Invariant orders on three-dimensional Lie groups

1 downloads 0 Views 407KB Size Report
W. K. Hayman, "Questior~s of regularity connected with the Phragmen-Linde[df principle," J. Math~. PuresetAppl., 35, No. ..... defined byz =1, x=0, andy=x.
M. A. E v g r a f o v , Yu. V. Sidorov, M. V. F e d o r y u k , M. I. Shabunin, and K. A. Bezhanov, P r o b l e m s in the T h e o r y of Analytic Functions [ln Russian], Nauka, Moscow (1972). V. S. A z a r i n , "On r a y s of r e g u l a r growth of an entire function," Matem. Sb., 7___9,No. 4, 463-476 (1969). S. Stoilow, Lecons s u r [es P r i n c i p e s Topoiogiques des Foactions Analytiques, G a u t h i e r - V i l l a r s , P a r i s (1938). W. K. Hayman, "Questior~s of r e g u l a r i t y connected with the P h r a g m e n - L i n d e [ d f principle," J. Math~ P u r e s e t A p p l . , 35, No. 2, 115-126 (1956). N. S. Landkov, Foundations of Modern Potential T h e o r y [in Russian], Nauka, Moscow (1966).

5.

o

7. 8. 9.

INVARIANT LIE

ORDERS

ON T H R E E - D I M E N S I O N A L

GR O U P S

A.

U D C 519.46

K. G u t s

A leksandrov has shown [1] that an isotonic (i.e., o r d e r - p r e s e r v i n g ) h o m e o m o r p h i s m of a commutative Lie group onto itself is an i s o m o r p h i s m , provided the o r d e r is not quasicylindricaL An example is given in [2] of a noncommutative Lie group for which an analogous result is valid. The following questions are of i n t e r e s t in this context: 1) Does an invariant o r d e r exist for any noncommutative Lie group; 2) are the corresponding isotonic h o m e o m o r p h i s m s a u t o m o r p h i s m s ; 3) to what extent does the concept of quasicy!indrical o r d e r c o r r e s p o n d to the exceptional case not covered by a t h e o r e m of A l e k s a n d r o v ' s type. In the p r e s e n t paper we give some partial results concerning only connected, simply connected, t h r e e dimensional Lie groups, i.e., the universal covering groups of t h r e e - d i m e n s i o n a l groups. It turns out that for these groups, the existence of a global invariant o r d e r is not such a r a r e phenomenon, which means that the result of A leksandrov can be extended even to noncommutative groups. However, upon doing this, the quasicylindricaI o r d e r s lose their exeeptiona[ c h a r a c t e r . Two groups r e m a i n unstudied. 1. D E F I N I T I O N S 1.1. Let G n be a n n - d i m e n s i o n a l Lie group. We a s s u m e that each point x ~ Gn is put in c o r r e s p o n d e n c e with a set Px in such a way that:

i) x ~ Px; 2) if y ~ Px, then Py c Px; 3) if x ~ y, then Px ~ Py" Then it is easy to introduce a partial o r d e r on Gn by putting x _ 0}, w h e r e x, y , z a r e r e c t i l i n e a r C a r t e s i a n c o o r d i n a t e s . The g r o u p G3II c o n s i s t s of the t r a n s f o r m a t i o n s of the type

g: (x, g, z)--~(x--}-cz, ~.x-4-y-f-~, (1-t-~)z), where X > -1,

a , ~ a r e r e a l n u m b e r s . The i n f i n i t e s i m a l o p e r a t o r s a r e :

X l--g-~x,- a

a a X., = --~,j, X~=z-g-~o § z--~.o

A G 3 I I - i n v a r i a n t o r d e r is defined by the q u a s i c y l i n d e r P(e,o,~)={(x, y, z)~.,)s:x~>O, y > ~ ( ~ - - l ) x , z~>(z}, xo=(O, O, l), and P x , P y a r e obtained f r o m one a n o t h e r by p a r a l l e l t r a n s l a t i o n in c a s e t h e i r z c o o r d i n a t e s a r e equal. show that an isotonic h o m e o m o r p h i s m f (f(x0) = x0) f o r the above o r d e r m u s t have the f o r m

We

f(x, g, z)-~. (gx, gg, z).

(2)

Denote by Fix0 , F2 0, r3x0 , respect.ivety, the f a c e s of the t h r e e - f a c e d angle 3Px0 which lie in the planes given by z = 1, x = 0, y = 0. P u t I'x = g(r:~0), w h e r e g ~ G 3 is such that'g(xo) = x . Let (x,u)

'

(y,z)

~

r~

+ (0,

- 0~, ~ > 0 .

y=(~--t)x

C l e a r l y , rl~ is the plane {z = ~}, I]~ is the half-plane {x = a , z > 0}, and 1 I } , / i s t h e h a l f - p l a n e {y = ( r 1)x, z _> /3}. Since f is a h o m e o m o r p h i s m and 11},/has b o u n d a r y , the i m a g e of 13}T can only be rt},,/,. Since f o r any 13i t h e r e e x i s t s I I ~ , / s u c h that P'k 0 l ~ T = ~b, the i m a g e of [lk c a n only be IIi,, f o r any rI2 i n t e r s e c t s any IlS./. It follows f r o m this that f p r e s e r v e s the f a m i l y of the z c o o r d i n a t e s of the lines and a l s o the c o o r d i n a t e plane {z = 1}. But then f has the f o r m 733

/(x, ~, z) =(h(x, ~),/~(x, ~), h(z)). We r e m a r k that if fit, f~2, /~ a r e d i s t i n c t and &, f~2, /33 < 1, then the i n t e r s e c t i o n s II~ /3 l]~l,T, H i~ ~9 U. 3& Y , IIi l fi lq~ ~. define t h r e e f a m i l i e s of p a r a l l e l lines on fl~ = {z = 1}. T h e s e a r e m a p p e d by f into t h r e e f a m t h e s of p a r a l l e l lines. But then f is affine on [I~, i . e . , h ( z , y ) = a . z + b . y , /2(x, y).--.~cx+dy

[1, p. 12]. Since the lines {x = 0, z : 1} and {y = 0, z = 1} go into t h e m s e l v e s , we have b = c = 0, i.e., ft(x, y) = a x , f2 (x, y) = dy. T h e n u m b e r s a , d a r e p o s i t i v e s i n c e f(Px0) = Px0. Since f(P(0~0,X)) = P(o,o,(d/a)~) = P(0,0,f3(~)), we have f3(X) = d?~/a. But f3(1) = 1. H e n c e d = a = p and f3(z) = z. T h i s p r o v e s Eq. (2). An isotonic h o m e o m o r p h i s m f :J&--+J/.~ induces an isotohic h o m e o m o r p h i s m f : G ~ I I - - G ~ I I defined by (1), i.e., (p

f (g)---~ l(g(xo) ).

(3)

T h e c o n v e r s e is a l s o valid. Let us show that f is an a u t o m o r p h i s m . Let g~, g~ ~ G3II and ~p

g,(z, ~, z ) = ' ( x + ~ , ;~,z+~+~,, (l+;~l)Z), g,--+(~, ~,, (t+~,)),

g~(x, y, z)=(x+a~, ~.~z+y+~, (l+~2)z), g~--,-(a~, ~, (t+~)). Then tp

g2g, ~ g2 ~g, (x0)) = (al +ae, ~2a, + ~1-~-~2, (i-[-)~,) (1-]-~2))

(4)

d e f i n e s the law of m u l t i p l i c a t i o n in the g r o u p G3II. Further,

f (g2g,)--+ /(g2gl(xo) ).-~ (~a,+pa2, ,X2cz, Wp~,+p.~, (1+)~1) (t+}~e)),

(5)

(p

f(g~)'-~/(gl(xo)) ~---(gcq, g~31, ( t + ~ l ) ) , co

f(g2)-+/(g2(xo)) --~ (gcz2, ~2, (t-]-~.2)). Multiplying the e l e m e n t s f(gt) and f(g2) by (4) we get (p

f(g2) f(gl)~(~cz~+~t~z~, ~;.~cz~+~t,%+~, (,i+x~) (l+x~)).

(6)

C o m p a r i n g (5) and (6) we conclude that

f (g2)f (gl) = f (g2gl), i . e . , f is an a u t o m o r p h i s m . T h i s m e a n s that G3II h a s p r o p e r t y ~ t . c) G3III. We take M = J/s, w h e r e G3III is given in J/3 by t r a n s f o r m a t i o n s of the type

g: (x, y, z)--~(x+~z, ~y+~, ~z), x0= (0, 0, 1), w h e r e A, z > 0. H e r e , the o r d e r is the following: P(0 0 , ~ = {(x, y, z ) ~ 3 : x > ~ 0 ,

y~>)~x, z~>)~}, ~ > 0 ,

and P x , Py a r e e q u a l and p a r a l l e l f o r x and y with e q u a l z c o o r d i n a t e , i.e., f o r z(x) = z(y). Denote by Fix0 , F2x0, F3x0, r e s p e c t i v e l y , the f a c e s of the t h r e e - f a c e d angle DPx0 which lie in the planes t i defined b y z = 1 , x = 0 , a n d y = x . Put Fx=g(Fx0), whereg~G 3 i s such t h a t g ( x 0 ) = x .

734

(7)

Let 1

9

2

(x, u)

II~ = E v i d e n t t y , ~k = { z = x } , the f o r m

IFa = { x = a ,

3 U r(~,,j,~) + (0, 7, Oi,

.[~>0.

y=f~x

z > 0}, and l l } 0 = { y = ~ ,

z _>r

T h e n we see as i n b ) t h a t f h a s

j(x, ~, z ) = (ax+@, cz+@, I3(~)). Since the lines {x = 0, z = 1}, {y = x, z = 1} go into t h e m s e l v e s , we have b = 0 and d + c = a. a s in b) that

We see a g a i n

"ja(z) = (zd@c) /a. Further, point x 0.

the r a y L = {y = 0, z = 1, x _> 0} is mapped into the r a y L ' lying in {z = 1} and s t a r t i n g at the

But L is a limit of the r a y s

L,=FI~/,,,o N { z = t } N { x ~ 0 }

as

n---~oc.

Since f is a h o m e o m o r p h i s m and ({x _> 0} N {y > 0}) @ {x = 0, y = 0} = b~; P(0,0,x), we have that L ' is a limiL of the r a y s rI~0(~j,).0 N (z = 1} N {x>~0]and f~(i/~)

,~-=-~-+0.

It follows f r o m this that L' : L. But then, c = 0, a = d = ~, i.e., f has the f o r m (2). It is t r i v i a l to c h e c k that f is an a u t o m o r p h i s m . The above o r d e r is q u a s i c y l i a d r i c a l .

So also, e . g . , is the o r d e r given by:

P(o, o, ,.;= {(.h y, z)~~a:z~>~, x~>O, y~>O},

(8)

and P x and P y a r e e q u a l and p a r a l l e l f o r z (x) = z 6T). T h i s o r d e r is p r e s e r v e d by m a p s of the type f(x, y , z) = (fl (x), f2 (Y), fa(z)), w h e r e fi a r e in g e n e r a l a r b i t r a r y functions. T h e s e functions m a y , m o r e o v e r , be c h o s e n s o that f is not a n a u t o m o r p h i s m [for i n s t a n c e , if f3(afi) ~ f3(a)f3(fl)].

T h e r e e x i s t s an i n v a r i a n t o r d e r on GaILI which is not quasi.cylindrical, n a m e l y ,

p,~. ~, ,., = { (x, y, ~) ~ . ~ : ~.~:~+y~- ( ~ - ~ ) ~ < o, z ~>~,} + (~, ~, o)*. One m i g h t n a t u r a l l y suppose that f is an a u t o m o r p h i s m a l s o with r e s p e c t to this o r d e r , but this fact is not n e c e s s a r y f o r our p u r p o s e s . d) G3[V. P u t M = 3 a , with the g r o u p given on 23 by the t r a n s f o r m a t i o n s g:(x~ ~, zi~((l+),)x+Xy+a, ( t + X ) y + ~ , (t+X)~), ~ . > - - i , z > 0 . T h e i n v a r i a n t o r d e r h e r e i s the s a m e a s t h e one in 13).* T h e r e s t of the p r o o f is a n a l o g o u s ~o b),

e) G3V. M =

oYa with G3V of the f o r m

g: (x, y, z)~(Xz+~, X~j+~, Xz). As shown in [2], it has p r o p e r t y sO. T h i s g r o u p and others.

d3I have b e e n m o r e thoroughly studied than the

f) G3VI (0 < q < 1). M = 2/3 , with GaVI given in ]/a by g:(x, ~,, z ) - + ( ( t + X ) z + ~ , ( l + ~ q ) y + ~ , (l+X)z), where X > -1,

z > O.

The i n v a r i a n t o r d e r with r e s p e c t to w h i c h G3VI h a s p r o p e r t y j

p(o, o, ,,)= {(x, y, z)~A~:y~>o,

is:

x>~[x/(.l+(~.--1)q]~,, ~>.~.}, x > o ,

and P x , Py a r e equal and p a r a l l e l f o r z(x) = z(y). *More p r e c i s e l y , P(0,0,a) = {Y -> 0, x _> (a - 1 ) y / a , z _> a}, a > 0.

735

We establish as in c) that an isotonic h o m e o m o r p h i s m has the f o r m (2). It is trivial to check that f : G 3 G 3 is an automorphism. g) G3IX. The Lie algebra of the group G3IX is semisimpie and compact. T h e r e f o r e , G3IX is compact [4, pp. 446,483]. But then G3IX ~ SU (2) [4, p. 498, E]. Since (exP)el(P) contains a ray, it follows that P c o n tains a o n e - p a r a m e t e r semigroup ~(t), t ~ [0, +~). Let F(t), t ~ ( - ~ , +~), be a o n e - p a r a m e t e r subgroup cot~tain[ng 7(t). The closure F(t) of F(t) i s an Abelian subgroup of the Lie group G~IX, and is moreover compact and connected. This means that F(t) is a torus [6]. Since a maximal torus of the group SU(2) is onedimensional [6], F(t) is a compact curve. Then we can find a = F(t0) such that a ~ e, e _

Suggest Documents