Document not found! Please try again

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems

6 downloads 0 Views 397KB Size Report
Intuitionistic Fuzzy Two Stage Multiobjective. Transportation Problems. Rita Malhotra and S. K. Bharati1. Department of Mathematics, Kamala Nehru College.
Advances in Theoretical and Applied Mathematics ISSN 0973-4554 Volume 11, Number 3 (2016), pp. 305-316 Β© Research India Publications http://www.ripublication.com

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems Rita Malhotra and S. K. Bharati1 Department of Mathematics, Kamala Nehru College University of Delhi, New Delhi-11049

Abstract Present paper proposes a new method to find the intuitionistic fuzzy optimal solution of two stage multiobjective transportation problems (MOTP). There are several methods are available in literature for the solution of such problem. But, there is no any methods are available for the solution of two stage MOTP with intuitionistic fuzzy (IF) parameters yet. Here, we have considered MOTP with triangular intuitionistic fuzzy numbers (TIFN) parameters. In this method problem is completed in two stages. Present method is very simple and easy to apply in real life transportation problem (TP). AMS Subject Classification: 90B06. Key Words: Intuitionistic Fuzzy Numbers, Triangular, Intuitionistic Fuzzy Numbers, Interval Numbers.

1. INTRODUCTION Transportation problem is one of the best optimization method applicable in various fields of human activity. TP deals with transportation of goods from a set of supply to a set of demand points so as minimize total transportation cost. Hitchcock [14] initiated and modelled basic transportation in form of standard linear programming problem. In beginning of decision making parameters of MOTP are assumed to be fixed in values. But due many uncertain situation like road conditions, traffic conditions, variation in diesel prices etc. and some other unpredicted factors like weather condition. Therefore 1

Email: [email protected]

306

Rita Malhotra and S. K. Bharati

due to such reason conventional models are not valid. Zadeh [30] introduced the concept of fuzzy sets for dealing uncertainty. Later Bellman and Zadeh [6] used it for decision making of real life problems. Verma et al. [25] applied fuzzy programming technique to solve MOTP via some non-linear membership functions. Das et al. [10] proposed solution methods for the solution of MOTP with interval cost, source and destinations parameters. Li and Lai [16] have presented a fuzzy compromise programming approach to multiobjective transportation problems. Wahed [27] studied the optimal compromise solution of MOTP and obtained solution is tested by using degree of closeness of the compromise solution to the ideal solution using family of distances. Further, Wahed and Lee [28] proposed interactive fuzzy goal programming approach for efficient solution of MOTP. Liu and Kao [18] have solved fuzzy transportation problems with fuzzy numbers cost, supply and demand based on extension principle. Further, Liu [19] considered the total cost bounds of the transportation problem with varying demand and supply. Ammar and Youness [1] investigated Ξ±-fuzzy efficient and efficient solutions of MOTP having fuzzy number parameters. Zangiabadi and Maleki [29] proposed fuzzy goal programming method for the solution of MOTP incorporating non-linear membership functions. Ritha and Vinotha [22] have solved fuzzy transportation problem in two stages. Peidro and Vasant [21] considered transportation planning with modified S- curve membership functions using interactive fuzzy multiobjective approach. Fuzzy set approach does not deal properly realistic MOTP due hesitation involved in information. Atanassov [2] generalized fuzzy sets by introducing the concept of intuitionistic fuzzy sets (IFS). It is a better tool for dealing problems in realistic way than fuzzy sets. IFS became very popular and applicable in management sciences, planning and various other fields. Angelov [4] investigated intuitionistic fuzzy optimization technique for the solution of TP. Later Bharati and Singh [7, 8, 9] used it for the solution of multiobjective linear programming problem and applied it in agricultural production planning. Jana and Roy [15] solved multiobjective intuitionistic fuzzy linear programming and applied it in transportation problem by using linear and non-linear membership functions. Recently, Antony et al [3] proposed method for the solution of transportation problem using triangular intuitionistic fuzzy numbers. Further, Singh and Yadav [24] investigated a new approach for the solution of intuitionistic fuzzy transportation problem of type-2. Kumar and Hussain [26] given method for the fully intuitionistic fuzzy real transportation problem based ranking method. Due to storage constraints destinations are unable to receive the quantity in excess of their minimum demand. Therefore we encounter a kind of problem. Sonia and Malhotra [23] resolved such problem by using polynomial approach and solved TP into two stages. Further, Gani and Rajak [11] studied two stage fuzzy transportation problem with triangular fuzzy numbers. Here, we have considered intuitionistic fuzzy solution of two stage multiobjective transportation problem (TSMOTP) in more realistic way.

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems

307

Definition 1. [2] Let 𝑋 be universal sets. An intuitionistic fuzzy sets 𝐴̃ in 𝑋 is a sets of the form 𝐴̃ = {(π‘₯, πœ‡π΄Μƒ (π‘₯), πœˆπ΄Μƒ (π‘₯)): π‘₯ ∈ 𝑋}, where πœ‡π΄Μƒ : 𝑋 β†’ [0, 1] and πœˆπ΄Μƒ : 𝑋 β†’ [0, 1], define degrees of membership and non-membership of the element π‘₯ ∈ 𝑋, respectively and for every π‘₯ ∈ 𝑋, 0 ≀ πœ‡π΄Μƒ (π‘₯) + πœˆπ΄Μƒ (π‘₯) ≀ 1. The value of πœ‹π΄Μƒ (π‘₯) = 1 βˆ’ πœ‡π΄Μƒ (π‘₯) βˆ’ πœˆπ΄Μƒ (π‘₯), is called the degree of non-determinacy (or uncertainty) of the element π‘₯ ∈ 𝑋 to the intuitionistic fuzzy set 𝐴̃. Definition 2. An intuitionistic fuzzy set 𝐴̃ = {(π‘₯, πœ‡π΄Μƒ (π‘₯), πœˆπ΄Μƒ (π‘₯)): π‘₯ ∈ ℝ} is called intuitionistic fuzzy numbers if (i) There exists a real number π‘₯0 ∈ ℝ such that πœ‡π΄Μƒ (π‘₯) = 1 and πœˆπ΄Μƒ (π‘₯) = 0, (ii) Membership πœ‡π΄Μƒ of 𝐴̃ is convex and non-membership πœˆπ΄Μƒ is concave. (iii) πœ‡π΄Μƒ is upper semi-continuous and πœˆπ΄Μƒ is lower semi-continuous. {π‘₯ ∈ ℝ: πœˆπ΄Μƒ (π‘₯) ≀ 1}. (iv) Support(𝐴̃) = Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ… Definition 3. Let 𝑋 and π‘Œ be two universal sets, 𝑓: 𝑋 β†’ π‘Œ be a function. Extension principle for intuitionistic fuzzy sets find membership and non-membership value 𝑓(𝐴̃) where 𝐴̃ is an intuitionistic fuzzy sets on 𝑋: 𝑆𝑒𝑝{πœ‡π΄Μƒ (π‘₯), π‘₯ ∈ 𝑓 βˆ’1 {𝑦}} 𝑖𝑓 𝑦 ∈ π‘…π‘Žπ‘›π‘”π‘’(𝑓) πœ‡π‘“(𝐴̃) (𝑦) = { (1) 0, 𝑖𝑓 𝑦 βˆ‰ π‘…π‘Žπ‘›π‘”π‘’(𝑓) 𝐼𝑛𝑓{πœˆπ΄Μƒ (π‘₯), π‘₯ ∈ 𝑓 βˆ’1 {𝑦}} 𝑖𝑓 𝑦 ∈ π‘…π‘Žπ‘›π‘”π‘’(𝑓) πœˆπ‘“(𝐴̃) (𝑦) = { (2) 1, 𝑖𝑓 𝑦 βˆ‰ π‘…π‘Žπ‘›π‘”π‘’(𝑓) Definition 4. A triangular intutionistic fuzzy number be given by 𝐴̃ = {(π‘Ž1 , π‘Ž2 , π‘Ž3 ), (𝑏1 , 𝑏2 , 𝑏3 )} where π‘Ž1 , π‘Ž2 , π‘Ž3 , 𝑏1 , 𝑏2 , 𝑏3 ∈ ℝ such that 𝑏1 ≀ π‘Ž1 ≀ π‘Ž2 = 𝑏2 ≀ π‘Ž3 ≀ 𝑏3 . Its membership and non-membership are given as: 0, π‘₯ = π‘Ž2 1, π‘₯ = π‘Ž2 0, π‘₯ β‰₯ π‘Ž3 ∧ π‘₯ ≀ π‘Ž1 1, π‘₯ β‰₯ 𝑏3 ∧ π‘₯ ≀ 𝑏1 πœ‡π΄Μƒ (π‘₯) = { , πœˆπ΄Μƒ (π‘₯) = { (3) πœ™(π‘₯), π‘Ž1 < π‘₯ < π‘Ž2 πœ‚(π‘₯), 𝑏1 < π‘₯ < π‘Ž2 𝜁(π‘₯), π‘Ž2 < π‘₯ < π‘Ž3 πœ‰(π‘₯), π‘Ž2 < π‘₯ < 𝑏3 where : (π‘Ž1 , π‘Ž2 ) β†’ [0, 1], ΞΆ: (π‘Ž2 , π‘Ž3 ) β†’ [0, 1], πœ‚: (𝑏1 , π‘Ž2 ) β†’ [0, 1], πœ‰: (π‘Ž2 , 𝑏3 ) β†’ [0, 1]. Definition 5. Let triangular intuitionistic fuzzy number be given by 𝐴̃ = {(π‘Ž1 , π‘Ž2 , π‘Ž3 ), (𝑏1 , 𝑏2 , 𝑏3 )} where 𝑏1 ≀ π‘Ž1 ≀ π‘Ž2 = 𝑏2 ≀ π‘Ž3 ≀ 𝑏3 . Then its parametric {[ π‘Ž1 + 𝛼( π‘Ž2 βˆ’ π‘Ž1 ), π‘Ž3 βˆ’ 𝛼( π‘Ž3 βˆ’ π‘Ž1 )], [ π‘Ž2 + (1 βˆ’ 𝛼)( 𝑏3 βˆ’ form are π‘Ž2 ), π‘Ž2 βˆ’ (1 βˆ’ 𝛼)( π‘Ž2 βˆ’ 𝑏1 )]}.

308

Rita Malhotra and S. K. Bharati

Definition 6. [12, 13] Let π‘ŽΜƒ = [π‘ŽπΏ , π‘Žπ‘… ] be an interval. The minimization problem with the interval-valued objective function is expressed as min {π‘ŽΜƒ: π‘ŽΜƒ ∈ 𝑆}, where 𝑆 is a set of constraints, which is equal to bi-objective mathematical programming Min {π‘Žπ‘… : π‘š(π‘ŽΜƒ) ∈ 𝑆}.

2. THEORETICAL DEVELOPMENT Let minimum IF requirement of a homogeneous product at the destination 𝑗 be 𝑏̃𝑗 , IF availability be π‘ŽΜƒπ‘– of the same at source 𝑖 and 𝑇 π‘˜ (π‘₯) is a vector of 𝐾 objectives. The TSMOTP with intuitionistic fuzzy time deals with supplying the destination their minimum 𝐼𝐹 requirement is stage-I and 𝐼𝐹quantity βˆ‘π‘– π‘ŽΜƒπ‘– βˆ’ 𝑏̃𝑗 is supplied to the destination is stageII from the sources which have surplus IF quantity left after the completion of stage-I, Mathematically, stated the stage-I problem is: min

π‘˜ 𝑇1π‘˜ (𝑋) = min [π‘šπ‘Žπ‘₯𝐼×𝐽 (𝑑𝑖𝑗 (π‘₯𝑖𝑗 ))] , π‘˜ = 1,2, … , 𝐾

(4)

Where βˆ‘π‘›π‘—=1 π‘₯𝑖𝑗 ≀ βˆ…Μƒπ‘– , 𝑖 ∈ 𝐼, 𝑆 = {βˆ‘π‘›π‘—=1 π‘₯𝑖𝑗 ≀ πœ‘Μƒπ‘– , 𝑗 ∈ 𝐽, π‘₯𝑖𝑗 β‰₯ 0, βˆ€(𝑖, 𝑗) ∈ 𝐼 Γ— 𝐽,

(5)

where βˆ…Μƒπ‘– , πœ‘Μƒπ‘– , π‘Žπ‘›π‘‘ 𝐼𝑖𝑗 are TIFNs. Corresponding to a feasible solution 𝑋̃ = (π‘₯𝑖𝑗 ) of the stage-I problem, the set 𝑆(𝑋) = π‘₯̃𝑖𝑗 of the feasible solutions of stage-II problem is given by βˆ‘π‘›π‘—=1 π‘₯̃𝑖𝑗 ≀ βˆ…Μƒπ‘– , 𝑖 ∈ 𝐼, 𝑆 = {βˆ‘π‘›π‘—=1 π‘₯̃𝑖𝑗 ≀ πœ‘Μƒπ‘– , 𝑗 ∈ 𝐽, π‘₯̃𝑖𝑗 β‰₯ 0, βˆ€(𝑖, 𝑗) ∈ 𝐼 Γ— 𝐽,

(6)

Μƒ ′𝑖 is the quantity available at the 𝑖 π‘‘β„Ž source on the completion of the satge-I, where βˆ… Μƒ ′𝑖 =βˆ…π‘– βˆ’ βˆ‘π‘— π‘₯𝑖𝑗 . that is βˆ… Μƒ ′𝑖 =βˆ…π‘– - βˆ‘π‘— πœ‘π‘— . Thus the TS-MOTP would be mathematically formulated as: Clearly βˆ‘πΌ βˆ… π‘˜ 𝑀𝑖𝑛π‘₯βˆˆπ‘†(𝑋) 𝑇̃2π‘˜ (𝑋̃) = min 𝑋̃ ∈ 𝑆(𝑋)[max 𝐼 Γ— 𝐽 ( (𝑑𝑖𝑗 (π‘₯𝑖𝑗 ))]

In this paper we have found feasible schedule 𝑋 = (π‘₯𝑖𝑗 ) of the stage –I problem corresponding to which the optimal time for stage-II is such that the sum of the shipment times is the least. The TS-MOTP can, therefore, be stated as:

(7)

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems

309

𝑀𝑖𝑛π‘₯βˆˆπ‘†(𝑋) 𝑇̃1π‘˜ (𝑋) + 𝑀𝑖𝑛π‘₯βˆˆπ‘†(𝑋) 𝑇̃2π‘˜ (𝑋̃)

(8)

Problem (4) and (7) which are intuitionistic fuzzy transportation problem with TIFNs parameters becomes: πœ‡π‘˜ πœ‡π‘˜ πœ‡π‘˜ 𝑛 πœˆπ‘˜ πœˆπ‘˜ πœˆπ‘˜ Minimize π‘§π‘˜ = βˆ‘π‘š 𝑖=1 βˆ‘π‘—=1{(𝑐𝑖𝑗1 , 𝑐𝑖𝑗2 , 𝑐𝑖𝑗3 ), (𝑐𝑖𝑗1 , 𝑐𝑖𝑗2 , 𝑐𝑖𝑗3 )}π‘₯𝑖𝑗

Such that 𝑛 πœ‡π‘˜

πœ‡π‘˜

πœ‡π‘˜

πœ‡π‘˜

πœ‡π‘˜

πœ‡π‘˜

πœˆπ‘˜ πœˆπ‘˜ πœˆπ‘˜ βˆ‘ π‘₯𝑖𝑗 = {(π‘Žπ‘–π‘—1 , π‘Žπ‘–π‘—2 , π‘Žπ‘–π‘—3 ), (π‘Žπ‘–π‘—1 , π‘Žπ‘–π‘—2 , π‘Žπ‘–π‘—3 )}, 𝑖 = 1, 2, … , π‘š, 𝑗=1 π‘š πœˆπ‘˜ πœˆπ‘˜ πœˆπ‘˜ βˆ‘ π‘₯𝑖𝑗 = {(𝑏𝑖𝑗1 , 𝑏𝑖𝑗2 , 𝑏𝑖𝑗3 ), (𝑏𝑖𝑗1 , 𝑏𝑖𝑗2 , 𝑏𝑖𝑗3 )}, 𝑗 = 1, 2, … , 𝑛, 𝑖=1

π‘₯𝑖𝑗 β‰₯ 0, 𝑖 = 1, 2, … , π‘š and 𝑗 = 1, 2, … , 𝑛.

1βˆ’π›Ό

𝑛 2𝛼 βˆ‘π‘š 𝑖=1 βˆ‘π‘—=1 [

Minimize π‘§π‘˜ =

πœ‡π‘˜

πœˆπ‘˜ π‘˜ (𝑐𝑖𝑗1 +𝑐𝑖𝑗3 )+𝑐𝑖𝑗2

2

,

1βˆ’π›Ό πœ‡π‘˜ πœ‡π‘˜ πœˆπ‘˜ π‘˜ (𝑐𝑖𝑗3 +𝑐𝑖𝑗1 )+(𝑐𝑖𝑗1 +𝑐𝑖𝑗2 ) 𝛼

2

] π‘₯𝑖𝑗

Such that 1βˆ’π›Ό

βˆ‘π‘›π‘—=1 π‘₯𝑖𝑗 = [ 2𝛼

1βˆ’π›Ό

2𝛼 βˆ‘π‘š 𝑖=1 π‘₯𝑖𝑗 = [

πœ‡π‘˜

πœˆπ‘˜ π‘˜ (π‘Žπ‘–π‘—1 +𝑐𝑖𝑗3 )+π‘Žπ‘–π‘—2

2

,

πœ‡π‘˜

πœˆπ‘˜ π‘˜ (𝑏𝑖𝑗1 +𝑏𝑖𝑗3 )+𝑏𝑖𝑗2

2

,

1βˆ’π›Ό πœ‡π‘˜ πœ‡π‘˜ πœˆπ‘˜ π‘˜ (π‘Žπ‘–π‘—3 +π‘Žπ‘–π‘—1 )+(π‘Žπ‘–π‘—1 +π‘Žπ‘–π‘—2 ) 𝛼

2 1βˆ’π›Ό πœ‡π‘˜ πœ‡π‘˜ πœˆπ‘˜ π‘˜ (𝑏𝑖𝑗3 +𝑏𝑖𝑗1 )+(𝑏𝑖𝑗1 +𝑏𝑖𝑗2 ) 𝛼

2

] , 𝑖 = 1, 2, … , π‘š,

] , 𝑗 = 1, 2, … , 𝑛,

π‘₯𝑖𝑗 β‰₯ 0, 0 < 𝛼 < 1, 𝑖 = 1, 2, … , π‘š and 𝑗 = 1, 2, … , 𝑛.

1βˆ’π›Ό

𝑛 2𝛼 Minimize π‘§π‘˜ = βˆ‘π‘š 𝑖=1 βˆ‘π‘—=1 [

πœ‡π‘˜

πœˆπ‘˜ π‘˜ (𝑐𝑖𝑗1 +𝑐𝑖𝑗3 )+𝑐𝑖𝑗2

2

,

1+𝛼 πœ‡π‘˜ 1βˆ’π›Ό πœ‡π‘˜ πœˆπ‘˜ 1βˆ’π›Ό πœ‡π‘˜ πœˆπ‘˜ π‘˜ 𝑐 + (𝑐 +𝑐 )+ (𝑐𝑖𝑗3 +𝑐𝑖𝑗1 )+2𝑐𝑖𝑗2 2𝛼 𝑖𝑗1 2𝛼 𝑖𝑗3 𝑖𝑗1 𝛼

4

] π‘₯𝑖𝑗

Such that βˆ‘π‘›π‘—=1 π‘₯𝑖𝑗

1βˆ’π›Ό πœ‡π‘˜ 1+𝛼 πœ‡π‘˜ 1βˆ’π›Ό πœ‡π‘˜ 1βˆ’π›Ό πœ‡π‘˜ πœˆπ‘˜ π‘˜ πœˆπ‘˜ πœˆπ‘˜ π‘˜ (π‘Žπ‘–π‘—1 +π‘Žπ‘–π‘—3 )+π‘Žπ‘–π‘—2 π‘Ž + (π‘Žπ‘–π‘—3 +π‘Žπ‘–π‘—1 )+ (π‘Žπ‘–π‘—3 +π‘Žπ‘–π‘—1 )+2π‘Žπ‘–π‘—2 2𝛼 2𝛼 𝑖𝑗1 2𝛼 𝛼

=[

2

,

4

] , 𝑖 = 1, 2, … , π‘š,

310

Rita Malhotra and S. K. Bharati 1βˆ’π›Ό

2𝛼 βˆ‘π‘š 𝑖=1 π‘₯𝑖𝑗 = [

πœ‡π‘˜

πœˆπ‘˜ π‘˜ (𝑏𝑖𝑗1 +𝑏𝑖𝑗3 )+𝑏𝑖𝑗2

2

,

1+𝛼 πœ‡π‘˜ 1βˆ’π›Ό πœ‡π‘˜ 1βˆ’π›Ό πœ‡π‘˜ πœˆπ‘˜ πœˆπ‘˜ π‘˜ 𝑏 + (𝑏𝑖𝑗3 +𝑏𝑖𝑗1 )+ (𝑏𝑖𝑗3 +𝑏𝑖𝑗1 )+2𝑏𝑖𝑗2 2𝛼 𝑖𝑗1 2𝛼 𝛼

4

] , 𝑗 = 1, 2, … , 𝑛,

π‘₯𝑖𝑗 β‰₯ 0, 0 < 𝛼 < 1, 𝑖 = 1, 2, … , π‘š and 𝑗 = 1, 2, … , 𝑛.

Minimize π‘§π‘˜ =

3βˆ’3𝛼 πœ‡π‘˜ 𝑐𝑖𝑗3

𝑛 𝛼 βˆ‘π‘š 𝑖=1 βˆ‘π‘—=1 [

+

1+5𝛼 πœ‡π‘˜ 1βˆ’π›Ό πœˆπ‘˜ 3βˆ’3𝛼 πœˆπ‘˜ π‘˜ 𝑐 +4𝑐𝑖𝑗2 + 𝑐 + 𝑐𝑖𝑗1 2𝛼 𝑖𝑗1 2𝛼 𝑖𝑗3 𝛼

8

] π‘₯𝑖𝑗

Such that

βˆ‘π‘›π‘—=1 π‘₯𝑖𝑗 βˆ‘π‘š 𝑖=1 π‘₯𝑖𝑗

= =

3βˆ’3𝛼 πœ‡π‘˜ π‘Žπ‘–π‘—3 𝛼

1+5𝛼 πœ‡π‘˜ 1βˆ’π›Ό πœˆπ‘˜ 3βˆ’3𝛼 πœˆπ‘˜ π‘˜ π‘Ž +4π‘Žπ‘–π‘—2 + π‘Ž + π‘Žπ‘–π‘—1 2𝛼 𝑖𝑗1 2𝛼 𝑖𝑗3 𝛼

+

8 3βˆ’3𝛼 πœ‡π‘˜ 𝑏𝑖𝑗3 𝛼

+

1+5𝛼 πœ‡π‘˜ 1βˆ’π›Ό πœˆπ‘˜ 3βˆ’3𝛼 πœˆπ‘˜ π‘˜ 𝑏 +4𝑏𝑖𝑗2 + 𝑏 + 𝑏𝑖𝑗1 2𝛼 𝑖𝑗1 2𝛼 𝑖𝑗3 𝛼

8

, 𝑖 = 1, 2, … , π‘š,

, 𝑗 = 1, 2, … , 𝑛,

π‘₯𝑖𝑗 β‰₯ 0, 0 < 𝛼 < 1, 𝑖 = 1, 2, … , π‘š and 𝑗 = 1, 2, … , 𝑛.

3. COMPUTATIONAL ALGORITHM A two stage multiobjective transportation problem can be solved in following manner: Step 1 Construct the multiobjective intuitionistic fuzzy transportation problems. Step 2 Convert all corresponding objectives and constraints into its crisp form. Step 3 Take one objective function out of given k objectives and solve it as a single objective subject to the given constraints. Form obtained solution vectors find the values of remaining (π‘˜ βˆ’ 1) objective functions. Step 4 Continue the step 3 for remaining (k βˆ’ 1) objective functions. If all the solutions are same, then one of them is the optimal compromise solution. Step 5 Tabulate the solutions thus obtained in step 3 and step 4 to construct the Positive Ideal Solution (PIS) as given below.

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems

Min 𝑓1 Min 𝑓2 Min 𝑓3 : :

𝑓1 𝑓2 βˆ— 𝑓1 𝑓2 (𝑋1 ) 𝑓1 (𝑋2 ) 𝑓2βˆ— 𝑓1 (𝑋3 ) 𝑓2 (𝑋3 ) : :

Min π‘“π‘˜

𝑓1 (π‘‹π‘˜ ) 𝑓2 (π‘‹π‘˜ ) 𝑓3 (π‘‹π‘˜ ) 𝑓1β€²

𝑓3 𝑓3 (𝑋1 ) 𝑓3 (𝑋2 ) 𝑓3βˆ—

𝑓2β€²

311

... ... ... ..

π‘“π‘˜ π‘“π‘˜ (𝑋1 ) π‘“π‘˜ (𝑋2 ) π‘“π‘˜ (𝑋3 )

...

π‘“π‘˜βˆ— π‘“π‘˜β€²

𝑓3β€²

Max 𝑓 … Table 1.1. Positive Ideal Solution

X 𝑋1 𝑋2 𝑋3 : :

π‘‹π‘˜

Step 6 From PIS, obtain the lower bounds and upper bounds for each objective functions, where π‘“π‘˜βˆ— and π‘“π‘˜β€² are the maximum, minimum values respectively. Step 7 Set upper and lower bounds for each objective for degree of acceptance and degree of rejection corresponding to set of solutions obtained in step4. For membership functions: Upper and lower bound for membership functions πœ‡ π‘ˆπ‘˜ = max(π‘π‘˜ (π‘‹π‘Ÿ )) πœ‡ πΏπ‘˜ = min(π‘π‘˜ (π‘‹π‘Ÿ )), 0β‰€π‘Ÿβ‰€πΎ For non -membership functions: πœ‡ πœ‡ πœ‡ πœ‡ π‘ˆπ‘˜πœˆ = π‘ˆπ‘˜ βˆ’ πœ†(π‘ˆπ‘˜ βˆ’ πΏπ‘˜ ), π‘ˆπ‘˜πœˆ = πΏπ‘˜ , 0 < πœ† < 1. Step 8 Consider the membership functions πœ‡π‘˜ (π‘“π‘˜ (π‘₯)) and non-membership functions πœˆπ‘˜ (π‘“π‘˜ (π‘₯)) As following linear functions: πœ‡ 1, π‘“π‘˜ (π‘₯) ≀ πΏπ‘˜ πœ‡

π‘ˆπ‘˜ βˆ’π‘“π‘˜ (π‘₯)

πœ‡π‘˜ (π‘“π‘˜ (π‘₯)) =

πœ‡

πœ‡

π‘ˆπ‘˜ βˆ’πΏπ‘˜

πœ‡

,

πœ‡

πΏπ‘˜ ≀ π‘“π‘˜ (π‘₯) ≀ π‘ˆπ‘˜

(9)

πΏπœˆπ‘˜ ≀ π‘“π‘˜ (π‘₯) ≀ π‘ˆπ‘˜πœˆ

(10)

πœ‡

{0, π‘“π‘˜ (π‘₯) β‰₯ π‘ˆπ‘˜ 1, π‘“π‘˜ (π‘₯) β‰₯ π‘ˆπ‘˜πœˆ πœˆπ‘˜ (π‘“π‘˜ (π‘₯)) = {

π‘“π‘˜ (π‘₯)βˆ’πΏπœˆπ‘˜ π‘ˆπ‘˜πœˆ βˆ’πΏπœˆπ‘˜

,

0, π‘“π‘˜ (π‘₯) ≀ πΏπœˆπ‘˜

312

Rita Malhotra and S. K. Bharati

Step 9 An intuitionistic fuzzy optimization technique for TS-MOLP problem with such membership and non-membership functions can be written as: Maximize 𝛼 βˆ’ 𝛽 Such that πœ‡π‘˜ (π‘“π‘˜ (π‘₯)) β‰₯ 𝛼, πœˆπ‘˜ (π‘“π‘˜ (π‘₯)) ≀ 𝛽, 𝛼 + 𝛽 ≀ 1, 𝛼 β‰₯ 𝛽, 𝛽 β‰₯ 0, 𝑛

βˆ‘ π‘₯𝑖𝑗 = π‘Žπ‘– , 𝑖 = 1,2, … , π‘š, 𝑗=1 π‘š

βˆ‘ π‘₯𝑖𝑗 = 𝑏𝑗 , 𝑗 = 1,2, … , 𝑛, 𝑖=1

π‘₯𝑖𝑗 β‰₯ 0. Above linear programming problem can be solved by simplex method. Step 10 Repeat previous steps for stage-I and stage-II. Step 11 Calculate π‘π‘‘π‘œπ‘‘π‘Žπ‘™ = π‘π‘ π‘‘π‘Žπ‘”π‘’βˆ’πΌ + π‘π‘ π‘‘π‘Žπ‘”π‘’βˆ’πΌπΌ . Stage 12 Calculate acceptance and rejection degrees for π‘π‘‘π‘œπ‘‘π‘Žπ‘™ by using Zadeh extension principle. 4. ILLUSTRATION OF PROPOSED SOLUTION METHOD Consider the intuitionistic fuzzy transportation problem Min 𝑧1 = 1Μƒπ‘₯11 + 2Μƒπ‘₯12 + 7Μƒπ‘₯13 + 7Μƒπ‘₯14 + 1Μƒπ‘₯21 + 9Μƒπ‘₯22 + 3Μƒπ‘₯23 + 4Μƒπ‘₯24 + 8Μƒπ‘₯31 + 9Μƒπ‘₯32 + 4Μƒπ‘₯33 + 6Μƒπ‘₯34 Μƒ π‘₯24 + 6Μƒπ‘₯31 + Min 𝑧2 = 4Μƒπ‘₯11 + 4Μƒπ‘₯12 + 3Μƒπ‘₯13 + 4Μƒπ‘₯14 + 5Μƒπ‘₯21 + 8Μƒπ‘₯22 + 9Μƒπ‘₯23 + 10 2Μƒπ‘₯32 + 5Μƒπ‘₯33 + 1Μƒπ‘₯34 Such that π‘₯11 + π‘₯12 + π‘₯13 + π‘₯14 = 8 π‘₯21 + π‘₯22 + π‘₯23 + π‘₯24 = 19 π‘₯31 + π‘₯32 + π‘₯33 + π‘₯34 = 17 π‘₯11 + π‘₯21 + π‘₯31 = 11 π‘₯12 + π‘₯22 + π‘₯32 = 3 π‘₯13 + π‘₯23 + π‘₯33 = 14

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems

313

π‘₯14 + π‘₯24 + π‘₯34 = 16 π‘₯𝑖𝑗 β‰₯ 0 where, 1Μƒ = {(0.1,1,1.5), (0.5,1,1.2)}, 2Μƒ = {(1,2,2.5), (1.5,2,2)} 7Μƒ = {(3,7,9), (5,7,8)}, 7Μƒ = {(4,7,9), (6,7,8)} 1Μƒ = {(0.1,1,1.6), (0.6,1,1.5)}, 9Μƒ = {(7,9,11), (8,9,10)} 3Μƒ = {(1,3,5), (2,3,4)}, 4Μƒ = {(2,4,6), (3,4,5)} 8Μƒ = {(6,8,10), (7,8,9)}, 9Μƒ = {(7,9,12), (8,9,11)} 4Μƒ = {(2,4,7), (3,4,6)}, 6Μƒ = {(4,6,9), (5,6,8)} 4Μƒ = {(2,4,6), (3,4,5)}, 4Μƒ = {(3,4,7), (3,4,5)} 3Μƒ = {(1,3,5), (2,3,4)}, 4Μƒ = {(2,4,6), (3,4,5)} 4Μƒ = {(2,4,6), (3,4,5)}, 5Μƒ = {(3,5,7), (4,5,6)} 8Μƒ = {(5,8,10), (5.5,8,11)}, 9Μƒ = {(8,9,10), (8.5,9,9.5)} Μƒ = {(8,10,12), (9,10,10.5)}, 6Μƒ = {5,6,6.5), (5.5,6,6.1)} 10 2Μƒ = {(1,2,3), (1.2,2,2.8)}, 5Μƒ = {(4,5,6), (4.5,5,5.5)}. First stage optimal solutions are: π‘₯11 = 0.5, π‘₯12 = 1, π‘₯13 = 0, π‘₯14 = 0, π‘₯21 = 2, π‘₯22 = 0, π‘₯23 = 0.32, π‘₯24 = 0.17, π‘₯31 = 0, π‘₯32 = 0, π‘₯33 = 0.17, π‘₯34 = 1.82, Min 𝑧1 = 28.64, Min 𝑧2 = 34.43, 𝛼 = 0.78, 𝛽 = 0. Second stage optimal solutions are: π‘₯11 = 4.5, π‘₯12 = 2, π‘₯13 = 0, π‘₯14 = 0, π‘₯21 = 4, π‘₯22 = 0, π‘₯23 = 12.06, π‘₯24 = 0.43, π‘₯31 = 0, π‘₯32 = 0, π‘₯33 = 1.43, π‘₯34 = 13.56, Min 𝑧1 = 223.41, Min 𝑧2 = 302.74, 𝛼 = 0.64, 𝛽 = 0. Now using definition [3] we get total minimum values are given as: Min 𝑍1 = 252.05, Min 𝑍2 = 337.17 with degree of acceptance 𝛼 = 0.78 and degree of acceptance 𝛽 = 0.

CONCLUSION In some situation due to limited capacity of storage, destinations are unable to receive the quantity in excess of their minimum demand. In this case, a single shipment is not possible. Therefore, items are shipped to destinations from the origins in two stages.

314

Rita Malhotra and S. K. Bharati

Initially, the minimum demands of the destinations are shipped from origins to the destinations. After consuming part of whole of this initial shipment, they are prepared to receive the excess quantity in the second stage. The present method is based on intuitionistic fuzzy sets. Therefore, it will be perfect to handle real transportation problems.

REFERENCES [1].

[2]. [3].

[4]. [5].

[6]. [7].

[8].

[9].

[10].

[11].

E. E. Ammar and E. A. Youness, Study on multiobjective transportation problem with fuzzy parameters, Applied Mathematics and Computation 166 (2005) 241253. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 8796. R. J. P. Atony, Savarimuthu SJ, Pathinathan T., Method for solving the transportation problem using triangular intuitionistic fuzzy number, International Journal of Computing Algorithm 03 (2014) 590-605. P. P. Angelov, Optimization in an intuitionistic fuzzy environment, Fuzzy Sets and Systems 86 (1997) 299-306. B. Jana, T. K. Roy, Multi objective intuitionistic fuzzy linear programming and its application in transportation model, Notes on Intutionistic Fuzzy Sets 13 (2007) 1-18. R. E. Bellman, L. A. Zadeh, Decision making in a fuzzy environment, Management Sciences 17 (1970) B141-B164. S. K. Bharati and S. R. Singh, Solving multi-objective linear programming problems using intuitionistic fuzzy optimization method: A comparative study, International Journal of Modeling and Optimization 4 (2014) 10-16. S. K. Bharati, A. K. Nishad and S. R. Singh, Solution of multiobjective linear programming problems in intuitionistic fuzzy environment, Advances in Intelligent Systems and Computing 236 (2014) 161-171. S. K. Bharati and S. R. Singh, Intuitionistic fuzzy optimization technique in agricultural production planning: A small farm holder perspective, International Journal of Computer Applications 89 (2014) 25-31. S. K. Das, A. Goswami and S. S. Alam, Multiobjective transportation problem with interval cost, source and destination parameters, European Journal of Operational Research 117(1997) 100-112. A. Nagoor Gani and K. Abdul Razak, Two Stage Fuzzy Transportation Problem, Journal of Physical Sciences 10 (2006) 63-69.

Intuitionistic Fuzzy Two Stage Multiobjective Transportation Problems [12].

[13].

[14]. [15].

[16]. [17]. [18]. [19].

[20].

[21].

[22]. [23]. [24].

[25].

[26].

315

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval objective function, European Journal of Operational Research 48 (1990) 219-225. S. K. Mahato and A. K. Bhunia, Interval-arithmetic-oriented interval computing technique for global optimization, Applied Mathematics Research Express (2006) 1-19. F. L. Hitchcock, The distribution of a product from several sources to numerous localities, Journal of Mathematical Physics 20 (1941) 224-230. B. Jana and Roy Tapan Kumar, Multi-objective intuitionistic fuzzy linear programming and its application in transportation model, Notes on Intuitionistic Fuzzy Sets Notes on Intuitionistic Fuzzy Sets 13 (2007) 34-51. L. Li and K. K. Lai, A fuzzy approach to the multiobjective transportation problem, Computers and Operations Research 27 (2000) 43-57. D. F. Li, Multiattribute decision making models and methods using Intuitionistic fuzzy sets, Journal of Computer and System Sciences 70 (2005) 73-85. Shiang-Tai Liu, The total cost bounds of the transportation problem with varying demand and supply, Omega 31 (2003)247-251. Shiang-Tai Liu and Kao Chiang, Solving fuzzy transportation problems based on extension principle, European Journal of Operational Research 153 (2004) 661674. G. S. Mahapatra, M. Mitra and T. K. Roy, Intuitionistic fuzzy multiobjective mathematical programming on reliability optimization model, International Journal of Fuzzy Systems 12 (2010) 259-266. D. Peidro and Vasant Pandian, Transportation planning with modified S-curve membership functions using an interactive fuzzy multi-objective approach, Applied Soft Computing 11 (2011) 2656-2663. W. Ritha and Vinotha J. Merline, Multi-objective two stage fuzzy transportation problem, Journal of Physical Sciences 13 (2009) 107-120. Sonia and Rita Malhotra, A Polynomial Algorithm for a Two Stage Time Minimizing Transportation Problem, Opsearch 39 (2003) 251-266. S. K. Singh, S.P. Yadav, A new approach for solving intutionistic fuzzy transportation problem of type-2, Annuals of Operations Research (2014) DOI: 10.1007/s10479-014-1724-1. R. Verma, M. P. Biswal and A. Biswal, Fuzzy programming technique to solve multi-objective transportation problems with some non-linear membership functions, Fuzzy Sets and Systems 91 (1997) 37-43. P. S. Kumar, R. J. Hussain, Computationally simple approach for solving fully intuitionistic fuzzy real life transportation problems, International Journal of System Assurance Engineering and Management 1 (2015) 1-12.

316 [27]. [28]. [29].

[30].

Rita Malhotra and S. K. Bharati Abd F. Waiel Wahed, A multi-objective transportation problem under fuzziness, Fuzzy Sets and Systems 177 (2001) 27-33. Abd F. Waiel Wahed and S. M. Lee, A multi-objective transportation problem under fuzziness, Fuzzy Sets and Systems 34 (2006) 158-166. M. Zangiabadi and H. R. Maleki, Fuzzy goal programming for multiobjective transportation problems, Journal of Applied Mathematics and Computing 24 (2007) 449-460. L. A. Zadeh, Fuzzy Sets, Information and control 8 (1965) 338-353.