00 0.1% 15.71 11.4% 6.06 0.5% 0.53 2.3% 0.07 194.6% 0.00 0.0% 0.26 6.0% 0.41 200.0% 0.06 11.6% 0.09 25.9% 0.01 10.6% 138.81 6.3% 0.01 1.2% 0.04 3.6% 0.00 5.2% 2390.10 12.7% 0.13 0.9% 2.63 10.1% 0.01 8.7% 4.10 2.0% 6.45 3.1% 1269.30 9.7% 0.17 2.3% 0.04 0.6% 0.00 0.0% 0.60 4.9% 0.03 1.5% 2.38 2.5% 0.13 28.0% 1.84 55.2% 0.03 3.9% 0.02 3.7% 0.80 2.1% 0.01 2.2% 0.01 7.4% 0.24 2.3% 1.76 0.6% 0.01 11.0% 0.09 2.5% 0.16 16.3% 0.01 0.2% 0.01 2.1% 4.20 26.1% 2.18 5.1%

Fish Springs 1 mean 70330.07 8.58 5.04 1873.30 23.37 0.00 0.00 3.95 0.00 3.02 1.83 0.22 4548.94 2.77 2.96 0.64 39627.33 7.99 74.72 0.34 282.40 1056.91 30544.88 41.62 10.72 0.00 42.33 2.67 227.39 1.21 8.74 2.70 2.47 5.15 3.02 0.43 15.51 377.31 0.29 6.78 0.39 19.69 2.17 46.86 74.08

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

Medicine Lake stdev precision 1414.18 4.0% 0.39 9.2% 0.12 4.6% 45.50 4.9% 0.36 3.1% 0.00 200.0% 0.00 0.0% 0.08 4.3% 0.00 0.0% 0.22 14.4% 0.03 3.3% 0.06 50.7% 19.72 0.9% 0.06 4.3% 0.10 6.8% 0.03 8.2% 1663.33 8.4% 0.01 0.2% 0.45 1.2% 0.00 1.8% 13.07 9.3% 57.01 10.8% 659.75 4.3% 0.85 4.1% 0.07 1.3% 0.00 0.0% 1.31 6.2% 0.11 7.9% 7.10 6.2% 0.14 22.4% 0.51 11.7% 0.00 0.0% 0.14 11.0% 0.01 0.2% 0.06 4.3% 0.01 4.4% 0.07 1.0% 3.19 1.7% 0.01 5.5% 0.10 2.9% 0.04 22.8% 0.09 0.9% 0.03 3.0% 0.14 0.6% 1.48 4.0%

mean 81696.77 3.08 606.36 5260.55 45.78 2.28 0.00 9.04 9.34 3.63 2.13 0.59 15505.33 3.13 5.13 0.65 32756.74 21.92 68.16 0.35 1821.94 276.81 30436.23 9.35 17.69 0.00 16.91 4.65 161.74 0.66 10.30 3.41 3.53 108.59 0.91 0.45 12.45 1909.27 0.30 4.98 12.94 19.94 2.32 43.74 264.94

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

stdev precision 1647.44 4.0% 0.23 15.2% 1.07 0.4% 89.21 3.4% 0.67 2.9% 0.14 12.6% 0.00 0.0% 0.02 0.4% 1.67 35.7% 0.11 6.1% 0.08 7.6% 0.04 12.0% 90.08 1.2% 0.23 14.9% 0.01 0.5% 0.07 22.7% 2627.30 16.0% 0.37 3.4% 3.12 9.2% 0.02 12.5% 15.61 1.7% 3.96 2.9% 274.90 1.8% 0.09 1.9% 0.62 7.0% 0.00 0.0% 0.40 4.7% 0.08 3.4% 0.55 0.7% 0.03 9.4% 2.17 42.1% 0.06 3.3% 0.05 2.9% 2.41 4.4% 0.08 16.8% 0.03 11.7% 0.24 3.9% 34.33 3.6% 0.01 4.1% 0.04 1.6% 0.11 1.6% 0.18 1.9% 0.07 5.7% 0.05 0.2% 10.77 8.1%

Obsidian Butte

Queen

mean 84297.60 4.19 351.41 4200.77 115.38 1.60 0.97 3.62 2.73 16.14 10.16 1.68 23058.71 12.24 11.29 3.23 31318.77 47.36 60.72 1.56 1148.45 420.49 36957.24 27.58 52.20 0.00 7.43 12.12 136.27 0.64 9.28 11.89 8.54 38.92 1.98 2.13 18.49 1711.93 1.47 5.32 5.18 99.32 11.51 72.58 478.44

mean 69589.92 3.42 19.07 1880.50 62.02 0.05 0.00 2.61 0.28 2.25 1.39 0.24 5207.58 2.12 3.30 0.42 43400.43 26.50 36.41 0.22 379.77 855.65 27805.91 34.76 16.03 0.00 24.11 4.99 183.29 0.50 5.67 2.65 2.07 12.40 2.01 0.33 13.14 614.97 0.22 3.37 0.88 14.08 1.50 47.85 110.10

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

stdev precision 635.90 1.5% 0.19 9.1% 5.52 3.1% 29.74 1.4% 0.88 1.5% 0.14 18.0% 0.97 200.0% 0.12 6.6% 1.03 75.7% 0.24 3.0% 0.09 1.8% 0.02 2.6% 1001.43 8.7% 0.42 6.8% 0.26 4.5% 0.12 7.2% 2463.31 15.7% 0.11 0.5% 2.45 8.1% 0.04 5.6% 53.81 9.4% 15.73 7.5% 670.02 3.6% 0.00 0.0% 1.41 5.4% 0.00 0.0% 0.16 4.2% 0.05 0.8% 2.14 3.1% 0.03 10.8% 3.11 67.1% 0.16 2.7% 0.09 2.2% 0.40 2.1% 0.03 3.1% 0.07 6.3% 0.36 3.9% 30.56 3.6% 0.01 0.9% 0.05 1.9% 0.22 8.4% 0.61 1.2% 0.14 2.4% 0.27 0.8% 5.41 2.3%

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

stdev precision 2017.84 5.8% 0.11 6.4% 0.17 1.8% 34.79 3.7% 1.81 5.8% 0.04 172.6% 0.00 0.0% 0.03 2.1% 0.13 91.2% 0.03 3.1% 0.05 7.0% 0.01 9.1% 40.33 1.5% 0.06 6.1% 0.13 7.7% 0.01 6.4% 1037.30 4.8% 0.94 7.1% 0.19 1.0% 0.00 3.5% 5.48 2.9% 6.90 1.6% 573.90 4.1% 1.33 7.7% 0.43 5.4% 0.00 0.0% 0.30 2.5% 0.24 9.4% 3.23 3.5% 0.03 10.7% 0.03 1.0% 0.06 4.3% 0.04 3.9% 0.28 4.5% 0.06 6.4% 0.01 7.5% 0.46 7.1% 18.67 6.1% 0.00 3.5% 0.03 1.5% 0.10 23.3% 0.29 4.1% 0.02 2.4% 1.15 4.8% 5.52 10.0%

Sample ID

Na

Al

Mg

Ca

K

Sc

Ti

Bodie Hills

BH‐SRC‐1 BH‐SRC‐2 BH‐SRC‐3 BH‐SRC‐4 BH‐SRC‐5 BH‐SRC‐6 BH‐SRC‐7 BH‐01 BH‐02 BH‐03 BH‐04 BH‐05 BH‐06 BH‐07 BH‐08 BH‐09 BH‐10 BH‐11 BH‐12 BH‐13 BH‐14 BH‐15 BH‐16 BH‐17 BH‐18 BH‐19 BH‐20 Davis Creek DC‐SRC‐1 DC‐SRC‐2 DC‐SRC‐3 DC‐SRC‐4 DC‐SRC‐5 DC‐SRC‐6 DC‐SRC‐7 DC‐01 DC‐02 DC‐03 DC‐04 DC‐05 DC‐06 DC‐07 DC‐08

19367.02 18696.75 20189.79 20760.83 21132.45 19937.56 17918.25 44371.01 21276.02 20913.97 20361.49 20847.38 17835.39 19805.78 24658.51 22725.44 18905.65 224754.80 25121.24 19803.84 20237.05 38391.47 16228.80 18758.61 17674.93 20597.79 17298.42

179.31 292.29 174.76 180.41 177.90 283.47 195.65 8839.44 266.91 202.51 383.03 386.91 751.12 321.94 1140.13 263.82 189.26 26097.42 2429.76 377.96 857.59 3200.56 218.99 1443.45 287.26 276.04 306.45

61043.33 64425.77 59395.64 60310.36 56638.22 57924.74 52788.98 48865.81 77075.29 78386.82 82763.93 76897.14 63204.47 67997.88 72896.65 79314.32 69397.54 44031.04 66734.65 73014.40 69112.62 81167.19 66809.00 82260.39 72229.83 74274.97 71377.67

38307.00 38876.28 38028.43 38286.31 38065.05 38329.70 37494.32 26067.37 39652.80 41003.64 39649.76 41705.36 36834.91 36956.42 39246.93 40201.99 38176.43 152805.75 38591.37 40017.57 43189.14 44102.35 42417.79 46493.33 41940.33 41506.45 42970.11

676.79 725.74 646.19 671.24 642.41 674.00 613.66 5548.60 877.92 846.42 965.13 947.89 1081.36 844.78 1385.15 867.57 712.66 18665.79 2004.45 881.25 1261.17 2895.39 782.32 1834.04 829.67 855.60 803.64

1.88 3.01 3.13 4.12 4.75 4.12 4.62 6.89 4.28 4.83 5.53 5.68 3.19 3.38 5.60 5.59 2.93 17.06 3.92 3.22 5.28 4.40 4.44 7.33 2.64 2.71 3.05

246.22 248.78 227.25 232.90 238.21 233.79 226.97 221.16 283.43 269.30 294.19 312.09 242.64 248.50 282.04 279.37 250.75 962.23 257.73 256.53 274.68 389.47 252.99 386.91 296.53 282.41 292.40

20490.80 18824.49 18084.04 20492.66 18466.82 18923.58 18863.17 19068.54 20974.06 19765.18 28114.58 19209.45 28991.63 26526.72 27451.78

285.20 290.38 290.48 287.40 293.22 270.56 282.42 305.37 300.84 310.29 429.25 312.34 1327.16 1216.34 2199.45

69981.88 69285.52 69047.03 70858.99 76736.68 60977.00 66240.46 73084.65 66726.39 69326.59 92192.44 66631.53 83517.51 82314.26 76938.54

36425.07 35296.07 35676.69 35381.53 37507.84 34573.76 35350.60 35238.48 34493.79 35193.89 42558.25 35976.84 40294.20 40735.19 37175.24

894.80 908.28 862.64 902.87 974.66 782.56 862.31 911.65 864.36 922.81 1352.22 870.44 1812.04 1772.45 2424.14

3.91 3.63 4.07 3.51 4.65 4.05 4.07 5.05 4.79 5.12 12.57 4.04 12.92 8.72 12.80

274.91 261.85 267.06 268.89 279.02 256.69 266.44 264.66 260.96 264.17 324.33 256.87 353.22 321.36 326.86

DC‐09 DC‐10 DC‐11 DC‐12 DC‐13 DC‐14 DC‐15 DC‐16 DC‐17 DC‐18 DC‐19 DC‐20

21152.99 19403.35 23844.08 18924.74 19532.03 31910.62 80219.13 20984.11 22277.22 33111.64 28460.85 31281.12

522.66 371.32 334.57 295.03 4265.23 3120.07 18429.03 899.99 2191.84 3578.40 2520.47 3635.32

91430.04 66816.60 77234.98 68486.80 71741.97 82285.49 26402.47 84456.79 84880.26 72324.44 80066.88 73359.39

39336.37 34949.61 40166.29 37005.77 37501.88 43050.08 12037.63 38983.49 38569.09 37871.91 37943.81 35650.97

1455.33 918.21 1090.79 915.81 3554.15 3494.80 11212.85 1517.47 2384.77 3059.37 2605.04 3368.63

5.54 4.75 9.86 6.00 16.42 33.62 13.35 8.68 9.78 11.24 8.44 13.48

340.10 272.32 318.51 265.30 419.09 463.15 231.33 354.19 401.46 338.03 306.08 372.13

Fish Springs FS‐SRC‐1 FS‐SRC‐2 FS‐SRC‐3 FS‐SRC‐4 FS‐SRC‐5 FS‐SRC‐6 FS‐SRC‐7 FS‐01 FS‐02 FS‐03 FS‐04 FS‐05 FS‐06 FS‐07 FS‐08 FS‐09 FS‐10 FS‐11 FS‐12 FS‐13 FS‐14 FS‐15 FS‐16 FS‐17 FS‐18 FS‐19 FS‐20

20399.22 22337.39 28046.32 21884.75 23113.84 24784.14 21340.95 33235.78 28751.57 24386.25 23553.72 25039.38 25095.98 29272.73 30607.89 20976.30 23569.71 23624.18 27779.33 12861.31 18846.23 0.00 21772.88 23339.04 31795.18 23607.94 18837.83

157.20 175.38 137.64 131.78 144.60 121.98 121.17 333.05 229.49 220.88 179.49 179.96 267.41 333.86 438.49 2144.86 215.28 697.65 315.78 475.41 136.78 497.47 152.08 388.03 4223.97 1084.43 266.66

75539.73 76381.01 70507.37 61800.94 67441.23 56870.43 60127.59 77679.57 71638.84 72432.17 76834.33 79122.18 80222.13 85594.23 89264.81 74891.40 78535.32 80682.36 78677.21 81799.60 63079.11 73212.02 71259.55 84400.75 72351.74 78018.30 66463.69

37625.05 38002.28 36966.03 35779.11 35895.87 35162.17 35029.55 39242.22 36286.55 38333.14 37185.54 37483.33 37874.90 40110.85 44813.29 36177.79 38024.76 39804.68 41207.17 41470.97 36589.31 46623.53 37833.41 42125.51 33829.07 38364.40 37634.04

606.16 633.81 586.67 526.30 545.19 523.45 505.19 785.60 669.40 664.06 607.11 658.25 776.01 908.28 1018.72 1967.02 703.57 1112.59 866.08 1044.97 535.01 1007.65 604.11 908.98 3219.72 1265.91 705.13

3.68 4.81 5.70 5.83 5.91 6.25 5.83 10.96 5.41 5.88 5.90 5.68 7.64 9.08 5.30 3.67 5.74 9.48 8.00 3.57 3.70 17.43 3.40 7.38 6.21 4.50 4.17

169.54 181.29 189.08 176.03 162.35 163.82 166.55 276.72 178.03 195.10 187.32 185.84 174.92 265.67 311.03 429.20 182.40 241.40 289.23 270.23 159.65 349.10 189.91 213.20 227.37 225.30 182.80

Lookout Mountain LO‐SRC‐1 LO‐SRC‐2 LO‐SRC‐3 LO‐SRC‐4

24564.25 22941.02 21445.12 23341.03

297.16 379.80 338.13 335.44

88033.24 78731.93 74729.84 72486.40

37873.15 42907.41 41104.60 42832.44

1461.39 875.03 901.61 770.40

1.44 1.32 2.25 4.59

377.99 426.24 405.20 400.32

LO‐SRC‐5 LO‐SRC‐6 LO‐SRC‐7 LO‐01 LO‐02 LO‐03 LO‐04 LO‐05 LO‐06 LO‐07 LO‐08 LO‐09 LO‐10 LO‐11 LO‐12 LO‐13 LO‐14 LO‐15 LO‐16 LO‐17 LO‐18 LO‐19

21535.22 21732.57 19639.66 21091.84 28177.30 20871.98 26886.44 21055.64 24502.41 27723.38 22928.71 39280.50 20960.90 23494.68 26979.83 35830.87 48035.21 27783.58 27418.42 30792.37 36724.30 21232.26

314.15 304.40 312.50 362.14 1837.26 677.68 870.44 490.11 413.40 1070.40 638.77 4916.16 393.70 459.75 784.96 3140.45 11502.83 1728.11 1167.44 631.04 3583.57 592.78

71141.33 74832.46 73047.72 84962.32 83995.25 89634.23 92347.79 77556.05 85521.50 90615.12 81186.94 76758.75 84731.45 85312.16 89968.46 90835.18 57477.56 79315.00 86778.14 92410.63 84001.61 74529.14

41635.77 47195.13 46598.10 48734.46 47428.00 49521.71 49731.69 44662.95 50835.79 47676.61 46059.94 41039.24 47075.54 52888.87 50959.40 46946.17 29362.37 46311.12 48055.51 52224.96 47928.01 44946.32

809.77 696.08 622.43 831.55 1767.94 1072.74 1201.62 850.09 899.68 1390.65 952.34 3591.88 917.55 982.19 1135.70 2682.32 7432.80 1657.31 1465.63 1128.52 2901.26 878.56

3.76 2.37 3.57 6.23 5.79 9.47 4.10 4.63 8.23 6.11 3.83 2.76 3.93 2.41 6.92 7.39 3.51 5.18 2.75 4.74 2.52 2.76

392.21 379.63 406.92 484.66 457.20 485.46 527.37 407.88 471.50 466.78 481.48 449.58 412.26 480.41 541.07 526.99 367.30 522.23 486.72 627.64 715.28 438.66

Queen/Truman Q‐SRC‐1 Q‐SRC‐2 Q‐SRC‐3 Q‐SRC‐4 Q‐SRC‐5 Q‐SRC‐6 Q‐SRC‐7 Q‐01 Q‐02 Q‐03 Q‐04 Q‐05 Q‐06 Q‐07 Q‐08 Q‐09 Q‐10 Q‐11 Q‐12 Q‐13 Q‐14 Q‐15 Q‐16

28705.30 23013.09 24248.64 26887.16 27802.66 24095.14 25388.27 32561.09 29098.21 58106.11 27654.60 24383.22 37853.84 22536.86 22388.37 22839.11 28439.46 39726.47 57711.54 52899.42 37046.60 59046.57 80426.26

256.23 247.04 241.24 224.61 218.18 211.86 238.57 1432.36 921.89 8880.31 419.62 294.48 1911.68 278.26 265.29 234.23 1940.49 4393.02 7557.49 5181.26 10681.28 14410.48 19699.66

84921.12 72791.37 73368.18 70601.18 68608.25 66316.80 83991.98 78615.13 83910.83 55384.03 86502.03 86057.53 87784.63 84032.31 88787.45 81978.48 76757.45 75580.62 56720.78 65780.62 49486.58 39299.88 21712.63

43506.99 41806.99 40953.64 40322.70 40113.82 40094.53 42965.00 46399.82 47617.39 30826.14 44067.66 42096.78 44903.27 42741.58 43719.29 41379.67 40926.56 39621.65 34786.56 39263.54 29020.62 17563.30 9014.23

737.27 596.65 620.13 605.47 613.66 565.05 730.89 1563.46 1384.48 5828.15 916.84 829.86 1912.02 771.59 749.32 664.88 1761.28 3295.90 6099.55 4568.68 7208.47 8830.08 11695.18

3.67 3.21 1.58 4.06 3.56 5.02 5.18 7.58 8.40 3.68 1.59 3.98 6.89 5.82 5.87 3.43 6.12 6.36 5.41 5.30 0.00 3.08 6.21

316.68 317.90 284.85 300.60 288.13 286.78 323.67 359.27 388.00 280.92 364.08 333.56 356.39 336.45 337.94 324.68 331.85 512.91 330.06 314.57 268.39 207.34 135.32

Q‐17 Q‐18 Q‐19 Q‐20

43115.40 105261.10 98749.55 30665.12

2070.72 21579.17 22734.42 1378.09

86204.55 15069.42 11939.86 84164.20

43243.14 5236.75 3889.01 41850.06

2374.26 14175.43 13775.16 1717.22

0.20 3.06 1.06 0.00

260.76 101.25 132.70 290.42

V

Cr

Mn

Fe

Ni

Cu

Zn

As

Rb

2.39 2.18 1.26 1.81 1.89 1.78 1.52 2.94 2.37 3.03 2.74 5.97 2.60 2.02 3.12 1.12 0.94 55.13 3.04 1.67 2.63 6.12 0.81 2.39 2.26 1.66 1.71

0.00 0.14 0.25 0.31 0.30 0.42 0.31 0.33 0.65 0.49 0.41 0.51 0.35 0.34 0.32 0.48 0.25 0.75 0.25 0.33 0.76 0.93 0.50 1.43 0.27 0.38 0.42

448.64 573.79 447.94 450.46 444.61 548.84 469.30 292.61 469.96 447.39 550.57 498.73 700.76 527.62 442.88 488.63 439.08 866.34 423.89 435.17 744.71 456.35 446.74 665.22 460.51 520.91 479.45

2991.66 7769.80 3140.94 3164.19 3233.81 5927.25 4614.57 2122.22 2677.08 2726.68 4762.34 4041.02 6152.52 4407.93 3276.74 3252.06 3213.93 17876.84 3222.53 2705.95 13185.66 3298.41 2976.26 6659.87 3621.81 3373.16 4291.78

3.08 7.74 3.17 3.22 3.27 5.88 4.57 2.34 2.89 2.90 5.02 4.22 6.20 4.41 3.46 3.38 3.39 19.10 3.36 3.33 13.45 4.14 3.12 7.64 3.89 3.57 4.47

1.98 0.83 0.53 1.10 1.26 1.41 1.37 23.47 7.92 37.85 47.27 74.45 3.20 2.16 21.88 7.26 3.90 1778.30 10.33 0.55 8.20 13.57 0.70 96.33 21.24 10.58 31.01

19.33 26.51 22.02 20.66 21.06 21.61 21.97 12.60 13.59 20.73 20.66 22.00 21.39 17.66 17.34 19.25 17.33 4493.03 31.20 13.16 38.66 19.27 12.18 43.20 18.89 16.83 18.62

18.19 18.54 12.26 16.41 13.54 14.22 16.44 284.40 9.87 16.79 12.25 14.94 15.38 9.79 28.42 12.81 16.71 289.48 43.21 18.21 14.48 77.45 18.03 30.74 9.24 6.52 3.18

192.42 199.29 193.27 195.43 195.35 194.61 189.98 121.45 199.14 206.46 198.35 207.01 187.14 184.30 193.17 198.84 192.06 146.23 183.81 199.71 208.48 205.74 210.22 223.49 205.69 204.83 208.63

1.05 0.83 1.01 0.55 0.53 1.16 0.87 2.26 1.83 2.36 0.60 0.79 3.89 3.26 1.18

0.00 0.03 0.27 0.43 0.00 0.36 0.45 0.40 0.36 0.48 0.43 0.26 0.67 0.54 1.13

376.14 368.14 386.09 364.26 416.58 358.22 372.70 373.06 354.79 370.96 437.67 384.01 448.02 408.66 392.46

5312.07 3974.43 5202.72 4738.68 6331.60 4631.43 6336.63 5310.82 3817.95 4958.14 6592.91 7227.71 8321.54 6455.88 6158.67

5.50 4.08 5.15 4.68 6.22 4.65 6.34 5.26 3.82 5.04 6.73 7.26 8.60 6.59 6.36

228.89 563.70 105.81 32.61 214.28 140.89 39.43 19.63 4.38 15.21 158.36 12.03 154.65 66.45 74.67

251.21 506.37 118.57 43.10 266.10 152.69 55.91 40.80 16.30 20.89 23.82 22.46 22.89 21.51 21.12

0.00 0.00 0.00 0.00 3.52 0.00 0.00 2.97 0.00 0.00 16.98 0.00 32.24 31.16 93.21

110.78 111.19 110.01 107.84 115.57 106.12 108.07 107.94 106.29 109.97 124.81 110.11 123.63 125.68 108.55

1.98 1.60 1.99 2.70 3.76 8.43 7.29 2.04 1.04 4.13 4.77 2.17

0.74 0.23 0.84 0.48 1.21 1.34 0.00 0.27 0.00 0.03 0.92 0.69

419.04 358.84 393.02 377.07 435.78 505.89 97.56 416.14 456.50 367.36 374.61 403.90

5681.81 5220.64 5462.27 6127.43 6746.68 6026.00 1678.25 5352.89 5399.39 7633.36 4242.34 6765.62

6.14 5.36 6.23 5.92 6.72 7.60 2.12 5.59 5.45 8.54 4.56 7.84

68.28 14.34 56.25 26.28 443.63 329.32 129.03 43.85 152.01 85.36 82.85 43.29

16.82 20.98 23.16 21.88 65.17 25.88 16.93 51.36 39.13 45.32 60.24 55.91

0.00 0.00 0.00 0.00 60.41 89.74 451.29 11.48 39.49 44.44 47.01 130.77

119.18 105.98 123.58 110.97 103.13 111.72 29.26 116.39 124.52 119.62 118.38 114.63

0.00 0.59 1.55 1.69 1.43 1.08 0.96 7.51 2.28 2.01 2.90 2.91 4.77 2.62 6.96 3.88 4.09 2.98 0.00 4.45 1.33 6.26 0.04 3.99 0.00 0.11 1.86

0.02 0.50 0.47 0.44 0.50 0.52 0.48 0.27 0.29 0.23 0.36 0.46 0.35 0.11 0.38 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

1003.41 1053.34 975.80 929.89 1005.21 920.53 933.61 1023.82 955.87 999.80 962.46 1058.58 1098.81 1062.49 1087.57 928.75 1046.34 1006.16 1024.28 1401.06 954.83 1058.36 960.42 1066.55 933.63 1060.49 1010.65

3290.63 3425.86 3258.70 3189.57 4298.59 3249.87 3200.34 4527.17 2996.27 3296.02 3341.73 3230.88 3672.11 3621.25 4302.18 3699.92 3607.28 3423.95 3980.50 5186.14 3341.96 5701.74 2910.67 3449.06 3425.94 3945.79 3653.36

3.44 3.50 3.47 3.37 4.53 3.44 3.37 5.07 3.26 3.56 3.53 3.46 4.01 4.29 4.75 4.04 3.93 3.68 4.27 5.66 3.41 6.57 3.00 3.80 3.45 4.33 3.69

3.19 0.00 1.82 1.02 1.21 1.46 1.09 420.82 64.93 161.16 59.18 12.61 23.02 97.54 536.54 119.91 82.59 49.60 292.52 113.89 28.25 559.30 21.74 23.65 84.90 138.78 74.57

31.20 30.60 31.62 30.72 33.40 37.18 31.37 55.23 34.98 35.83 43.54 31.67 29.49 46.54 34.03 49.77 43.12 40.39 40.87 42.47 37.62 70.98 22.51 16.88 21.04 32.54 35.22

15.17 15.59 16.39 18.14 17.16 14.51 15.48 37.27 30.93 37.78 18.80 15.45 22.40 55.26 0.00 111.37 18.21 23.93 8.69 0.00 9.10 0.00 14.87 28.41 72.16 16.29 24.29

229.30 228.27 219.38 218.31 216.80 213.65 210.14 237.57 222.26 232.22 223.66 230.17 219.84 237.54 261.38 223.33 222.00 236.61 243.73 252.90 216.46 287.11 227.28 253.08 203.45 238.11 224.66

3.56 5.60 4.21 3.50

0.00 0.00 0.08 0.16

309.37 389.93 356.40 355.32

6625.53 9890.26 8687.92 7815.62

6.69 9.65 8.45 7.62

4.32 1.64 1.71 0.63

24.59 23.27 26.19 28.55

1.33 0.00 2.03 2.17

142.66 167.08 160.74 166.16

3.92 2.17 3.79 5.10 6.12 6.19 8.17 3.52 4.30 1.53 6.48 3.44 4.48 2.80 3.37 8.68 5.28 8.54 5.25 10.59 11.56 4.62

0.06 0.27 0.29 0.41 0.85 0.97 0.24 0.26 0.24 0.57 0.00 0.00 0.17 0.41 0.18 0.00 0.00 0.00 0.02 0.00 0.00 0.00

337.80 355.53 349.75 388.66 392.08 381.29 427.79 344.47 405.66 357.08 393.13 384.18 365.81 394.31 445.33 390.72 226.70 414.93 406.68 413.23 444.53 371.66

7697.88 7209.04 7387.26 12885.03 8996.67 10159.22 9236.87 7676.70 8911.23 7654.17 8633.38 7887.99 9493.99 9759.25 11335.86 9801.18 4755.39 10460.16 10269.22 12373.06 14462.83 8351.78

7.47 6.90 7.21 12.71 9.68 10.23 8.81 7.61 8.83 7.98 8.56 7.67 9.45 9.96 10.98 10.35 4.95 10.63 10.80 11.89 14.55 8.34

1.80 1.12 1.18 42.40 77.85 157.86 226.55 69.15 74.04 80.88 262.58 224.95 34.16 96.84 311.66 276.79 76.91 320.46 209.51 244.54 682.12 117.53

22.59 22.97 25.57 30.36 30.91 43.48 43.29 22.82 25.93 24.69 35.61 28.97 26.33 32.12 59.08 49.77 25.63 42.54 32.63 50.03 79.96 32.15

5.06 2.36 0.00 0.00 51.79 10.43 5.19 5.91 0.00 23.02 7.96 100.47 0.37 0.00 0.00 3.96 321.77 39.94 10.75 0.00 47.53 7.98

160.96 180.54 180.35 182.05 182.88 187.39 187.21 171.26 195.09 183.16 180.04 149.90 173.11 197.53 201.90 171.85 102.87 182.87 184.27 206.89 183.60 167.11

2.00 1.03 1.09 0.50 1.26 2.29 1.10 6.44 8.49 4.12 3.28 3.50 5.65 1.36 1.69 1.33 1.73 20.82 0.80 0.00 5.36 2.09 1.58

0.00 0.10 0.32 0.51 0.52 0.47 0.88 1.44 0.88 0.71 0.68 0.34 0.70 0.50 0.30 0.32 0.21 0.78 3.10 2.78 0.88 0.53 0.14

920.78 860.95 852.50 833.41 828.17 830.90 909.70 942.01 895.19 574.16 927.32 945.32 920.53 894.18 965.70 894.12 836.18 817.60 644.20 745.78 468.12 348.31 147.58

4562.53 4510.54 4350.31 4258.82 4255.12 4298.13 4465.34 4697.52 5118.01 3121.82 4712.73 4691.90 4825.11 4522.10 4995.35 6302.33 4526.31 8027.76 4277.15 4291.86 3236.46 1883.97 1091.35

4.95 4.62 4.50 4.41 4.30 4.39 4.63 4.47 5.15 3.52 5.15 5.19 5.02 4.41 5.29 6.60 4.79 10.02 4.83 5.82 3.69 2.25 1.48

4.39 7.56 7.68 3.92 3.95 2.73 1.10 48.56 33.89 80.44 1.52 64.73 115.16 33.51 14.95 5.46 30.04 768.09 883.69 396.26 543.10 21.97 192.03

36.41 45.13 40.99 36.37 38.47 32.32 35.59 32.94 31.78 30.95 33.50 32.41 31.30 38.57 36.57 31.30 28.07 70.33 74.18 22.76 8.73 3.78 57.12

4.47 14.29 8.17 10.25 7.45 11.02 4.48 37.17 24.97 309.15 26.67 5.32 59.45 0.00 0.00 3.83 71.21 76.69 234.92 172.90 238.48 432.12 561.56

211.84 200.91 189.85 189.94 184.55 188.18 199.24 224.41 218.41 144.70 202.51 198.82 215.27 203.64 206.74 194.27 188.63 174.20 144.54 183.98 115.14 76.55 29.33

0.00 2.43 0.00 2.81

0.28 0.00 0.00 0.06

964.96 36.22 0.00 1074.56

5146.40 732.87 221.44 4775.07

6.11 1.73 0.78 5.72

295.05 89.90 27.99 306.34

39.66 0.00 32.14 32.66

39.06 926.34 992.91 50.49

196.06 2.78 0.00 224.41

Sr

Y

Zr

Nb

Sn

Sb

Cs

Ba

La

64.31 67.68 61.22 61.96 59.25 59.98 54.62 179.54 84.35 85.88 92.47 86.21 68.73 76.37 93.93 89.80 74.88 517.98 102.92 82.83 75.97 133.19 72.06 97.88 80.76 79.03 76.00

6.14 7.61 5.21 6.27 5.46 5.77 4.86 7.83 9.82 8.49 10.39 10.40 7.70 8.30 9.45 10.16 8.03 16.94 7.99 8.18 6.63 8.23 5.65 8.55 8.36 7.88 6.38

53.33 58.49 50.34 56.10 47.77 51.09 44.66 124.14 79.78 77.99 83.61 72.59 59.19 64.43 79.94 82.45 64.79 304.14 81.26 72.91 72.78 117.78 66.13 87.47 68.55 71.58 62.90

5233.43 4841.04 5158.48 4904.66 4804.09 4805.76 4792.23 3370.63 5406.55 5862.32 5590.39 6048.83 4760.95 5060.88 5341.75 5268.21 4934.55 2755.67 4668.42 5419.59 5060.10 5526.91 4899.58 4993.55 5481.50 5602.31 5140.18

1.95 0.72 1.13 1.60 1.67 2.71 1.60 3.01 1.84 13.25 19.50 30.61 3.65 2.65 8.77 5.01 1.56 217.02 3.09 1.64 4.89 5.95 1.86 9.84 2.35 0.57 1.16

2.06 1.88 2.10 3.39 0.56 3.96 2.22 1.73 0.00 2.83 2.78 2.38 1.05 3.20 3.20 0.00 1.91 35.30 0.30 1.16 4.62 0.00 2.12 0.00 0.00 0.56 1.49

8.91 8.56 8.27 9.02 8.05 9.28 8.52 4.72 8.63 9.38 8.15 9.03 7.97 8.09 8.68 9.34 7.99 0.73 7.82 8.89 8.20 9.36 8.75 7.99 8.95 8.84 8.83

352.48 356.66 343.59 342.19 328.77 328.32 301.29 275.46 423.58 426.86 447.87 429.35 360.48 375.40 400.97 434.97 386.53 452.04 363.51 402.74 387.03 451.16 371.18 447.13 403.15 412.78 392.77

7841.81 8454.59 7075.09 7428.36 7141.82 7256.01 6417.19 6225.90 10763.78 10305.31 11887.76 10648.03 8264.38 9334.80 9723.59 11267.93 9450.29 9552.16 8597.98 9388.52 9396.20 10132.53 8410.93 11251.60 9431.16 9751.32 8934.77

57.86 56.83 55.18 57.35 65.54 47.88 51.27 59.51 56.35 57.14 77.24 52.96 85.98 88.80 98.88

21.37 20.87 20.85 19.66 24.60 16.43 20.30 22.40 20.19 20.65 34.20 19.63 36.06 27.03 27.27

76.24 74.70 72.16 76.14 84.96 62.67 68.65 81.28 73.05 73.57 111.89 74.16 119.39 118.39 126.20

3259.93 2898.13 2706.87 2805.99 2723.69 2433.78 2887.16 2637.21 2582.21 2620.82 3476.22 2698.39 2552.12 2777.53 2250.83

2.04 1.51 1.41 1.69 2.54 2.65 2.20 3.53 4.68 7.28 65.57 11.79 52.99 25.16 24.47

2.80 0.00 2.77 0.15 1.28 0.57 0.16 0.00 0.62 0.00 5.62 0.00 0.70 2.83 13.54

3.47 3.64 2.56 2.70 4.30 3.24 3.44 2.83 3.20 2.82 5.86 2.95 3.99 3.65 3.26

1191.06 1159.53 1121.69 1156.83 1247.29 1054.17 1105.62 1195.74 1162.29 1172.38 1362.86 1125.80 1201.19 1237.23 1126.85

8779.09 8075.17 8043.10 8403.82 9071.25 7027.20 7453.80 9243.29 7901.10 8479.69 12366.90 8150.20 10763.38 10831.92 9635.51

83.05 56.28 63.72 52.94 123.94 111.45 295.30 78.28 101.74 118.46 112.29 118.97

30.11 19.31 22.40 19.66 23.27 35.59 8.69 29.14 30.40 24.35 28.30 22.74

116.45 74.24 84.55 74.22 119.41 129.57 196.25 114.58 130.36 120.16 120.47 126.47

3189.58 2472.18 3447.28 2386.35 3289.44 2115.91 948.14 2746.80 2154.98 2042.12 2655.66 1570.70

23.92 4.64 12.08 5.07 65.49 74.70 17.37 15.08 27.93 20.32 12.28 12.04

1.11 1.32 0.00 0.00 0.00 0.00 10.55 2.28 6.90 0.00 7.60 3.03

3.89 3.15 4.70 3.62 2.76 0.00 0.00 3.91 2.79 1.91 2.42 2.73

1361.47 1130.05 1213.51 1117.88 1084.77 1182.03 333.83 1257.22 1266.78 1056.98 1181.76 1083.44

12228.34 7731.21 9233.28 8129.07 8719.47 10109.22 3407.89 10802.93 11467.33 8940.86 10402.49 9547.09

7.49 7.00 5.43 5.33 6.15 6.23 5.18 10.70 8.47 6.98 7.94 7.55 8.97 13.40 18.59 42.89 8.11 16.42 10.47 11.25 4.82 0.00 5.46 10.36 73.57 22.85 7.36

28.23 27.70 23.27 19.87 23.60 17.55 20.78 29.92 27.66 26.11 28.20 29.98 31.23 34.39 33.80 29.06 28.11 30.32 29.49 26.57 21.45 27.15 24.14 34.01 24.23 26.72 20.69

73.77 72.93 63.44 52.07 57.89 47.40 48.83 80.38 71.04 68.78 79.54 78.10 78.75 85.31 98.63 99.51 79.53 84.08 78.54 81.41 58.43 59.71 65.00 89.79 120.27 87.14 57.15

15243.32 15477.80 14765.70 13760.74 14522.10 12517.86 13979.28 15847.78 14912.14 14684.37 15264.67 15579.88 16699.34 17637.73 19816.00 15512.03 15528.16 16852.71 14331.63 15647.72 14229.05 15739.34 14117.04 15470.15 12841.12 14726.89 13828.64

4.44 3.57 4.12 3.58 3.36 4.64 3.01 175.96 15.53 49.34 17.02 8.85 16.18 31.88 203.62 45.70 47.66 18.80 19.84 50.93 7.50 35.46 7.42 5.74 21.06 28.71 9.57

3.90 4.78 4.27 3.61 3.64 3.68 3.95 7.60 5.55 7.80 4.36 3.13 5.29 6.84 0.00 10.49 3.15 4.08 0.00 0.00 0.61 21.76 2.36 1.72 2.35 0.00 0.12

5.04 3.92 5.26 4.79 4.25 4.52 4.49 6.20 4.69 4.53 4.58 4.88 5.81 6.93 6.83 4.46 4.77 5.44 6.66 5.07 4.10 0.00 4.93 5.99 2.84 3.38 4.20

12.34 11.32 10.84 9.27 10.22 9.45 8.98 27.34 12.08 15.31 14.43 11.72 15.16 17.56 34.38 28.86 15.53 21.93 24.77 22.05 9.65 34.61 10.80 14.56 39.39 22.67 14.89

3945.96 3626.78 3208.80 2724.93 3139.58 2494.21 2624.33 4283.89 3205.35 4057.14 3658.46 3785.61 3723.94 4773.73 2777.34 3951.18 3957.93 4616.31 4350.88 3321.68 2722.59 4911.18 3293.86 3828.54 5269.23 3924.41 2460.16

241.46 98.18 108.08 72.66

12.48 14.16 12.19 12.57

136.13 149.78 134.93 142.05

4630.87 5648.26 5012.11 5473.89

3.77 3.85 1.26 2.02

0.67 3.75 1.64 2.19

4.38 5.07 3.95 4.88

1251.84 917.81 951.25 762.51

11730.51 12542.66 11311.28 11421.64

81.97 49.12 42.49 72.54 117.51 96.91 107.89 76.67 82.26 111.27 77.32 152.73 88.83 91.60 98.44 131.67 234.81 94.92 98.18 103.36 141.30 88.67

12.75 11.92 11.76 16.46 15.09 15.21 15.85 13.16 13.54 17.84 13.12 16.98 16.89 13.61 12.64 19.94 12.09 12.85 16.05 17.20 20.69 12.27

138.59 146.38 135.08 173.63 197.10 191.57 194.53 149.96 163.54 198.93 163.36 205.72 173.61 176.58 185.36 229.65 230.06 157.11 191.01 186.95 209.37 133.88

5108.96 4722.66 5218.67 5355.34 4544.68 5806.12 5720.47 5146.80 5566.24 5654.41 5703.42 4529.86 5159.60 6787.11 5630.89 5608.46 3477.80 5087.87 5541.68 6282.77 6104.80 4832.44

2.28 1.87 0.47 8.34 11.64 39.43 40.57 16.42 20.98 18.50 46.99 48.17 8.49 7.19 46.21 43.54 12.91 29.13 17.92 18.53 79.68 17.60

2.18 0.17 2.68 3.62 1.60 0.00 7.58 0.00 0.00 0.00 3.67 1.67 0.00 3.90 0.00 14.14 1.96 2.35 0.35 0.00 0.00 3.47

5.06 4.62 4.21 6.15 4.63 4.81 3.66 3.77 5.88 5.90 4.76 5.79 4.62 7.62 5.74 5.02 2.21 5.16 5.67 4.60 2.90 5.34

803.29 840.13 831.93 928.50 948.21 971.49 978.04 888.31 965.33 1026.01 881.21 796.90 987.86 957.26 990.47 974.70 616.62 865.93 939.41 1003.92 914.39 940.97

11485.47 11558.18 10390.90 13645.81 14049.08 15532.41 14552.36 12084.50 13469.09 15244.85 15663.87 13298.30 13685.88 14108.53 15563.13 15631.48 10843.07 12243.99 13547.51 16694.58 16489.29 11095.14

20.10 16.09 16.02 15.05 14.80 13.45 17.31 43.93 29.53 157.61 20.07 17.19 49.97 18.17 20.20 15.48 46.42 83.62 137.32 122.95 189.49 239.22 302.42

25.70 19.06 19.46 17.15 17.80 17.80 25.24 25.81 24.64 22.36 24.79 26.20 24.80 23.94 24.87 22.19 20.48 23.24 15.73 7.58 18.44 12.99 8.23

136.48 99.14 105.16 94.29 92.15 85.45 127.18 126.17 132.52 166.01 133.73 131.77 154.15 129.98 128.53 118.36 122.61 161.22 138.28 161.65 160.59 197.97 200.57

14038.21 13305.52 12721.23 13938.51 12706.91 13001.76 13727.06 14973.43 15205.07 9749.33 14044.34 13601.23 14736.74 14190.44 14756.16 13393.23 12250.56 11146.83 9355.14 8946.96 9216.43 4694.27 1345.35

3.32 4.40 2.35 3.45 3.81 4.62 3.52 35.30 29.10 49.16 6.34 61.06 102.27 37.76 12.33 4.91 24.61 258.71 274.40 252.78 120.56 16.90 62.68

5.74 0.75 4.46 3.27 3.30 4.39 2.12 0.00 0.00 11.05 2.32 0.00 0.21 0.00 1.46 1.27 0.00 0.00 0.96 0.00 16.73 0.00 0.00

3.36 3.18 2.79 3.19 2.72 2.86 2.35 0.07 5.02 0.81 2.72 4.34 0.00 3.00 2.86 2.85 2.90 0.00 0.00 0.00 0.00 0.00 0.29

51.36 40.14 40.35 42.18 38.97 35.71 45.79 47.40 56.08 75.42 46.50 48.57 63.53 44.60 47.00 42.38 52.24 80.46 91.73 74.34 96.29 96.23 107.64

14928.07 10335.34 10788.49 10157.14 9880.20 9358.35 13050.25 15292.50 15192.04 8860.44 16386.13 14106.12 14769.59 13582.63 14141.90 12431.29 11631.19 13183.21 10317.79 6149.63 9533.22 6765.73 2700.69

52.66 369.43 367.73 34.61

27.48 0.29 3.06 25.84

149.96 228.65 238.39 126.67

15118.60 0.00 0.00 16122.42

211.60 5.80 3.59 210.30

3.33 0.00 14.72 0.00

0.00 0.00 0.00 2.95

72.29 127.49 125.69 60.38

14801.46 1258.45 860.01 9921.44

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

44.62 44.86 43.81 44.55 42.03 43.68 40.34 30.29 52.76 53.27 56.46 56.98 45.56 47.05 49.16 54.15 48.49 51.22 45.03 48.85 49.32 55.43 46.90 60.21 49.68 51.45 47.60

3.81 3.41 3.58 3.12 3.48 3.20 3.33 2.76 4.10 4.30 4.08 5.01 3.43 3.62 4.07 4.99 3.70 4.28 3.29 4.05 4.12 4.03 3.34 1.88 4.07 3.17 3.68

10.95 11.54 7.60 10.56 10.44 8.95 9.26 7.27 14.17 15.14 14.97 15.14 9.57 12.83 12.82 14.83 10.98 11.89 10.09 13.33 12.70 0.00 9.11 4.22 5.52 6.21 3.56

0.89 1.26 0.77 1.78 1.45 0.98 0.76 0.00 0.93 1.22 1.56 1.46 1.18 0.77 0.58 1.87 0.36 0.00 0.42 1.94 0.31 0.00 0.22 0.00 0.00 0.00 0.00

0.96 0.11 0.97 0.00 0.36 0.00 0.18 0.00 0.30 0.03 0.23 0.96 0.16 0.66 0.36 0.00 0.31 0.00 0.00 0.08 0.97 0.00 0.00 0.00 0.00 0.00 0.00

627.17 6.34 860.53 428.21 745.15 1178.71 960.21 0.00 0.00 260.72 1453.91 545.56 609.98 644.07 1452.10 1786.10 847.91 181.63 50.54 1008.84 0.00 1137.60 133.63 0.00 1198.72 517.66 0.00

0.00 0.00 0.14 0.14 0.33 0.12 0.17 0.00 0.16 0.20 0.36 0.11 0.30 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00

0.32 0.69 0.00 1.49 0.73 1.97 0.97 0.90 2.49 0.00 0.94 1.21 0.45 1.85 1.78 0.00 0.40 0.00 1.36 1.20 0.00 0.00 0.00 0.63 0.00 0.00 0.00

0.86 0.18 0.16 0.85 0.56 0.45 0.03 1.20 1.43 0.48 0.70 2.40 0.52 1.11 0.44 0.70 0.52 3.09 0.21 0.95 0.00 0.98 0.00 0.00 0.09 0.00 0.00

50.60 50.38 49.82 49.62 55.29 45.51 48.01 50.02 48.21 50.62 58.73 46.82 54.15 54.72 52.63

4.40 4.72 4.87 4.93 5.41 4.07 4.52 5.02 4.75 4.47 6.65 4.45 4.51 6.80 3.72

16.51 18.67 16.55 17.24 15.37 16.97 13.88 19.74 14.99 18.94 19.11 17.87 17.14 17.00 28.74

1.78 2.44 2.43 3.24 3.05 1.73 2.32 3.48 2.20 1.34 3.64 2.14 1.13 2.07 4.87

1.91 1.95 1.38 0.70 0.37 0.90 1.01 0.20 1.61 0.08 1.32 0.91 2.40 0.00 0.30

590.74 1749.00 1581.20 1712.44 2202.21 905.49 1051.29 985.15 1194.93 1884.84 3378.83 1923.24 1404.13 2058.88 0.00

0.49 0.64 0.77 0.76 1.41 1.05 0.66 0.49 0.67 0.19 2.09 0.28 0.48 0.83 0.69

4.01 3.62 2.38 3.89 4.02 2.25 3.68 3.56 2.52 4.41 1.40 4.06 9.07 6.54 8.10

1.48 1.96 0.59 0.63 3.53 0.61 0.80 0.93 1.53 1.06 3.42 1.65 2.90 3.03 0.00

63.73 47.28 54.66 50.39 53.22 58.03 13.88 56.09 61.78 52.61 52.04 54.23

5.30 4.08 3.78 4.45 3.63 5.14 0.73 5.23 5.76 5.99 5.10 4.18

23.39 15.03 16.87 15.36 21.38 17.11 8.36 21.90 26.93 14.86 12.27 17.16

4.88 2.25 0.65 1.60 6.05 0.00 2.79 3.38 3.62 0.00 5.02 7.07

1.47 0.48 1.15 0.00 0.00 2.48 0.00 0.30 2.26 1.06 2.72 0.00

2121.61 1593.36 0.00 1647.71 0.00 0.00 759.60 2487.29 950.78 1098.82 3748.98 180.02

0.61 0.64 0.81 0.00 0.00 4.56 0.00 0.29 0.00 0.99 0.15 0.41

6.04 2.76 0.07 4.94 0.00 0.00 3.04 5.47 4.37 0.00 2.07 0.78

0.95 1.35 1.58 0.56 0.00 4.05 0.00 0.00 0.02 0.00 1.81 0.00

29.78 26.96 26.87 24.22 24.93 23.33 23.46 30.30 26.84 27.25 29.88 29.11 27.94 34.75 33.41 26.62 28.58 30.85 31.23 32.89 24.39 39.24 27.31 29.09 28.67 29.52 25.20

3.15 3.74 3.01 2.91 3.39 2.96 2.41 3.62 3.37 3.20 3.19 3.57 4.56 4.43 4.89 4.35 3.73 3.31 4.30 4.68 1.83 4.92 3.44 2.48 3.34 3.21 2.12

12.80 11.95 13.47 10.19 11.46 8.82 9.63 14.50 14.06 18.08 16.10 16.40 17.91 18.09 10.67 13.06 8.74 12.41 10.23 2.05 10.23 0.00 10.31 12.94 8.84 11.69 6.30

5.21 4.59 4.09 2.57 2.39 3.09 3.71 6.62 5.83 5.86 5.07 5.41 5.18 7.36 17.13 3.94 2.93 8.20 9.10 7.60 1.12 36.94 3.27 2.63 0.00 1.95 3.03

0.69 0.94 0.91 0.34 0.90 0.87 0.58 1.35 1.75 1.11 0.92 0.61 1.56 2.23 4.49 0.00 0.00 1.76 0.00 0.00 1.62 0.00 0.60 0.00 0.00 1.08 0.46

3258.46 1901.72 3323.38 851.24 2409.41 1929.70 1797.98 4040.29 2568.61 3877.15 3102.50 3128.35 3071.56 6699.00 0.00 3680.92 2898.24 132.14 3678.68 1444.82 1854.34 0.00 2085.16 23.82 1585.93 1068.64 750.21

1.18 1.35 0.82 0.90 1.03 0.55 0.32 2.42 1.03 1.47 0.88 0.74 1.28 1.49 0.22 2.17 2.25 1.62 4.00 0.00 0.10 5.60 1.02 2.24 0.69 0.00 0.48

3.33 7.19 3.18 4.42 6.50 3.65 3.96 6.60 6.77 4.91 5.01 6.02 8.14 12.81 14.31 6.22 6.54 2.28 5.97 0.00 3.21 0.00 1.81 0.05 0.00 0.00 4.83

1.64 1.24 1.61 1.34 2.65 0.76 2.14 3.20 2.30 3.38 4.48 2.64 2.14 3.55 3.33 2.37 2.05 3.52 2.99 0.00 1.43 0.00 1.37 3.46 0.45 0.41 0.00

62.60 67.49 63.56 65.70

5.29 6.25 5.15 5.51

15.83 18.12 14.95 15.10

3.02 3.55 2.78 2.58

0.81 1.16 0.25 0.30

2161.98 2172.89 1535.07 267.22

0.19 0.44 0.28 0.62

2.66 1.80 0.89 0.75

1.10 0.15 0.04 0.96

64.95 67.31 63.93 73.42 71.62 75.17 75.33 65.76 70.74 71.86 76.30 62.26 72.41 69.80 78.48 76.78 43.92 70.67 74.41 79.44 72.71 64.44

5.35 4.92 5.49 5.74 5.50 6.08 7.33 5.69 5.10 7.31 8.08 6.10 6.42 6.46 7.16 8.13 4.05 4.68 7.00 6.65 3.83 4.67

19.53 19.20 13.92 22.42 11.04 30.72 16.19 14.71 16.26 27.67 29.92 13.01 21.39 21.18 14.50 15.13 20.95 32.00 23.65 16.57 17.64 14.21

1.99 0.97 3.27 2.42 0.00 2.88 2.70 2.55 3.63 0.92 5.42 3.43 1.95 2.69 0.00 3.82 1.14 0.00 1.15 4.46 5.01 1.74

0.57 0.08 0.61 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 1.73 0.00 0.00 0.00 1.21 0.00 0.00 0.65 1.44 2.89 1.47

953.98 1547.88 216.12 1620.58 2660.94 3598.88 2449.67 2600.44 3333.31 1519.33 1048.51 2761.96 982.74 1036.83 1348.17 408.00 3324.67 244.31 5299.57 1507.17 298.03 1551.13

0.01 0.21 0.30 0.41 0.00 1.32 0.00 0.12 0.02 1.56 0.00 0.45 0.46 0.92 0.00 1.61 0.00 0.20 0.61 0.00 0.00 0.66

3.07 2.50 0.01 3.33 0.00 3.35 2.71 2.35 0.00 5.94 2.70 0.00 1.50 0.31 5.62 0.91 0.00 2.14 3.94 2.47 2.71 5.42

1.13 1.01 1.40 1.44 1.30 1.29 0.00 0.27 0.60 0.53 3.22 2.03 2.23 4.22 0.00 1.63 0.00 0.52 1.43 2.98 0.00 1.11

81.43 70.24 71.14 67.72 67.85 66.02 76.39 76.72 76.36 50.08 83.17 82.67 79.70 78.61 87.43 75.23 68.92 73.32 39.08 63.55 46.96 31.67 13.25

6.09 6.62 6.98 6.75 6.09 5.44 7.45 5.07 5.57 5.48 7.53 8.56 9.52 7.29 7.17 6.97 6.54 7.54 0.00 4.04 3.12 2.24 0.62

29.93 19.01 17.95 20.12 18.52 16.88 29.12 23.28 19.04 29.58 13.37 31.86 18.84 21.64 25.14 23.83 21.02 15.20 0.00 2.64 0.00 6.05 0.00

5.02 2.75 2.43 3.93 3.72 2.05 4.30 0.07 0.00 0.00 0.00 0.71 1.26 4.01 3.31 1.60 0.52 0.00 0.00 0.00 0.00 0.00 0.00

1.28 1.16 0.81 1.38 0.00 0.21 0.58 0.00 5.73 1.07 0.00 1.08 0.00 0.00 0.00 0.00 0.84 0.00 5.96 0.00 5.73 0.00 0.00

2513.23 1242.36 978.78 1744.14 2590.23 1605.71 2877.30 0.00 4432.55 0.00 3832.94 472.29 2644.40 825.98 2828.07 1596.38 509.73 0.00 0.00 0.00 0.00 0.00 1322.15

1.30 0.94 1.18 0.89 1.04 0.67 0.64 2.10 0.31 0.00 0.65 0.00 2.01 0.62 1.15 0.00 0.47 0.00 2.75 0.55 0.00 0.93 0.00

4.26 6.47 4.03 2.66 4.08 4.65 5.00 10.64 0.00 2.47 0.62 0.00 0.94 5.13 3.98 3.95 2.24 0.33 0.00 0.00 18.85 0.00 0.00

2.72 0.00 2.35 1.80 1.78 2.23 2.02 4.45 1.30 1.23 3.17 2.25 3.26 0.00 2.88 1.19 1.74 0.00 0.00 0.00 0.00 0.00 0.00

82.72 0.08 5.08 59.13

6.74 1.58 0.00 5.50

17.78 0.00 0.00 21.99

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 449.82 0.00 2817.27

0.00 0.00 0.91 0.00

0.00 0.00 7.09 1.92

0.00 1.21 0.00 3.45

Er

Tm

Yb

Lu

Hf

Ta

Pb

Th

U

0.00 0.63 1.72 1.80 1.62 0.00 1.01 0.11 0.00 1.66 2.57 2.56 1.18 0.00 1.66 0.00 0.30 0.00 1.53 0.62 0.00 1.44 0.00 0.00 0.00 0.00 0.00

0.25 0.09 0.00 0.28 0.17 0.02 0.06 0.19 0.00 0.00 0.23 0.50 0.00 0.09 0.00 0.48 0.00 0.00 0.00 0.36 0.35 0.00 0.00 0.00 0.00 0.00 0.00

1.16 0.00 1.08 0.00 0.23 0.73 0.00 0.19 1.16 0.00 0.00 3.18 0.33 0.45 0.77 0.00 1.85 0.00 0.93 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00

0.54 0.38 0.14 0.13 0.21 0.39 0.33 0.00 0.39 0.00 0.00 0.69 0.19 0.34 0.51 0.61 0.26 2.18 0.00 0.34 0.00 0.00 0.01 0.00 0.28 0.00 0.00

2.12 1.89 1.57 2.44 1.69 2.31 1.79 3.71 3.50 3.38 3.01 3.41 1.34 2.16 3.90 2.66 2.16 320.54 4.37 3.22 3.28 0.41 2.31 3.00 1.94 1.83 0.05

5.87 7.50 7.33 6.98 7.92 5.35 5.64 5.06 11.12 6.41 7.37 7.75 7.19 7.56 7.66 7.45 5.47 94.78 5.56 8.59 4.71 11.66 4.92 2.71 3.45 5.35 5.08

21.92 22.23 22.75 23.06 23.97 23.12 23.45 17.77 23.25 23.87 23.84 22.99 20.27 19.75 23.31 23.98 21.52 627.63 24.04 21.57 28.18 23.79 23.58 25.53 25.30 24.00 26.32

11.95 12.54 11.18 11.68 10.64 10.95 9.59 9.46 16.65 17.50 18.77 15.95 12.41 13.55 15.56 17.56 13.96 5.72 13.33 15.67 40.32 17.86 13.64 17.70 32.00 15.58 14.22

8.40 8.16 8.10 7.77 8.16 8.32 8.26 5.18 8.55 7.50 8.63 8.89 7.51 7.59 7.65 8.50 7.40 3.82 7.08 7.62 8.75 8.44 7.77 8.97 7.99 8.48 7.57

2.90 4.05 2.62 1.77 3.64 2.64 2.33 4.28 3.84 2.69 4.25 2.79 3.99 5.62 2.78

0.77 0.64 0.64 0.26 0.12 0.12 0.15 0.57 0.25 0.20 1.20 0.54 0.11 0.00 0.54

2.29 4.02 1.24 3.33 2.50 1.30 2.20 3.37 1.51 2.28 2.71 1.85 3.40 4.54 1.48

1.14 0.66 0.70 0.87 1.99 0.71 0.37 0.28 0.54 0.51 2.29 0.62 0.64 0.73 2.03

2.03 2.15 1.57 3.56 1.59 1.47 2.07 2.70 1.50 2.30 2.65 1.90 3.27 5.39 2.40

3.79 4.50 3.82 3.98 6.58 2.03 2.52 3.63 3.09 4.43 10.89 5.59 4.87 4.53 0.00

13.17 13.46 12.60 12.38 12.58 13.86 11.96 12.58 12.52 14.38 17.33 11.84 16.43 16.96 17.25

5.53 5.33 5.22 5.07 5.39 3.85 4.31 5.44 4.51 4.51 7.65 4.90 24.27 6.14 6.93

3.22 3.35 3.18 3.26 3.66 3.24 3.33 3.19 3.26 3.23 4.74 3.44 3.02 4.05 4.32

4.78 3.65 0.00 5.15 6.70 10.85 2.54 0.00 0.61 7.48 8.63 5.17

0.67 0.42 0.36 0.00 1.49 0.80 0.00 0.15 0.76 1.05 1.07 0.00

3.22 1.76 0.00 4.21 2.18 0.00 2.99 1.31 2.09 1.12 0.00 3.01

0.94 0.90 0.54 0.29 1.32 7.45 1.14 0.49 0.18 2.15 0.10 0.85

1.18 2.15 0.46 1.84 0.00 0.00 5.88 3.87 4.99 0.95 0.22 2.40

2.77 3.73 6.03 4.88 0.00 0.00 1.91 2.67 5.48 0.00 2.97 0.00

13.99 11.95 15.75 12.64 16.33 14.13 5.68 18.11 17.18 19.28 19.08 30.16

6.84 4.89 4.89 5.07 5.42 7.51 1.55 7.04 6.73 5.84 6.52 7.05

3.70 3.62 3.30 3.64 2.73 3.21 1.52 3.27 3.26 2.20 3.69 2.65

2.15 6.99 4.65 3.78 3.74 4.35 2.21 6.02 5.60 6.47 5.35 6.66 8.27 5.17 14.48 7.65 1.72 7.26 2.66 0.00 1.88 20.35 3.98 2.83 0.88 0.16 2.66

1.22 1.06 0.63 0.98 0.85 0.49 0.52 0.77 1.41 0.76 0.85 0.96 1.59 1.69 3.02 0.79 0.92 0.63 0.83 1.39 0.14 12.67 0.59 0.21 0.90 0.25 0.00

4.43 6.02 5.31 1.79 3.29 4.20 3.40 7.01 6.72 4.03 4.41 5.09 5.25 3.74 6.27 0.00 2.62 2.01 0.00 2.93 2.64 0.00 1.90 0.39 0.00 3.75 0.56

0.39 0.27 0.70 0.80 0.89 0.59 0.60 1.00 1.19 0.82 1.16 0.91 1.18 1.52 4.23 0.68 0.45 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.23

4.76 4.89 4.15 3.38 4.19 2.80 3.11 7.33 5.18 3.61 4.18 5.23 4.81 7.65 5.14 4.88 5.11 2.96 4.18 1.02 2.39 0.00 2.95 2.44 5.25 2.39 0.18

26.00 24.66 22.50 19.76 19.67 16.81 18.05 24.57 26.09 24.24 24.34 23.10 23.01 36.64 27.14 17.62 23.20 32.70 31.37 28.61 17.78 35.11 20.93 22.68 16.56 14.80 19.02

35.17 33.43 33.04 31.21 31.77 32.81 32.52 41.09 37.24 38.34 34.78 37.11 35.04 43.59 40.03 43.45 39.41 43.07 39.20 37.57 35.14 48.94 34.05 38.13 33.71 31.35 35.46

12.67 12.70 10.94 9.20 10.41 8.30 8.77 12.27 12.58 21.76 12.60 13.35 14.07 15.69 10.18 12.74 13.51 14.75 10.98 13.82 8.95 12.90 10.12 13.49 13.81 13.52 9.87

7.36 7.63 7.03 7.38 6.77 6.70 6.96 7.80 7.29 8.22 7.75 7.84 8.03 8.83 8.47 6.76 8.12 8.97 7.04 7.85 6.93 6.78 7.14 7.65 5.05 8.00 6.87

2.14 0.84 2.28 0.15

0.00 0.47 0.26 0.51

2.68 2.20 3.91 2.34

0.32 0.51 0.00 0.00

3.75 3.52 2.87 3.27

7.29 5.03 6.11 5.95

18.44 19.38 20.91 20.16

8.50 13.33 7.88 8.63

5.37 6.14 5.80 5.64

1.55 2.01 2.31 2.62 0.00 2.28 3.13 1.46 0.00 2.09 5.80 4.03 0.65 1.23 0.00 2.25 2.44 1.58 0.00 2.29 0.35 1.14

0.24 0.00 0.55 0.32 0.00 0.00 1.04 0.00 0.00 0.60 0.78 0.55 0.57 0.61 0.00 0.00 0.00 0.00 0.68 0.59 0.00 0.32

2.66 3.17 0.00 0.00 2.31 0.00 3.09 1.15 1.55 1.43 3.14 2.80 0.73 2.02 3.97 2.25 9.28 2.52 6.20 6.23 0.00 2.38

0.59 0.00 0.20 0.31 0.00 0.00 0.82 0.16 0.52 0.18 0.53 0.22 0.00 0.00 0.00 0.00 0.00 0.01 2.07 0.00 1.44 0.65

4.58 3.01 4.26 5.19 7.05 3.38 3.18 4.55 6.00 5.50 3.39 4.81 6.17 5.25 2.35 3.11 4.70 6.04 5.70 1.95 2.37 3.69

5.77 8.17 7.15 6.67 2.13 5.75 0.30 6.55 5.10 0.61 11.41 5.16 4.10 3.26 4.29 11.19 0.00 13.09 3.51 13.16 0.00 6.90

20.16 21.66 21.30 22.47 28.46 27.84 201.92 22.74 27.37 23.11 23.90 18.70 22.70 27.70 31.90 29.03 19.06 25.80 28.28 29.17 76.36 24.06

8.48 8.54 7.90 10.34 11.25 11.95 10.95 8.75 9.32 9.87 8.71 9.03 10.45 8.49 13.06 11.24 6.37 8.77 10.16 10.45 9.34 7.58

5.70 6.03 5.59 6.42 6.37 6.57 5.71 5.73 6.03 5.61 6.12 5.22 5.94 6.26 6.44 6.38 4.47 6.45 5.64 7.13 7.83 5.50

4.49 6.06 1.76 4.03 3.09 2.05 3.76 6.12 8.69 0.12 4.46 0.00 11.28 1.99 0.85 0.00 2.09 0.00 0.89 0.00 0.00 5.05 1.43

1.27 1.55 0.56 0.52 0.55 0.49 0.97 0.00 0.93 1.45 1.12 1.09 0.00 0.58 1.79 0.37 0.50 0.00 0.00 0.00 0.00 0.19 0.00

6.03 5.47 4.13 3.75 0.25 3.23 0.56 1.72 0.00 0.00 0.00 5.02 0.00 0.46 2.05 5.19 2.20 0.00 0.00 0.00 0.00 0.00 1.53

0.90 0.00 0.89 0.17 0.67 0.25 0.66 1.26 0.00 0.00 0.00 0.42 1.41 0.01 0.88 0.00 0.53 0.00 3.38 0.00 0.00 0.00 0.00

8.31 5.65 5.85 3.85 4.28 5.07 5.78 0.00 1.89 3.84 6.76 6.11 3.02 4.50 4.46 4.30 3.20 6.54 4.18 0.00 8.64 3.36 4.51

21.84 12.27 17.24 12.21 15.56 14.29 20.14 23.30 35.31 16.22 23.37 18.26 22.84 12.65 20.21 10.89 14.87 5.56 21.45 0.00 0.00 10.42 3.56

23.33 24.94 22.76 21.44 21.88 21.92 22.94 36.17 26.26 22.41 25.50 23.42 23.91 23.61 24.62 21.95 22.86 42.39 29.95 34.61 16.58 7.48 19.34

14.19 10.28 10.80 9.56 9.38 8.75 12.75 11.76 14.80 7.94 13.44 13.84 15.11 12.90 13.36 11.55 11.17 29.00 7.24 10.21 127.03 5.95 2.19

4.46 4.36 3.67 4.19 3.94 4.19 3.95 3.89 5.73 2.91 3.48 4.55 4.92 4.04 3.97 3.74 3.37 3.87 3.80 1.39 3.28 0.93 0.76

0.00 0.00 0.81 4.08

0.00 0.00 0.00 0.56

0.00 4.07 0.00 13.04

0.00 0.00 0.00 0.00

2.79 3.24 1.40 7.61

5.14 0.00 0.00 17.74

29.40 7.98 15.37 30.62

14.45 0.90 0.00 13.88

5.36 0.00 0.00 7.12