Proyecciones Journal of Mathematics Vol. 37, No 1, pp. 63-83, March 2018. Universidad Cat´olica del Norte Antofagasta - Chile
Intuitionistic fuzzy n-normed algebra and continuous product Nabanita Konwar North Eastern Regional Institute of Science and Tec., India and Pradip Debnath North Eastern Regional Institute of Science and Tec., India Received : March 2017. Accepted : April 2017
Abstract In this paper we extend the notion of intuitionistic fuzzy n-normed linear space (IFnNLS) to define an intuitionistic fuzzy n-normed algebra (IFnNA). We give a necessary and sufficient condition for an IFnNA to be with continuous product. Further, the concept of multiplicatively continuous product has been introduced and related results have been established. Illustrative examples have been provided in support of our results. Keywords : Intuitionistic fuzzy n-normed linear space; intuitionistic fuzzy continuous mapping; intuitionistic fuzzy continuous linear operator. AMS Subject Classification : 55M20, 54H25, 47H09.
64
N. Konwar and P. Debnath
1. Introduction The fuzzy set theory was introduced by Zadeh [30] in 1965, in order to explain the situations where data are imprecise or vague. On the other hand in 1986, a generalized form of fuzzy set namely, intuitionistic fuzzy set was introduced by Atanassaov [1] which deals with both the degree of membership (belongingness) and non-membership (non-belongingness) of an elements within a set. Situations where the crisp norm is unable to measure the length of a vector accurately, the notion of fuzzy norm happens to be useful. The idea of a fuzzy norm on a linear space was introduced by Katsaras [17] in 1984. In 1992, Felbin [14] introduced an alternative idea of a fuzzy norm whose associated metric is of Kaleva and Seikkala [16] type. In 1994, another notion of fuzzy norm on a linear space was given by Cheng-Moderson [6] whose associated metric is that of Kramosil-Michalek [20] type. Again in 2003, following Cheng and Mordeson, Bag and Samanta [2] introduced another concept of fuzzy normed linear space. In this way, there has been a systematic development of fuzzy normed linear spaces (FNLSs) and one of the important development over FNLS is the notion of intuitionistic fuzzy normed linear space (IFNLS) [25]. Vijayabalaji and Narayanan [28] extended n-normed linear space to fuzzy n-normed linear space while the concept of IFnNLS was introduced by Vijayabalaji et al [29]. Some more recent work in similar context may be found in [5, 7, 8, 10, 11, 13, 18, 19, 22, 24, 27]. The notion of intuitionistic fuzzy Banach algebra was introduced by Dinda et al. [12]. More work in this direction have been carried out recently in [4, 21]. In the current paper we introduce the notion of IFnNA and investigate the concept of continuous product.
2. Preliminaries First we recall some basic and preliminary definitions and examples which are related to intuitionistic fuzzy n-normed linear space. Definition 2.1. [15] Let n ∈ N and X be a real linear space of dimension d ≥ n (d may be infinite). A real valued function k.k on |X × X × · · · × X} = {z n
X n is called an n-norm on X if it satisfies the following properties:
Intuitionistic fuzzy n-normed algebra and continuous product
65
(i) kx1 , x2 , . . . , xn k = 0 if and only if x1 , x2 , . . . , xn are linearly dependent, (ii) kx1 , x2 , . . . , xn k is invariant under any permutation, (iii) kx1 , x2 , . . . , αxn k = |α|kx1 , x2 , . . . , xn k for any α ∈ R, (iv) kx1 , x2 , . . . , xn−1 , y+zk ≤ kx1 , x2 , . . . , xn−1 , yk+kx1 , x2 , . . . , xn−1 , zk, and the pair (X, k.k) is called an n-normed linear space. Definition 2.2. [24] An IFnNLS is the five-tuple (X, µ, ν, ∗, ◦), where X is a linear space over a field F , ∗ is a continuous t-norm, ◦ is a continuous t-conorm, µ, ν are fuzzy sets on X n × (0, ∞), µ denotes the degree of membership and ν denotes the degree of non-membership of (x1 , x2 , . . . , xn , t) ∈ X n × (0, 1) satisfying the following conditions for every (x1 , x2 , . . . , xn ) ∈ X n and s, t > 0: (i) µ(x1 , x2 , . . . , xn , t) + ν(x1 , x2 , . . . , xn , t) ≤ 1, (ii) µ(x1 , x2 , . . . , xn , t) > 0, (iii) µ(x1 , x2 , . . . , xn , t) = 1 if and only if x1 , x2 , . . . , xn are linearly dependent, (iv) µ(x1 , x2 , . . . , xn , t) is invariant under any permutation of x1 , x2 , . . . , xn , t (v) µ(x1 , x2 , . . . , cxn , t) = µ(x1 , x2 , . . . , xn , |c| ) if c 6= 0, c ∈ F , 0
0
(vi) µ(x1 , x2 , . . . , xn , s) ∗ µ(x1 , x2 , . . . , xn , t) ≤ µ(x1 , x2 , . . . , xn + xn , s + t), (vii) µ(x1 , x2 , . . . , xn , t) : (0, ∞) → [0, 1] is continuous in t, (viii) limt→∞ µ(x1 , x2 , . . . , xn , t) = 1 and limt→0 µ(x1 , x2 , . . . , xn , t) = 0, (ix) ν(x1 , x2 , . . . , xn , t) < 1, (x) ν(x1 , x2 , . . . , xn , t) = 0 if and only if x1 , x2 , . . . , xn are linearly dependent, (xi) ν(x1 , x2 , . . . , xn , t) is invariant under any permutation of x1 , x2 , . . . , xn , t (xii) ν(x1 , x2 , . . . , cxn , t) = ν(x1 , x2 , . . . , xn , |c| ) if c 6= 0, c ∈ F , 0
0
(xiii) ν(x1 , x2 , . . . , xn , s) ◦ ν(x1 , x2 , . . . , xn , t) ≥ ν(x1 , x2 , . . . , xn + xn , s + t),
66
N. Konwar and P. Debnath
(xiv) ν(x1 , x2 , . . . , xn , t) : (0, ∞) → [0, 1] is continuous in t, (xv) limt→∞ ν(x1 , x2 , . . . , xn , t) = 0 and limt→0 ν(x1 , x2 , . . . , xn , t) = 1. a ∧ b = min{a, b}, a · b = ab(usual multiplication in [0,1]) and a ∗L b = max{a + b − 1, 0} (the Lukasiewicz t-norm). 0
0
Definition 2.3. [19] Suppose ∗, ∗ are t-norms. Then ∗ dominates ∗ if 0 0 0 (x1 ∗ x2 ) ∗ (y1 ∗ y2 ) ≤ (x1 ∗ y1 ) ∗ (x2 ∗ y2 ) for all x1 , x2 , y1 , y2 ∈ [0, 1] and 0 it is denoted by ∗ >> ∗. Definition 2.4. [22] Let (X, µ, ν, ∗, ◦) be an IFnNLS. We say that a sequence x = {xk } in X is convergent to l ∈ X with respect to the intuitionistic fuzzy n-norm (µ, ν)n if, for every > 0, t > 0 and y1 , y2 , . . . , yn−1 ∈ X, there exists k0 ∈ N such that µ(y1 , y2 , . . . , yn−1 , xk − L, t) > 1 − for all k ≥ k0 . It is denoted by and ν(y1 , y2 , . . . , yn−1 , xk − l, t) < (µ,ν)n
(µ, ν)n − lim x = l or xk → l as k → ∞.
Definition 2.5. [22] Let (X, µ, ν, ∗, ◦) be an IFnNLS. Then the sequence x = {xk } in X is called a Cauchy sequence with respect to the intuitionistic fuzzy n-norm (µ, ν)n if, for every > 0, t > 0 and y1 , y2 , . . . , yn−1 ∈ X, there exists k0 ∈ N such that µ(y1 , y2 , . . . , yn−1 , xk − xm , t) > 1 − and ν(y1 , y2 , . . . , yn−1 , xk − xm , t) < for all k, m ≥ k0 . Definition 2.6. [3] Let (X, µ, ν, ∗, ◦) be an IFnNLS. Then (X, µ, ν, ∗, ◦) is said to be complete if any Cauchy sequence in X is convergent to a point in X. A complete IFnNLS is called a intuitionistic fuzzy Banach space. Definition 2.7. [8] Let (X, µ, ν, ∗, ◦) be an IFnNLS. For t > 0, we define an open ball B(x, r, t) with centre at x ∈ X, radius 0 < r < 1 and y1 , y2 , . . . , yn−1 ∈ X as B(x, r, t) = {y ∈ X : µ(y1 , y2 , . . . , yn−1 , x − y, t) > r and ν(y1 , y2 , . . . , yn−1 , x − y, t) < 1 − r} Then, Tµ,ν = {T ⊂ X : x ∈ T if and only if, there exists t > 0, r ∈ (0, 1) such that B(x, r, t) ⊆ T } is a topology on X. Moreover, if the t-norm ∗ and t-conorm ◦ satisfies the condition supx∈(0,1) x∗ x = 1 and infx∈(0,1) x ◦ x = 0, then (X, Tµ,ν ) is Hausdorff. The following result is a straightforward conclusion from [24]. Theorem 2.2. Let (X, µ, ν, ∗, ◦) be an IFnNLS. Then (X, Tµ,ν ) is a metrizable topological vector space.
Intuitionistic fuzzy n-normed algebra and continuous product
67
3. Main Results In this section we discuss our main results. First we define an intuitionistic fuzzy n-normed algebra (IFnNA) and then explain some examples and propositions on the same. Definition 3.1. Suppose (X, µ1 , ν1 , ∗1 , ◦1 ) and (Y, µ2 , ν2 , ∗2 , ◦2 ) are two IFnNLSs. A mapping T : X −→ Y is said to be intuitionistic fuzzy > 0, α ∈ (0, 1), continuous (if-continuous) at x0 ∈ X if, for every y1 , y2 , . . . , yn−1 ∈ X and T (y1 ), T (y2 ), . . . , T (yn−1 ) ∈ Y there exist δ = δ( , α, x0 ) > 0, β = β( , α, x0 ) ∈ (0, 1), such that for all x ∈ X, µ1 (y1 , y2 , . . . , yn−1 , x − x0 , δ) > β and ν1 (y1 , y2 , . . . , yn−1 , x − x0 , δ) < 1 − β. implies, µ2 (T (y1 ), T (y2 ), . . . , T (yn−1 ), T (x) − T (x0 ), ) > α and ν2 (T (y1 ), T (y2 ), . . . , T (yn−1 ), T (x) − T (x0 ), ) < 1 − α. If T is if-continuous at each point of X, then T is called if-continuous on X. Definition 3.2. The seven-tuple (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) is said to be an IFnNA if (i) ∗ and ∗1 are continuous t-norms and ◦ and ◦1 are continuous tconorms; (ii) X is an algebra; (iii) (X, µ, ν, ∗, ◦) is an IFnNLS; (iv) µ(x1 , x2 , . . . , xn−1 , xy, ts) ≥ µ(x1 , x2 , . . . , xn−1 , x, t)∗1 µ(x1 , x2 , . . . , xn−1 , y, s) and ν(x1 , x2 , . . . , xn−1 , xy, ts) ≤ ν(x1 , x2 , . . . , xn−1 , x, t)◦1 ν(x1 , x2 , . . . , xn−1 , y, s), for all x1 , x2 , . . . , xn−1 ∈ X; x, y ∈ X and t, s ≥ 0. If (X, µ, ν, ∗, ◦) is an intuitionistic fuzzy Banach space (IFBS), then (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) will be called intuitionistic fuzzy Banach algebra (IFBA).
68
N. Konwar and P. Debnath
Example 3.3. Suppose (X, k · k) is an n-normed algebra, ∗ and ∗1 are continuous t-norms, ◦ and ◦1 are continuous t-conorms and µ, ν : X × [0, ∞) −→ [0, 1] defined byµ(x1 , x2 , . . . , xn−1 , x, t) =
(
0, t ≤ kxk 1, t > kxk
ν(x1 , x2 , . . . , xn−1 , x, t) =
(
1, t ≤ kxk 0, t > kxk
and
Then (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) is an IFnNA. Proof. It is a routine verification to prove that (X, µ, ν, ∗, ◦) is an IFnNLS. Next we have to show that (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) is an IFnNA. (i) ∗ and ∗1 are continuous t-norms and ◦ and ◦1 are continuous tconorms; (ii) As (X, k · k) is n-normed algebra, therefore X is an algebra as well; (iii) (X, µ, ν, ∗, ◦) is an IFnNLS. Finally, we have to show that µ(x1 , x2 , . . . , xn−1 , xy, ts) ≥ µ(x1 , x2 , . . . , xn−1 , x, t)∗1 µ(x1 , x2 , . . . , xn−1 , y, s), and ν(x1 , x2 , . . . , xn−1 , xy, ts) ≤ ν(x1 , x2 , . . . , xn−1 , x, t)◦1 ν(x1 , x2 , . . . , xn−1 , y, s). Let x1 , x2 , . . . , xn−1 ∈ X; x, y ∈ X and t, s ∈ [0, ∞). If kxyk ≥ ts, then t ≤ kxk or s ≤ kyk (if t > kxk and s > kyk, then ts > kxk.kyk ≥ kxyk, contradiction.) If t ≤ kxk, then µ(x1 , x2 , . . . , xn−1 , x, t) = 0 and ν(x1 , x2 , . . . , xn−1 , x, t) = 1. If s ≤ kyk, then µ(x1 , x2 , . . . , xn−1 , y, s) = 0 and ν(x1 , x2 , . . . , xn−1 , y, s) = 1. Thus, µ(x1 , x2 , . . . , xn−1 , x, t) ∗1 µ(x1 , x2 , . . . , xn−1 , y, s) = 0,
Intuitionistic fuzzy n-normed algebra and continuous product
69
and ν(x1 , x2 , . . . , xn−1 , x, t) ◦1 ν(x1 , x2 , . . . , xn−1 , y, s) = 1. Therefore, µ(x1 , x2 , . . . , xn−1 , xy, ts) ≥ µ(x1 , x2 , . . . , xn−1 , x, t)∗1 µ(x1 , x2 , . . . , xn−1 , y, s), and ν(x1 , x2 , . . . , xn−1 , xy, ts) ≤ ν(x1 , x2 , . . . , xn−1 , x, t)◦1 ν(x1 , x2 , . . . , xn−1 , y, s). Next, we consider kxyk < ts, then we have t > kxk or s > kyk. Then, if t > kxk, we have µ(x1 , x2 , . . . , xn−1 , x, t) = 1 and ν(x1 , x2 , . . . , xn−1 , x, t) =
0, and if s > kyk, we have µ(x1 , x2 , . . . , xn−1 , y, s) = 1 and ν(x1 , x2 , . . . , xn−1 , y, s) = 0. Thus, µ(x1 , x2 , . . . , xn−1 , x, t) ∗1 µ(x1 , x2 , . . . , xn−1 , y, s) = 1 and ν(x1 , x2 , . . . , xn−1 , x, t) ◦1 ν(x1 , x2 , . . . , xn−1 , y, s) = 0. Therefore, µ(x1 , x2 , . . . , xn−1 , xy, ts) = 1 and ν(x1 , x2 , . . . , xn−1 , xy, ts) = 0. Thus, µ(x1 , x2 , . . . , xn−1 , xy, ts) ≥ µ(x1 , x2 , . . . , xn−1 , x, t)∗1 µ(x1 , x2 , . . . , xn−1 , y, s), and ν(x1 , x2 , . . . , xn−1 , xy, ts) ≤ ν(x1 , x2 , . . . , xn−1 , x, t)◦1 ν(x1 , x2 , . . . , xn−1 , y, s). Therefore the inequality holds. Hence (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) is an IFnNA. 2 Example 3.4. Suppose (X, k · k) is a n-normed algebra and µ, ν : X × [0, ∞) −→ [0, 1] be defined byµ(x1 , x2 , . . . , xn−1 , xn , t) =
(
t t+kx1 ,x2 ,...,xn k ,
0,
t>0 t = 0,
70
N. Konwar and P. Debnath
and ν(x1 , x2 , . . . , xn−1 , x, t) =
(
kx1 ,x2 ,...,xn k t+kx1 ,x2 ,...,xn k ,
1,
t>0 t = 0.
Then (X, µ, ν, ∧, ∨, ·, ·) is an IFnNA. The next theorem gives a necessary and sufficient condition for an IFnNA to be with continuous product. Theorem 3.5. Let (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) be an IFnNA. Then X is with continuous product if and only if, for all α ∈ (0, 1) there exist β = β(α) ∈ (0, 1) and M = M (α) > 0 such that for all x, y ∈ X; s, t > 0 and x1 , x2 , . . . , xn ∈ X: µ(x1 , x2 , . . . , xn−1 , x, s) > β and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − β, and µ(x1 , x2 , . . . , xn−1 , y, t) > β and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − β. imply µ(x1 , x2 , . . . , xn−1 , xy, M st) > α and ν(x1 , x2 , . . . , xn−1 , xy, M st) < 1 − α. Proof. Suppose α ∈ (0, 1) and V = {u ∈ X : µ(x1 , x2 , . . . , xn−1 , u, 1) > α and ν(x1 , x2 , . . . , xn−1 , u, 1) < 1 − α} be an open neighborhood of zero. Define a function X × X −→ X such that (x, y) −→ x.y, where (x, y) ∈ X × X and x.y ∈ X. As this function is continuous at (0, 0), there exist 1 = 1 (α) > 0, 2 = 2 (α) > 0, γ1 = γ1 (α) ∈ (0, 1), γ2 = γ2 (α) ∈ (0, 1) such that for all u1 , u2 ∈ X: µ(x1 , x2 , . . . , xn−1 , u1 ,
1)
> γ1 and ν(x1 , x2 , . . . , xn−1 , u1 , 1 ) < 1 − γ1 ,
2)
> γ2 and ν(x1 , x2 , . . . , xn−1 , u2 , 2 ) < 1 − γ2 .
and µ(x1 , x2 , . . . , xn−1 , u2 , imply
Intuitionistic fuzzy n-normed algebra and continuous product
71
µ(x1 , x2 , . . . , xn−1 , u1 .u2 , 1) > α and ν(x1 , x2 , . . . , xn−1 , u1 .u2 , 1) < 1 − α. Let β = max{γ1 , γ2 } ∈ (0, 1), M = 11. 2 > 0. Let x, y ∈ X, s, t > 0 and x1 , x2 , . . . , xn−1 ∈ X such that µ(x1 , x2 , . . . , xn−1 , x, s) > β and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − β,
µ(x1 , x2 , . . . , xn−1 , y, t) > β and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − β. Then x x µ(x1 , x2 , . . . , xn−1 , , 1) > β ≥ γ1 and ν(x1 , x2 , . . . , xn−1 , , 1) < 1−β ≤ 1−γ1 , s s y y µ(x1 , x2 , . . . , xn−1 , , 1) > β ≥ γ2 and ν(x1 , x2 , . . . , xn−1 , , 1) < 1−β ≤ 1−γ2 . t t Let u1 =
1 .x
s
, u2 =
2 .y
s
. Then we have,
µ(x1 , x2 , . . . , xn−1 , u1 ,
1)
= µ(x1 , x2 , . . . , xn−1 ,
u1
, 1)
1
x = µ(x1 , x2 , . . . , xn−1 , , 1) > γ1 , s and ν(x1 , x2 , . . . , xn−1 , u1 , 1 ) u1 x = ν(x1 , x2 , . . . , xn−1 , , 1) = ν(x1 , x2 , . . . , xn−1 , , 1) < 1 − γ1 . s 1 And, µ(x1 , x2 , . . . , xn−1 , u2 , 2 ) u2 y = µ(x1 , x2 , . . . , xn−1 , , 1) = µ(x1 , x2 , . . . , xn−1 , , 1) > γ2 , t 2 and ν(x1 , x2 , . . . , xn−1 , u2 ,
2)
= ν(x1 , x2 , . . . , xn−1 ,
u2
y , 1) = ν(x1 , x2 , . . . , xn−1 , , 1) < 1−γ2 . t 2
72
N. Konwar and P. Debnath Hence, µ(x1 , x2 , . . . , xn−1 , u1 .u2 , 1) > α ⇒ µ(x1 , x2 , . . . , xn−1 ,
α ⇒ µ(x1 , x2 , . . . , xn−1 , xy, 1st. 2 > α ⇒ µ(x1 , x2 , . . . , xn−1 , xy, M st) > α. And ν(x1 , x2 , . . . , xn−1 , u1 .u2 , 1) < 1 − α ⇒ ν(x1 , x2 , . . . , xn−1 , 1−α ⇒ ν(x1 , x2 , . . . , xn−1 , xy, 1st. 2 ) < 1 − α ⇒ ν(x1 , x2 , . . . , xn−1 , xy, M st) < 1 − α. i.e.
1x
s
.
1x
s
2y
t
.
2y
t
, 1) >
, 1)
α and ν(x1 , x2 , . . . , xn−1 , xy, M st) < 1 − α. Converse Part: First we will prove that for each y0 ∈ X the mapping X −→ X such that x −→ xy0 , where x ∈ X and xy0 ∈ X is continuous. Let > 0, α ∈ (0, 1). Thus there exist β = β(α) ∈ (0, 1), M = M (α) > 0 such that
µ(x1 , x2 , . . . , xn−1 , x, s) > β and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − β, and µ(x1 , x2 , . . . , xn−1 , y, t) > β and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − β. This implies,
µ(x1 , x2 , . . . , xn−1 , xy, M st) > α and ν(x1 , x2 , . . . , xn−1 , xy, M st) < 1 − α. As, limt−→∞ µ(x1 , x2 , . . . , xn−1 , y0 , t) = 1, there exists t0 > 0 such that µ(x1 , x2 , . . . , xn−1 , y0 , t0 ) > β, and as limt−→∞ ν(x1 , x2 , . . . , xn−1 , y0 , t) = 0, there exists t0 > 0 such that ν(x1 , x2 , . . . , xn−1 , y0 , t0 ) < 1 − β. Let δ = δ(α, ) = t0 .M and β(α, ) = β. Let x ∈ X such that µ(x1 , x2 , . . . , xn−1 , x, δ) > β and ν(x1 , x2 , . . . , xn−1 , x, δ) < 1 − β.
Intuitionistic fuzzy n-normed algebra and continuous product
73
As µ(x1 , x2 , . . . , xn−1 , y0 , t0 ) > β and ν(x1 , x2 , . . . , xn−1 , y0 , t0 ) < 1 − β we obtain that µ(x1 , x2 , . . . , xn−1 , xy0 , M t0 δ) > α and ν(x1 , x2 , . . . , xn−1 , xy0 , M t0 δ) < 1−α. This implies that µ(x1 , x2 , . . . , xn−1 , xy0 , ) > α and ν(x1 , x2 , . . . , xn−1 , xy0 , ) < 1 − α. Similarly, we can establish that, for each x0 ∈ X, the mapping y −→ x0 y, where y ∈ X and x0 y ∈ X is continuous. Next, we will prove that (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) is with continuous product. Let xn −→ x0 , yn −→ y0 . Thus xn y0 −→ x0 y0 and x0 yn −→ x0 y0 . Hence, limn−→∞ µ(x1 , x2 , . . . , xn−1 , xn y0 − x0 y0 , s) = 1 and limn−→∞ ν(x1 , x2 , . . . , xn−1 , xn y0 − x0 y0 , s) = 0, and limn−→∞ µ(x1 , x2 , . . . , xn−1 , x0 yn − x0 y0 , t) = 1 and limn−→∞ ν(x1 , x2 , . . . , xn−1 , x0 yn − x0 y0 , t) = 0, for all s, t > 0. Therefore, µ(x1 , x2 , . . . , xn−1 , xn yn − x0 y0 , t) = µ(x1 , x2 , . . . , xn−1 , (xn − x0 )(yn − y0 ) + (xn − x0 )y0 + x0 (yn − y0 ), t) ≥ µ(x1 , x2 , . . . , xn−1 , (xn −x0 )(yn −y0 ), 3t )∗µ(x1 , x2 , . . . , xn−1 , (xn −x0 )y0 , 3t ) ∗ µ(x1 , x2 , . . . , xn−1 , x0 (yn − y0 ), 3t ) √ √ ≥ (µ(x1 , x2 , . . . , xn−1 , xn − x0 , √3t ) ∗1 µ(x1 , x2 , . . . , xn−1 , yn − y0 , √3t )) ∗ µ(x1 , x2 , . . . , xn−1 , (xn − x0 )y0 , 3t ) ∗ µ(x1 , x2 , . . . , xn−1 , x0 (yn − y0 ), 3t ) −→ 1. And ν(x1 , x2 , . . . , xn−1 , xn yn − x0 y0 , t) = ν(x1 , x2 , . . . , xn−1 , (xn − x0 )(yn − y0 ) + (xn − x0 )y0 + x0 (yn − y0 ), t) ≤ ν(x1 , x2 , . . . , xn−1 , (xn −x0 )(yn −y0 ), 3t )◦ν(x1 , x2 , . . . , xn−1 , (xn −x0 )y0 , 3t )◦ t ν(x1 , x2 , . . . , xn−1 , x0 (yn − y0 ), √ 3) √ ≤ (ν(x1 , x2 , . . . , xn−1 , xn − x0 , √3t ) ◦1 ν(x1 , x2 , . . . , xn−1 , yn − y0 , √3t )) ◦ ν(x1 , x2 , . . . , xn−1 , (xn − x0 )y0 , 3t ) ◦ ν(x1 , x2 , . . . , xn−1 , x0 (yn − y0 ), 3t ) −→ 0. Hence, xn yn −→ x0 y0 . Hence X is with continuous product. 2
74
N. Konwar and P. Debnath
Lemma 3.6. Any continuous t-norm ∗ and t-conorm ◦ satisfy: for all γ ∈ (0, 1) there exist α, β ∈ (0, 1) such that α ∗ β = γ and (1 − α) ◦ β = 1 − γ. Theorem 3.7. Let (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) be any IFnNA. Then X is with continuous product. Proof. Let α ∈ (0, 1). Then there exists > 0 such that α + ∈ (0, 1) and (1 − α) − ∈ (0, 1). As ∗1 is a continuous t-norm and ◦1 is a continuous t-conorm by lemma 3.6, we obtain that there exist βα , γα ∈ (0, 1) such that α + = βα ∗1 γα and (1 − α) − = (1 − βα ) ◦1 γα We suppose that βα ≥ γα and (1 − βα ) ≤ γα (the case βα ≤ γγ is similar). We choose M = M (α) = 1. Let x, y ∈ X, s, t > 0 and x1 , x2 , . . . , xn−1 ∈ X such that µ(x1 , x2 , . . . , xn−1 , x, s) > βα and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − βα , and µ(x1 , x2 , . . . , xn−1 , y, t) > βα and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − βα . Then µ(x1 , x2 , . . . , xn−1 , xy, M st) ≥ µ(x1 , x2 , . . . , xn−1 , x, s) ∗1 µ(x1 , x2 , . . . , xn−1 , y, t) ≥ βα ∗1 βα ≥ βα ∗1 γα =α+ > α. And ν(x1 , x2 , . . . , xn−1 , xy, M st) ≤ µ(x1 , x2 , . . . , xn−1 , x, s) ◦1 µ(x1 , x2 , . . . , xn−1 , y, t) < (1 − βα ) ◦1 (1 − βα ) < (1 − βα ) ◦1 γα = (1 − α) − < 1 − α. Hence X is with continuous product. 2
Intuitionistic fuzzy n-normed algebra and continuous product
75
Definition 3.8. Let (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) be the IFnNA. Then X is said to be with multiplicatively continuous product if for all α ∈ (0, 1); x, y ∈ X; s, t > 0 and x1 , x2 , . . . , xn−1 ∈ X: µ(x1 , x2 , . . . , xn−1 , x, s) > α and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − α, and µ(x1 , x2 , . . . , xn−1 , y, t) > α and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − α. imply, µ(x1 , x2 , . . . , xn−1 , xy, st) ≥ α and ν(x1 , x2 , . . . , xn−1 , xy, st) ≤ 1 − α. Example 3.9. (IFnNA with multiplicatively continuous product) Let (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) be the IFnNA from the example 3.3 is with multiplicatively continuous product. Proof. Let α ∈ (0, 1), for all x, y ∈ X, for all x1 , x2 , . . . , xn−1 ∈ X, and s, t > 0 such that µ(x1 , x2 , . . . , xn−1 , x, s) > α and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − α, and µ(x1 , x2 , . . . , xn−1 , y, t) > α and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − α. Then, µ(x1 , x2 , . . . , xn−1 , x, s) = 1 and ν(x1 , x2 , . . . , xn−1 , x, s) = 0, and µ(x1 , x2 , . . . , xn−1 , y, t) = 1 and ν(x1 , x2 , . . . , xn−1 , y, t) = 0. Thus we have, kxk < s, kyk < t. Therefore, kxyk ≤ kxk.kyk < st. Hence, µ(x1 , x2 , . . . , xn−1 , xy, st) = 1 > α and ν(x1 , x2 , . . . , xn−1 , xy, st) = 0 < 1−α. Therefore X is with multiplicatively continuous product. 2
76
N. Konwar and P. Debnath
Example 3.10. (IFnNA which is not with multiplicatively continuous product) We consider the IFnNA from example 3.4 where X = R and the norm on X is the absolute value k · k. Then (R, µ, ν, ∗, ◦, ∗1 , ◦1 ) is not with multiplicatively continuous product. Proof. Suppose, α = 17 , 1 − α = 67 , x = 72 s, y = 72 t and s, t > 0. Then we have, µ(x1 , x2 , . . . , xn−1 , x, s) =
s 1 s 2 = = > . s + kxk 9 7 s + 72 s
i.e. µ(x1 , x2 , . . . , xn−1 , x, s) > α, and ν(x1 , x2 , . . . , xn−1 , x, s) =
7 s 6 kxk 7 = 2 7 = < . s + kxk 9 7 s + 2s
i.e. ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − α . But, µ(x1 , x2 , . . . , xn−1 , xy, st) =
st 1 st 4 = < = α, = 7 7 st + kxyk 53 7 st + 2 · 2 st
and ν(x1 , x2 , . . . , xn−1 , xy, st) =
49 1 kxyk 49 4 st = > = 1 − α. = 49 st + kxyk 53 7 st + 4 st
i.e. µ(x1 , x2 , . . . , xn−1 , xy, st) < α and ν(x1 , x2 , . . . , xn−1 , xy, st) > 1 − α. Thus (R, µ, ν, ∗, ◦, ∗1 , ◦1 ) is not with multiplicatively continuous product. 2 Theorem 3.11. Let (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) be the IFnNA such that α∗1 α ≥ α and (1 − α) ◦1 (1 − α) ≤ 1 − α for all α ∈ (0, 1). Thus (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) is with multiplicatively continuous product.
Intuitionistic fuzzy n-normed algebra and continuous product
77
Proof. Let α ∈ (0, 1), for all x, y ∈ X, for all x1 , x2 , . . . , xn−1 ∈ X, and s, t > 0 such that
µ(x1 , x2 , . . . , xn−1 , x, s) > α and ν(x1 , x2 , . . . , xn−1 , x, s) < 1 − α, and µ(x1 , x2 , . . . , xn−1 , y, t) > α and ν(x1 , x2 , . . . , xn−1 , y, t) < 1 − α. Then, µ(x1 , x2 , . . . , xn−1 , xy, st) ≥ µ(x1 , x2 , . . . , xn−1 , x, s)∗1 µ(x1 , x2 , . . . , xn−1 , y, t) > α ∗1 α ≥ α. and ν(x1 , x2 , . . . , xn−1 , xy, M st) ≤ µ(x1 , x2 , . . . , xn−1 , x, s)◦1 µ(x1 , x2 , . . . , xn−1 , y, t) < (1 − α) ◦1 (1 − α) ≤ 1 − α. Thus X is with multiplicatively continuous product. 2 Remark 3.12. Theorem 3.11 is sufficient but not necessary. Theorem 3.13. Let (X, µ1 , ν1 , ∗, ◦, ∗1 , ◦1 ) and (Y, µ2 , ν2 , ∗, ◦, ∗1 , ◦1 ) be two 0 0 IFnNAs. If t-norm ∗ denotes both ∗ and ∗1 and t-conorm ◦ denotes both 0 0 ◦ and ◦1 , then ((X × Y ), µ, ν, ∗ , ◦ , ∗1 , ◦1 ) is a IFnNA where, µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), t) 0
= µ1 (x1 , x2 , . . . , xn−1 , x, t) ∗ µ2 (y1 , y2 , . . . , yn−1 , y, t), and ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), t) 0
= ν1 (x1 , x2 , . . . , xn−1 , x, t) ◦ ν2 (y1 , y2 , . . . , yn−1 , y, t), for all (x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ) ∈ X × Y , x1 , x2 , . . . , xn−1 ∈ X, y1 , y2 , . . . , yn−1 ∈ Y , (x, y) ∈ X × Y and s, t > 0.
78
N. Konwar and P. Debnath
Proof. We have to prove that 0 0 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) ≥ µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) 0 0 ∗1 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t), and 0 0 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) ≤ ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) 0 0 ◦1 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t), 0 0 for all (x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ) ∈ X × Y , x, x ∈ X, y, y , ∈ Y , and s, t > 0. Now, 0 0 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) 0 0 0 = µ1 (x1 , x2 , . . . , xn−1 , xx , st) ∗ µ2 (y1 , y2 , . . . , yn−1 , yy , st) 0 0 ≥ (µ1 (x1 , x2 , . . . , xn−1 , x, s) ∗1 µ1 (x1 , x2 , . . . , xn−1 , x , t)) ∗ 0 (µ2 (y1 , y2 , . . . , yn−1 , y, s) ∗1 µ2 (y1 , y2 , . . . , yn−1 , y , t)) 0 ≥ [µ1 (x1 , x2 , . . . , xn−1 , x, s) ∗ µ2 (y1 , y2 , . . . , yn−1 , y, s)] ∗1 0 0 0 [µ1 (x1 , x2 , . . . , xn−1 , x , t) ∗ µ2 (y1 , y2 , . . . , yn−1 , y , t)] = µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) ∗1 0 0 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t). Therefore, 0 0 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) ≥ µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) 0 0 ∗1 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t). And 0 0 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) 0 0 0 = ν1 (x1 , x2 , . . . , xn−1 , xx , st) ◦ ν2 (y1 , y2 , . . . , yn−1 , yy , st) 0 0 ≤ (ν1 (x1 , x2 , . . . , xn−1 , x, s) ◦1 ν1 (x1 , x2 , . . . , xn−1 , x , t)) ◦ 0 (ν2 (y1 , y2 , . . . , yn−1 , y, s) ◦1 ν2 (y1 , y2 , . . . , yn−1 , y , t)) 0 ≤ [ν1 (x1 , x2 , . . . , xn−1 , x, s) ◦ ν2 (y1 , y2 , . . . , yn−1 , y, s)] ◦1 0 0 0 [ν1 (x1 , x2 , . . . , xn−1 , x , t) ◦ ν2 (y1 , y2 , . . . , yn−1 , y , t)] = ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) ◦1 0 0 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t). Therefore, 0 0 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) ≤ ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) 0 0 ◦1 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t). Therefore X × Y is an IFnNA. 2 Theorem 3.14. Let ∗1 be a t-norm and ◦1 be a t-conorm satisfying α∗1 α ≥
Intuitionistic fuzzy n-normed algebra and continuous product
79
α and (1−α)◦1 (1−α) ≤ (1−α) for all α ∈ (0, 1) and let (X, µ1 , ν1 , ∗, ◦, ∗1 , ◦1 ) and (Y, µ2 , ν2 , ∗, ◦, ∗1 , ◦1 ) be two IFnNAs with multiplicatively continuous 0 0 product. If a t-norm ∗ denotes both ∗ and ∗1 and t-conorm ◦ denotes both 0 0 ◦ and ◦1 , then ((X × Y ), µ, ν, ∗ , ◦ , ∗1 , ◦1 ) is a IFnNA with multiplicatively continuous product. Proof. Let α ∈ (0, 1), (x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ) ∈ X ×Y ,(x, y) ∈ 0 0 X × Y ,(x , y ) ∈ X × Y and s, t > 0 such that µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) > α; ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) < 1 − α. and 0
0
µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t) > α; 0
0
ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t) < 1 − α. Then we have successively: 0 0 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) 0 0 0 = µ1 (x1 , x2 , . . . , xn−1 , xx , st) ∗ µ2 (y1 , y2 , . . . , yn−1 , yy , st) 0 0 ≥ (µ1 (x1 , x2 , . . . , xn−1 , x, s) ∗1 µ1 (x1 , x2 , . . . , xn−1 , x , t)) ∗ 0 (µ2 (y1 , y2 , . . . , yn−1 , y, s) ∗1 µ2 (y1 , y2 , . . . , yn−1 , y , t)) 0 ≥ [µ1 (x1 , x2 , . . . , xn−1 , x, s) ∗ µ2 (y1 , y2 , . . . , yn−1 , y, s)] ∗1 0 0 0 [µ1 (x1 , x2 , . . . , xn−1 , x , t) ∗ µ2 (y1 , y2 , . . . , yn−1 , y , t)] = µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) ∗1 0 0 µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t) > α ∗1 α ≥ α. i.e. 0
0
µ((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) ≥ α. And 0 0 ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) 0 0 0 = ν1 (x1 , x2 , . . . , xn−1 , xx , st) ◦ ν2 (y1 , y2 , . . . , yn−1 , yy , st) 0 0 ≤ (ν1 (x1 , x2 , . . . , xn−1 , x, s) ◦1 ν1 (x1 , x2 , . . . , xn−1 , x , t)) ◦ 0 (ν2 (y1 , y2 , . . . , yn−1 , y, s) ◦1 ν2 (y1 , y2 , . . . , yn−1 , y , t)) 0 ≤ [ν1 (x1 , x2 , . . . , xn−1 , x, s) ◦ ν2 (y1 , y2 , . . . , yn−1 , y, s)] ◦1 0 0 0 [ν1 (x1 , x2 , . . . , xn−1 , x , t) ◦ ν2 (y1 , y2 , . . . , yn−1 , y , t)] = ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x, y), s) ◦1
80
N. Konwar and P. Debnath 0
0
ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (x , y ), t) < (1 − α) ◦1 (1 − α) ≤ (1 − α). i.e. 0
0
ν((x1 , y1 ), (x2 , y2 ), . . . , (xn−1 , yn−1 ), (xx , yy ), st) ≤ (1 − α). 2
Therefore X ×Y is an IFnNA with multiplicatively continuous product.
Example 3.15. Let (X, µ, ν, ∗, ◦, ∗1 , ◦1 ) be an IFnNA with multiplicatively continuous product and let S ⊂ X be a linear closed algebra of X. Then (S, µ, ν, ∗, ◦, ∗1 , ◦1 ) is an IFnNA with multiplicatively continuous product.
4. Conclusion In this paper we have introduced the notion of IFnNA and given a characterization for an IFnNA to be with continuous product. Further, the notion of multiplicatively continuous product has also been introduced and studied. The spectral properties of an IFnNLS will be an interesting topic for future research in this regard which may be applied in the study of dynamical systems and particle physics. Competing interests The authors declare that they have no competing interests. Authors’ contributions All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Intuitionistic fuzzy n-normed algebra and continuous product
81
References [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20, pp. 87—96, (1986). [2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11, pp. 687—705, (2003). [3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (3), pp. 687—705, (2003). [4] T. Binzar, F. Pater and S. Nabadan, On fuzzy normed algebras, J. Nonlinear Sci. Appl., 9, pp. 5488—5496, (2016). [5] A. Bodaghi, C. Park and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc., 31(4), pp. 729—743, (2016). [6] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear space, Bull. Cal. Math. Soc., 86, pp. 429—436, (1994). [7] P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63 (3), pp. 708—715, (2012). [8] P. Debnath, Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces, J. Intell. Fuzzy Syst., 28 (3), pp. 1299—1306, (2015). [9] P. Debnath, A generalized statistical convergence in intuitionistic fuzzy n-normed linear spaces, Ann. Fuzzy Math. Inform., 12 (4), pp. 559— 572, (2016). [10] P. Debnath and M. Sen, Some completeness results in terms of infinite series and quotient spaces in intuitionistic fuzzy n-normed linear spaces, J. Intell. Fuzzy Syst., 26 (2), pp. 975—982, (2014). [11] P. Debnath and M. Sen, Some results of calculus for functions having values in an intuitionistic fuzzy n-normed linear space, J. Intell. Fuzzy Syst., 26 (6), pp. 2983—2991, (2014). [12] B. Dinda, S. K. Samanta and U. K. Bera, Intuitionistic fuzzy Banach algebra, Bull. Math. Anal. Appl., 3, pp. 273—281, (2010).
82
N. Konwar and P. Debnath
[13] A. Esi and B. Hazarika, λ-ideal convergence in intuitionistic fuzzy 2normed linear space, J. Intell. Fuzzy Syst., 24, pp. 725—732, (2013). [14] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst., 48, pp. 239—248, (1992). [15] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27, pp. 631—639, (2001). [16] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12, pp. 215—229, (1984). [17] A. K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst., 12, pp. 143—154, (1984). [18] N. Konwar and P. Debnath, Continuity and Banach contraction principle in intuitionistic fuzzy n-normed linear spaces, J. Intell. Fuzzy Syst., 33(4), pp. 2363—2373, (2017). [19] N. Konwar and P. Debnath, Some new contractive conditions and related fixed point theorems in intuitionistic fuzzy n-Banach spaces, J. Intell. Fuzzy Syst., DOI: 10.3233/JIFS-171372, (2017). [20] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11, pp. 326—334, (1975). [21] A. K. Mirmostafee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy Sets Syst., 195, pp. 109—177, (2012). [22] M. Mursaleen, S. A. Mohiuddine and H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comp. Math. Apl., 59, pp. 603—611, (2010). [23] S. Nadaban, Fuzzy Euclidean normed spaces for data mining applications, Int. J. Comput. Commun. Cotrol., 10, pp. 70—77, (2014). [24] S. Nadaban and I. Dzitac, Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications, Informatica, 25(4), pp. 643— 662, (2014). [25] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons & Fractals, 27, pp. 331—344, (2006).
Intuitionistic fuzzy n-normed algebra and continuous product
83
[26] M. Sen and P. Debnath, Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Model., 54 (11), pp. 2978—2985, (2011). [27] M. Sen and P. Debnath, Statistical convergence in intuitionistic fuzzy n-normed linear spaces, Fuzzy Inf. Eng., 3, pp. 259—273, (2011). [28] S. Vijayabalaji and A. Narayanan, Fuzzy n-normed linear space, J. Math. Math. Sci., 24, pp. 3963—3977, (2005). [29] S. Vijayabalaji, N. Thillaigovindan and Y. B. Jun, Intuitionistic fuzzy n-normed linear space, Bull. Korean. Math. Soc., 44, pp. 291—308, (2007). [30] L. A. Zadeh, Fuzzy sets, Inform. Cont., 8, pp. 338—353, (1965). Nabanita Konwar Department of Mathematics North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh - 791109, India e-mail :
[email protected] and Pradip Debnath Department of Mathematics North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh - 791109, India e-mail :
[email protected]