400. 450. 500. 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100. PNIRs (%). N. IR s (m m. ) Pleven. Silistra. Sofia. Plovdiv. Sandanski. Varna. Results and Discussions ...
N. Poushkarov Institute of Soil Science, Agrotechnology and Plant Protection-ISSAPPNP
IRRIGATION MANAGEMENT AND SOLUTIONS TO COPE WITH AGRICULTURAL DROUGTH IN BULGARIA Z. Popova, М. Ivanova, K. Doneva, D.Martins, L. S. Pereira, M. Kercheva, V. Alexandrov, P. Alexandrova
GeoRisk 2012 Conference on Extreme Natural Hazards and Their Impacts 8-12 Dec 2012, Orange, Chapman University, CA, USA
month sum of precipitation (mm)
140 120 100 80 60 40 20 0
f)
May
June
July
August September
month sum of precipitation (mm)
month sum of precipitation (mm)
Experimental
140 120 100 80
140 120 100 80 60 40 20 0
g)
May
June
July
August September
60 40 20 0 May
June
July
August
September
140 month sum of precipitation (mm)
month sum of precipitation (mm)
e)
120 100 80 60 40 20 0
a)
May
June
July
140 120 100 80 60 40 20 0
August September
h)
May
June
July
August
September
month sum of precipitation (mm)
120 100 80 60 40
c)
140
0
d)
120 100 80 `
60 40 20 0
20
May
June
July
August
September
month sum of precipitation (mm)
month sum of precipitation (mm)
140
140
May
120 100 80 60 40 20 0
b)
May
June
July
August
September
Experimental fields of ISSAPPNP and meteorological stations of NIMH
June
July
August
September
Experimental Climate and seasonal SPI 3
Hig h P eak S eas on (J uly-Aug )S P I2
2
1
0
-1
-2
2,5
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
1960
1959
1958
1957
1956
1955
1954
1953
1952
a)
1951
-3
Hig h P eak S eas on (J uly-Aug )S P I2
2 1,5 1 0,5 0 -0,5 -1 -1,5
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
1960
1959
1958
1957
1956
1955
1954
1953
1952
-2
b)
1951
Seasonal SPI (2) that is the average of the index for periods referring to maize sensitivity to drought, as “May -Aug”, “JuneAug” and “July-Aug” (Fig.1) were used to define categories of agricultural drought relative to summer crops in Bulgaria and SEE
Fig.1 Evolution of High Peak Season (July-Aug) SPI (2) at: a) Sofia and b) Plovdiv, 1951-2004.
Experimental Koinov V., Kabakchiev I., Boneva K. Atlas of the soils in Bulgaria. Zemizdat, Sofia (1998)
Experimental
WINISAREG model •
• • • • • • • • •
WINISAREG (Teixeira et al. 1992; Pereira et al. 2003) is a simulation tool for computing the soil water balance, generating alternative irrigation schedules and evaluating the respective impacts on crop yields. TW is separated in three zones: ASW, mm (i) excess (ii) optimum yield and (iii) water stress. 250 TAW 200 TAW=z(ППВ - ВЗ) (4) 150 Rmin is a fraction of TAW: 23/08 100 Rmin =(1-р)*TAW (5) 50 ASW =(Pe +Vz+ Ir +Gc- ETа -Dr) t (6) 0 100 150 200 250 ASW >TAW: а) DOY Dr= ASW-TAW ETmax= Кс ETо (12) ( Stewart 1976): (1-Ya/Ymax) =Ky (1-ETa/ETmax) (13) MAD=32% TAW
10.09.
300
Experimental I.
Calibration/validation of WinISAREG model Thracian Lowland
Kc coefficients 0.23
1.4
3
Soil Moisture, cm cm
-3
Milky ripening
1.2
0.13 0.08 100
130
160
190
220
250
280
DOY 1988
е)
Crop coefficient Kc
0.18
1 0.8 0.6 0.4 0.2
0.18 0.13
DOY 1988
Observed and simulated SM versus time (1988) model validation for high stress treatments 9 (e) and 11 (f) alluvial soil (116 mm m -1), Tsalapitsa, Plovdiv region
15/Октомври
30/Септември
15/Септември
31/Август
16/Август
1/Август
17/Юли
2/Юли
2/Юни
18/Май
Pustren Date Calapica
0.08 100 130 160 190 220 250 280 f)
17/Юни
0.23
3/Май
18/Април
Soil Moisture, cm3 cm-3
0
I.
Calibration/validation of WinISAREG model Thracian Lowland
Deriving Ky using long-term data from Pustren site: а) Kn-2L-611, 1972-1980г AEE=0.048; b) Н-708, 1981-1990г AEE=0.067; c) both hybrids, 1972-1990г (ETm-ETa)/ETm
0,5
1,0
0,0
0,5
1.0
y = 0,987x R2 = 0,495
1,0
(Ym-Ya)/Ym
y = 1.280x R2 = 0.615
0,5
b)
0.0 0.0
y = 1,477x R2 = 0,663
0,5
0.5
0,0
0,0
a)
0,0
1,0
(Ym-Ya)/Ym
1,0
(ETm-ETa)/ETm
0.5
c)
1.0
(Ym-Ya)/Ym
(ETm-ETa)/ETm
Results and Discussions Probability curves of NIRs soil of small, medium and large TAW, 1951-2004
Plovdiv region
500 450 400
300 250 200 150 100 50 0 Year PNIRs , %
2000 1994 1993 2003 1965 1952 1988 1996 1998 1986 1987 1962 1954 1970 1964 1990 1992 1981 2001 1953 1999 1958 1985 1991 1989 1968 1956 1974 1995 1978 1980 1972 1963 1984 1969 1975 1951 1973 1982 2004 1967 1979 1957 1960 1997 1966 1977 1976 1961 1955 1971 2002 1959 1983
NIRs, mm
350
1,4 3 5 7 9 11121416182022242527293133353638404244464749515355575960626466687071737577798182848688909294959799 TAW=136 mm m-1
TAW=116 mm m-1
TAW=180 mm m-1
Results and Discussions III. Vulnerability of agriculture to drought for climate regions and soil groups in Bulgaria Comparison of NIRs, TAW (136-157 mm m-1) 1951-2004 500 450 400 350
NIRs (mm)
300 250 200 150 100 50 0 0
10
Pleven
20
30
Silistra
40
50 PNIRs (%)
Sofia
60
Plovdiv
70
80
Sandanski
90
Varna
100
Results and Discussions Vulnerability of rainfed agriculture to drought Ky validation for rainfed maize, TAW=116 mm m-1
100 90 80
100
70
80 50
RYD, %
RYD (%)
90 60
40
70 60
30
50
20
40
10
30
49% risky years (26/53) for semi early hybrid with Ky=1.6
20
Year
71% risky years (38/54) for the late hybrids (Ky=1.6)
1993 2000 1952 1962 1965 1988 2001 1987 1992 1958 1994 1961 1974 1985 1956 2003 1990 1982 1954 1999 1963 2004 1969 1970 1997 1973 1953 1964 1966 1996 1978 1981 1979 1975 1998 1959 1984 1986 1983 1989 1957 1967 1955 1980 1960 1971 1972 1977 1968 1991 2002 1995 1976
0
10
Year
RYD Threshold
Observed RYD for semi-early hybrids, (Jivkov and Varlev) PYD, %
2000 1993 1965 1952 1994 1987 1996 2003 1992 1990 1988 1962 1954 1985 1964 1981 1982 1998 1973 1958 1953 1995 1968 1999 1956 1986 1980 2001 1970 1969 1963 1997 1978 1984 1974 1972 1989 1967 1951 2004 1966 1960 1979 1991 1957 1975 1983 2002 1977 1976 1961 1955 1971 1959
PRYD (% ) 1,4 3 5 7 9 111315161820222426283031333537394143454648505254565860626365676971737577788082848688909293959799 0 Simulated RYD with Ky=1.6
1.4 3 5 7 9 11 1214 1618 20 2224 2527 2931 33 3536 3840 4244 46 4749 5153 55 5759 6062 6466 68 7071 7375 7779 81 8284 8688 9092 94 9597 99 RYD Threshold for late hybrids
RYD H708 (Rafailov)
RYD H708 (Vurlev, Kolev, Kirkova)
Probability of exceedance curves of RYD under rainfed maize Ky=1.6 relative to: Sofia field Tsalapitsa experimental field, Plovdiv region, 1951-2004
III. Vulnerability of agriculture to drought Ky validation for rainfed maize
Simulated YD, % Simulated RYD, %
100
100 80 60 40 20 0
80 60 TAW 116, Ky=1.6, late hybrids H708
40
y = 0,99x R2 = 0,61
20
y = 0,99x
0 0 a)
20
40
YD,% 20 Observed 40 60
80
80
100
100
2
R = 0,82
60 40 20
40
60
80
100
YD semi early hybrids, Jivkov and Vurlev
YD H708 (Rafailov,Vurlev, Kolev, Kirkova)
(a) Tsalapitsa, Linear (YD H708 (Rafailov,Vurlev, Kolev, Plovdiv Kirkova))
20
Observed RYD, %
Observed RYD,%
Linear (YD Pioner (Rafailov) )
y = 0,95x
0
60
YD Pioner (Rafailov)
80
0
R2 = 0,61
0
Simulatedd RYD (%)
a)
Simulated RYD, %
One to one regression between observed and simulated TAW 116, Ky=1.6, Early hybrid RYD (%) TAW 116, Ky=1.6, late hybrids H708 100
100
Linear (YD semi early hybrids, Jivkov and Vurlev)
(b) Chelopechene, Sofia
80 60 40 y = 1.00x R2 = 0.66
20 0
(c) Pustren, Stara Zagora
0
20
40
60
Observed RYD (%)
c)
RYD H708 (Eneva)
80
100
Results and Discussions Rainfed maize yield and risky years Plovdiv region Ky=1.6
100 90 80
RYD,%
70 60 50 40 64.8% risky years (35/54) for TAW=116, 57.4% risky years(31/54) for TAW=136, 31.5% risky years(17/54) for TAW=180
30 20 10
1997 1977 1976 1961 1955 1971 2002 1959 1983
1982 1967 1951 2004 1979 1960
1972 1984 1963 1969
1995 1980 1978
1958
1981 1992
1962
1988 1996
Year PRYD,%
2000 1994 1993 1965
0
1,43 5 7 9 11121416182022242527293133353638404244464749515355575960626466687071737577798182848688909294959799
b) RYD Threshold late hybrids, %
TAW=180 mm m-1
TAW=136mm m-1
TAW=116 mm m-1
Probability exceedance curves of RYD under rainfed maize on the soil of small, medium and large water holding capacity TAW (116, 136, 180 mm m-1), Ky=1.6, at: b) Plovdiv for a late maize hybrid (H708), 1951-2004.
Results and Discussions III. Vulnerability of agriculture to drought for climate regions and soil groups in Bulgaria 1951-2004 Large TAW (180 mm m-1)
100
100
90
90
80
80
70
70
60
60 RYD (%)
RYD (%)
Yields of rainfed maize and risky years Medium TAW (136-157 mm m-1)
50 40 18 % risky years (9/51) for Pleven 35 % risky years (18/51) for Silistra 39 % risky years(20/51) for Sofia 59 % risky years (30/51) for Plovdiv 82 % risky years(42/51) for Sandanski 49 % risky years(25/51) for Varna
30 20 10
50 40 30 12 % risky years (6/51) for Pleven 10 % risky years (5/51) for Silistra 20 % risky years(10/51) for Sofia 29 % risky years (15/51) for Plovdiv 63 % risky years(32/51) for Sandanski 14 % risky years(7/51) for Varna
20 10
0
0 0
10
20
Pleven RYD Threshold Pleven TAW=136-157mm m-1 Plovdiv TAW=136mm m-1
30
40
50 PRYD (%)
60
Plovdiv/Silistra RYD Threshold Silistra TAW=136-157mm m-1 Sandanski TAW=136mm m-1
70
80
90
100
0
10
20
30
40
50
60
70
80
90
PRYD (%) Sofia RYD Threshold Sofia TAW=136mm m-1 Varna 136-157mm m-1
Pleven RYD Threshold Pleven Plovdiv
Plovdiv/Silistra RYD Threshold Silistra Sandanski
Sofia RYD Threshold Sofia Varna
100
RELATIONSHIPS BETWEEN ECONOMICAL YIELD THRESHOLD, GRAIN PRICE AND PRODUCTION EXPENSES 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0
-1.0 y = 97.6x70
0,70
60
84.5x-1.0
0,60
-1.0 y = 74.7x50
0,50
-1.0 y = 60.7x 40
0,40 0,30 0,20
20
10
0,10
10
0
0,00
100
1.00
1,00
90
0.90
0,90
80
0.80
0,80
-1.0
0.70 y = 142.5x-1.0
0,70
-1.0
0.60y = 123.3x-1.0
0,60
0.50 y=
108.9x-1.0
0,50
88.6x-1.0
0,40
0
100
60
50
y = 97.6x y = 84.5x
40
y = 74.7x-1.0
30
y = 60.7x
-1.0
20
10
0.40y = 0.30
0,30
0.20
0,20
0,10
0.10
0
0 800 0 100 200 300 400 500 600 700 Grain price, lv t-1
70
0,00
0.00
0 100 200 300 400 500 600 700 800 500 600 700Grain 800price, lv t-1
200 300 400 -1 Grain price, lv t
Plovdiv/Silistra
Sofia
Lom
Pleven
Economical y = 1-RYD threshold
70
30
-1
y = 1-RYD(x)
80
0,80
20
800
-1
Economical RYD threshold, %
0,90
60
400 600 -1 Grain price, lv t
PRODUCTION PRODUCTION EXPENCES 800 lv haEXPENCES 1200 lv ha
90
RYD, %
Economical RYD threshold, %
200
90
30
1400 lv ha-1
y = 600x-1
1,00
40
1200 lv ha-1
y = 800x-1
100
50
1000 lv ha-1
y = 1000x-1
100
y=
800 lv ha-1
y = 1200x-1
PRODUCTION EXPENCES 800 lv ha-1
80
600 lv ha-1
y = 1400x-1
Economical y = 1-RYD threshold
Economical threshold of yield, t ha-1
16.0
Results and Discussions III. Assessment of drought vulnerability for climate regions and soil groups Table 1. Variability of rainfed maize grain yield characterized by the mean value, kg·ha-1, and the coefficient of variation Cv, %, for the considered climate regions and soil groups in Bulgaria, 1951-2004. South Bulgaria Climate region
Location
Maize hybrid
TAW (mm·m-1)
North Bulgaria
Moderate Continental
Transitional Continental
Mediterranean
Moderate Continental
Sofia Field
Thracian Lowland
Sandanski
Danube Plain
Transitional
North Black Sea
Sofia
Plovdiv
Stara Zagora
Sandanski
Pleven
Lom
Silistra
Varna
semi early
late
late
late
late
late
late
late
(kg·ha-1)
Cv mean Cv mean Cv mean Cv mean Cv mean Cv mean Cv mean Cv (%) (kg·ha-1) (%) (kg·ha-1) (%) (kg·ha-1) (%) (kg·ha-1) (%) (kg·ha-1) (%) (kg·ha-1) (%) (kg·ha-1) (%)
mean
Small
116
4421
42
3894
69
3723
59
2292
72
6419
50
4187
55
4866
46
4349
50
Medium
136
4920
37
4550
59
4299
52
2906
59
7237
44
4827
47
5616
40
5156
42
180
5896
29
5915
43
4250
41
8867
34
6094
35
7118
30
6810
30
Large
173
5483
41
Results and Discussions
Pleven,
RYD raimfed maize (%)
Plovdiv and
RYD raimfed maize (%)
III. Drought vulnerability categories according to climate region and soil group
RYD threshold 60
y = -23.61x + 47.22 2
R = 0.91
TAW=180 mm m-1
RYD threshold 67
y = -21.57x + 35.72 R2 = 0.79
0 -2,00 -1,50 -1,00 -0,50 0,00 0,50 1,00 1,50 2,00 2,50
0 -2,50 -2,00 -1,50 -1,00 -0,50 0,00 0,50 1,00 1,50 2,00 2,50
SPI (2) for "July - Aug"
SPI (2) for "July - Aug"
Economical threshold of High Peak Season SPI2 “July-Aug” (the average SPI2 for July and August) indicating the risk relative to rainfed maize for each climate region/soil group in Bulgaria Soil groups according to total available water TAW: Climate Region Transitional Mediterranean Transitional Continental
Small 116 mm m-1
Medium 136-157 mm m-1
Large 173-180 mm m-1
Sandanski
+1.40
+1.00
+0.20
Stara Zagora
+0.50
+0.10
-0.50
Plovdiv
+0.15
0.00
-0.50
Lom
+0.15
-0.10
-0.75
Sofia
0.00
-0.25
-0.90
Silistra
-0.15
-0.50
-1.25
Pleven
-0.50
-0.75
-1.50
Varna
+0.21
-0.21
-1.05
Moderate Continental
Northern Black Sea
Results Groups of soil according to TAW Small 116 mm m -1 RYD % NIRs mm
Medium 136-157 mm m -1 RYD % NIRs mm
Large 173-180 mm m -1 RYD % NIRs mm
Intercept a Slope coefficient b R2 (%)
79.6 -15.0 75
312,3 -66,4 70
74.1 -15.7 77
294.2 -66.2 70
62.1 -16.1 78
256.6 -65.8 70
Stara Zagora Intercept a Slope coefficient b 2 R (%)
67.0 -19.9 80
259.2 -83.2 77
61.81 -20.5 82
243.3 -83.1 78
51.3 -20.5 83
211.4 -83.4 79
Plovdiv Intercept a Slope coefficient b R2 (%)
65.2 -24.8 92
244.4 -97.3 89
59.4 -24.7 92
226.7 -96.4 89
47.2 -23.6 91
189.9 -93.8 89
Lom Intercept a Slope coefficient b R2 (%)
57.7 -23.8 86
202.5 -81.7 80
51.3 -23.6 86
184.7 -81.5 80
38.5 -22.1 86
148.7 -78.9 81
Sofia Intercept a Slope coefficient b R2 (%)
48.4 -21.0 76
178.8 -78.2 76
42.6 -20.5 75
162.5 -77.1 75
31.2 -18.8 73
129.2 -73.3 73
Silistra Intercept a Slope coefficient b R2 (%)
56.1 -20.5 86
190.3 -68.5 84
49.1 -20.3 86
171.7 -68.5 85
35.9 -19.3 86
135.4 -67.4 85
Pleven Intercept a Slope coefficient b 2 R (%)
53.5 -23.3 82
202.4 -88.1 77
47.6 -23 81
184.8 -87.1 76
35.7 -21.6 79
148.4 -84.3 75
Varna Intercept a Slope coefficient b R2 (%)
63.6 -18.1 82
212.3 -59.6 73
56.9 -17.6 81
195 -58.7 74
43 -16.5 80
158.1 -56.72 73
Region Sandanski
Parameters of y=a+bx relationship between simulated RYD (%)/NIR (mm) and High Peak Season SPI2 “July-Aug” across soil groups and climate regions Bulgaria, 1951-2004
Results and Discussions III. NIRs threshold to cope with drought in the risky years
y = -84.34x + 148.40 R2 = 0.75
NIRs maize, mm)
Plovdiv and Pleven, TAW=180 mm m-1
NIRs maize, mm
y = -93.81x + 189.90 R2 = 0.89
NIRs threshold 235
0
0 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50
a)
NIRs threshold
267
-2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50
b)
SPI (2) for "July - Aug"
SPI (2) for "July - Aug"
NIRs maize, mm
Sofia and Lom, TAW=180 mm m-1
c)
y = -78.88x + 148.72 R2 = 0.81 NIRs maize, mm
y = -73.33x + 129.23 R2 = 0.73 NIRs threshold 192
0 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 SPI (2) for "July - Aug"
d)
NIRs threshold 216
0 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50
SPI (2) for "July - Aug"
The corresponding thresholds were identified for NIR, namely 240 and 270mm for Plovdiv and Pleven and 190 and 220 mm for Sofia and Lom/Silistra/Varna respectively.
Results and Discussions III. Drought vulnerability categories according to climate region and soil group SEE Economical threshold of High Peak Season SPI2 “July-Aug” (the average SPI2 for July and August) or SPI3 “June-Aug” indicating the risk relative to rainfed maize for each climate region/soil group in SEE
Soil groups according to total available water TAW:
Climate Region
Small 116 mm m-1
Medium 136-157 mm m-1
Large 173-180 mm m-1
Mediterranean
Podgorica٭
+2.30
+2.00
+1.20
Transitional Mediterranean
Sandanski
+1.40
+1.00
+0.20
Stara Zagora
+0.50
+0.10
-0.50
Plovdiv
+0.15
0.00
-0.50
Lom
+0.15
-0.10
-0.75
Sofia
0.00
-0.25
-0.90
Silistra
-0.15
-0.50
-1.25
Pleven
-0.50
-0.75
-1.50
-1.1
-1.4
Transitional Continental
Moderate Continental
Nis
Rimski Sancevi
-0.70
-1.00
Kikinda
-0.40
-0.6
Berane٭
0
-0.8
-1.5
Varna
+0.21
-0.21
-1.05
Typical Continental Mountainous Northern Black Sea
٭High Peak Season SPI3 “June-Aug”
Results and Discussions
III. Drought vulnerability mapping
Economical SPI2 “July-Aug” threshold, under which soil moisture deficit leads to severe impacts on yield losses for rainfed maize, Bulgaria.
Results and Discussions
III. Drought vulnerability mapping Spatial distribution of SPI2 “July-Aug”
Average 1970
Extremely dry 2000
Moderately dry 1981
Results and Discussions III. 4С Drought vulnerability mapping Spatial distribution of RYD (%)
Extremely dry 2000
Average 1970
Moderately dry 1981
Results and Discussions Spatial distribution of NIR
Average 1970
Extremely dry 2000
Moderately dry 1981
ANALYSIS OF PHYSICAL ASPECTS OF CLIMATE CHANGE
Trend line of monthly precipitation (mm) Rainfall, June
Rainfall, July Plovdiv 1951-2004 200 180 160 140 120 100 80 60 40 20 0
Year
y = -0.2738x + 57.493
1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
Year
y = -0.7908x + 77.672
Rainfall, mm
200 180 160 140 120 100 80 60 40 20 0
1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
Rainfall, mm
Plovdiv 1951-2004
Trend line of average monthly air temperature Tmax and Tmin (Co) Tmaxo, June Plovdiv 1951-2004 40 35 30 25 20 15 10 5 0
Tmax o
Year
Tmaxo, July Plovdiv 1951-2004
Year
Tmax o
y = 0.0305x + 16.049
1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
Tmin o
Tmino, July Plovdiv 1951-2004 40 35 30 25 20 15 10 5 0
y = 0.0363x + 26.86
40 35 30 25 20 15 10 5 0
Year
y = 0.0329x + 29.335
1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
y = 0.02x + 14.526
1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
Tmin o
40 35 30 25 20 15 10 5 0 Year
1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
Tmino, June Plovdiv 1951-2004
Trend Analysis by Modified Mann-Kendall test Table 1 Precipitation Trend Analysis Lom Pleven Plovdiv Sandanski Silistra Sofia Stara Zag. Varna January -0,17 0,25 -0,25 0,02 -0,19 -0,20 -0,39 0,03 February -0,56 0,74 -0,09 0,03 -0,04 0,05 -0,32 0,04 March -0,23 0,39 -0,14 0,05 0,46 0,11 0,00 0,06 April -0,05 0,94 -0,20 0,01 0,27 0,02 -0,39 0,02 May -0,09 0,67 -0,55 0,04 -0,21 0,16 -0,58 0,03 June -0,48 0,25 -0,92 0,06 0,05 -0,52 -0,39 0,02 July 0,30 0,36 -0,31 0,12 -0,08 -0,51 -0,44 0,21 August -0,05 0,15 0,06 0,02 0,18 0,27 0,11 0,04 September 0,50 0,49 -0,20 0,01 0,44 0,17 0,27 0,02 October -0,11 0,71 -0,43 0,01 0,14 -0,05 -0,29 0,03 November -0,40 0,23 -0,45 0,00 0,09 -0,23 -0,43 -0,01 December -0,02 0,83 0,10 -0,02 0,12 -0,01 -0,09 -0,02 Annual Precipitation -1,27 0,35 -3,52 0,03 1,14 -0,95 -3,30 0,02
Table 1, regarding precipitation, shows: oNo significant trend in January for all 8 station. oOn the other hand in June is found trend in 3 of the stations. oThese trends are responsible for a decrease in the annual precipitation amount in the station of Plovdiv (-3,52 mm yr-1) and Stara Zagora (-3,3 mm yr-1). oAlthough Varna shows trend in 6 months that only leads to an increase of 0,02
Trend Analysis by Modified Mann-Kendall test Table 1 Maximum Temperature Trend Analysis
January February March April May June July August September October November December Annual mean
Lom Pleven Plovdiv Sandanski Silistra Sofia Stara Zag. Varna 0,04 -0,01 0,01 0,02 0,02 0,05 0,05 0,02 0,06 0,02 0,03 0,03 0,05 0,04 0,08 0,03 0,07 0,03 0,05 0,05 0,06 0,05 0,09 0,05 0,01 0,00 0,00 0,01 0,02 0,00 0,02 0,02 0,03 0,02 0,03 0,04 0,04 0,03 0,04 0,04 0,03 0,03 0,04 0,06 0,03 0,05 0,05 0,04 0,02 0,02 0,03 0,04 0,03 0,05 0,04 0,03 0,01 -0,01 0,01 0,02 0,02 0,04 0,05 0,03 -0,02 -0,02 0,00 0,01 -0,01 0,01 0,00 0,01 0,00 -0,01 0,01 0,01 0,00 0,01 0,01 0,00 0,00 -0,03 0,00 0,00 -0,01 -0,04 0,00 -0,01 -0,01 -0,03 -0,01 -0,02 0,02 -0,01 0,00 -0,01 0,02 0,00 0,02 0,03 0,02 0,02 0,04 0,02
o June is the months with larger number of significant trends, 7stations. o January, February, April, August, October and November show no trend for the increase or decrease of the maximum temperature. o Stara Zagora and Silistra have an increase in maximum temperature in 4 months. o With the exception of Pleven all stations have a positive trend for max temperature, with a mean increase of 0,024 ⁰C yr-1.
Trend Analysis by Modified MannKendall non-parametric test Table 1. SPI-3 Trend Analysis (a refers to p-value; b to the sen’s slope)
lom a b January 0,29 -0,01 February 0,12 -0,02 March 0,00 -0,02 April 0,07 -0,02 May 0,55 -0,01 June 0,27 -0,01 July 0,57 0,00 August 0,76 -0,01 September 0,14 0,01 October 0,76 0,00 November 0,65 0,00 December 0,29 -0,01 Annual mean 0,11 -0,01
Plovdiv a b 0,46 -0,01 0,52 -0,01 0,55 -0,01 0,30 -0,01 0,05 -0,02 0,00 -0,03 0,00 -0,02 0,05 -0,02 0,38 -0,01 0,22 -0,02 0,00 -0,03 0,10 -0,02 0,01 -0,02
Pleven a b 0,26 -0,01 0,17 -0,02 0,50 0,00 0,98 0,00 0,81 0,00 0,44 -0,01 0,66 0,00 0,56 -0,01 0,05 0,01 0,75 0,00 0,37 -0,01 0,04 -0,01 0,66 0,00
Sandanski Silistra a b a b 0,43 -0,01 0,67 0,00 0,08 -0,01 0,58 0,00 0,00 -0,02 0,73 0,00 0,13 -0,01 0,18 0,02 0,02 -0,02 0,29 0,01 0,14 -0,01 -0,20 0,00 0,38 -0,01 0,26 -0,01 0,96 0,00 0,99 0,00 0,35 0,01 0,20 0,01 0,55 0,00 0,01 0,01 0,21 -0,01 0,14 0,02 0,60 0,00 0,52 0,01 0,06 -0,01 0,31 0,01
Sofia Stara Zagora a b a b 0,93 0,00 0,21 -0,02 0,81 0,00 0,05 -0,02 0,69 0,00 0,13 -0,01 0,71 0,00 0,09 -0,01 0,98 0,00 0,02 -0,02 0,27 -0,01 0,00 -0,03 0,05 -0,01 0,00 -0,03 0,12 -0,01 0,18 -0,02 0,74 0,00 0,59 0,00 0,42 0,01 0,93 0,00 0,76 0,00 0,10 -0,01 0,69 0,00 0,02 -0,02 0,59 0,00 0,00 -0,02
Varna a b 0,49 -0,01 0,05 -0,02 0,44 -0,01 0,37 0,01 0,99 0,00 0,13 -0,02 0,16 -0,02 0,87 0,00 0,06 0,02 0,07 0,02 0,66 0,01 0,42 0,00 0,63 0,00
Globally, the regions of Plovdiv and Stara Zagora with a decrease in precipitation and an increase in the temperature range may have consequences in the occurrence of droughts. That is explained in next two tables, in which the trends of SPI-3 and SPI-12 are computed . The results show, for SPI-3 that there is a significant trend for the increase of droughts in Stara Zagora and Plovdiv, being the months of May, June and July the ones who most contribute for this.
Trend Analysis by Modified MannKendall non-parametric test Table 1. SPI-12 Trend Analysis (a refers to p-value; b to the sen’s slope)
lom a b January 0,34 -0,01 February 0,18 -0,01 March 0,29 -0,01 April 0,22 -0,01 May 0,13 -0,01 June 0,17 -0,01 July 0,06 -0,02 August 0,07 -0,02 September 0,12 -0,02 October 0,13 -0,01 November 0,24 -0,01 December 0,08 -0,01 Annual mean 0,11 -0,01
Plovdiv a b 0,00 -0,03 0,00 -0,03 0,00 -0,03 0,00 -0,03 0,00 -0,03 0,00 -0,03 0,00 -0,03 0,01 -0,03 0,00 -0,03 0,00 -0,02 0,00 -0,03 0,00 -0,03 0,00 -0,03
Pleven a b 0,58 -0,01 0,61 -0,01 0,70 -0,01 0,51 -0,01 0,51 -0,01 0,59 0,00 0,68 -0,01 0,76 -0,01 0,57 -0,01 0,49 -0,01 0,63 -0,01 0,34 -0,01 0,81 0,00
Sandanski a b 0,01 -0,02 0,05 -0,02 0,03 -0,02 0,06 -0,02 0,03 -0,02 0,00 -0,03 0,00 -0,03 0,00 -0,03 0,01 -0,02 0,02 -0,02 0,01 -0,02 0,01 -0,02 0,01 -0,02
Silistra a b 0,50 0,01 0,66 0,00 0,61 0,01 0,57 0,00 0,48 0,01 0,64 0,00 0,63 0,00 0,66 0,00 0,53 0,01 0,41 0,01 0,34 0,01 0,36 0,01 0,55 0,01
Sofia Stara zagora a b a b 0,47 -0,01 0,01 -0,03 0,43 -0,01 0,00 -0,03 0,60 0,00 0,00 -0,03 0,61 -0,01 0,00 -0,03 0,37 -0,01 0,00 -0,03 0,39 -0,01 0,00 -0,03 0,32 -0,01 0,00 -0,03 0,22 -0,01 0,01 -0,03 0,24 -0,01 0,01 -0,03 0,32 -0,01 0,00 -0,03 0,20 -0,01 0,00 -0,03 0,42 -0,01 0,01 -0,03 0,35 -0,01 0,00 -0,03
Varna a b 0,59 -0,01 0,43 -0,01 0,54 -0,01 0,54 -0,01 0,61 -0,01 0,89 -0,01 0,79 -0,01 0,91 0,00 0,71 -0,01 0,97 0,00 0,64 -0,01 0,59 -0,01 0,77 0,00
For SPI-12, only Stara Zagora, Plovdiv and Sandanski show a negative trend. In the first two cases the trends are present in every month of the year and annually its magnitude is 0,01 higher than with SPI-3. With the SPI-12 Sandanski has trend in 8 months and in the annual mean SPI12, whereas with the SPI-3 such is not revealed.
Trend line of RYD for rainfed maize (H708), 1951-2004 TAW=116 mm m-1 100 90 80
80
70
70
60 50 40
60 50
40
30
30
20
20
10
10
0 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
a)
0 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
b)
Year
Year
Trend line of NIRs, mm
a) Plovdiv y = 1.5x - 2706
450
400
400
350
350
NIRs, mm
NIRs, mm
b) Stara Zagora
500
500 450
y = 0.14x - 207
90
RYD, %
RYD, %
100
y = 0.35x - 634
300 250
300 250
200
200
150
150
100
100
50
50
0 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
a) Year
y = 0.47x - 667
0 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
b)
Year
Conclusions • • •
•
• •
•
•
•
The study relative to eight climate regions, three soil groups and the period 1951-2004 shows that: In soils of large TAW , Plovdiv, NIRs range 0-40 mm in wet years and 350-380 mm in dry years. When TAW is small, NIRs reach 440 mm in the very dry year. NIRs in Sofia and Silistra are 100 mm smaller than in Plovdiv while in Sandanski they are 100 mm larger. Rainfed maize is associated with great yield variability (29%