Isotopic compositions of the elements 2009 (IUPAC Technical Report)*

9 downloads 0 Views 86KB Size Report
Jan 14, 2011 - element in selected samples through its Subcommittee for Isotopic ... brief period. [2] ... 2005 [6], following CIAAW deliberations in 2003.
Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011. doi:10.1351/PAC-REP-10-06-02 © 2011 IUPAC, Publication date (Web): 14 January 2011

Isotopic compositions of the elements 2009 (IUPAC Technical Report)* Michael Berglund1,‡ and Michael E. Wieser2 1European

Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Belgium; 2Department of Physics and Astronomy, University of Calgary, Canada Abstract: The Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) completed its last update of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2009. That update involved a critical evaluation of the published literature and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CIAAW in 2007. Keywords: atomic weights; critical evaluation; elements; isotopic composition; isotope abundance; IUPAC Inorganic Chemistry Division; uncertainty. INTRODUCTION The Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) has provided regular assessments of the standard atomic weights and isotopic compositions of the elements [1]. CIAAW has evaluated the isotopic composition of each element by examining carefully the most accurate and precise isotope-abundance measurements of the element in selected samples through its Subcommittee for Isotopic Abundance Measurements (SIAM), and by compiling evidence for known variations in the isotope abundances of the element in normal terrestrial materials, through its Subcommittee on Natural Isotopic Fractionation (SNIF). By “normal”, CIAAW refers to terrestrial occurrences that satisfy the following criterion: The material is a reasonably possible source for this element or its compounds in commerce, for industry or science; the material is not itself studied for some extraordinary anomaly and its isotopic composition has not been modified significantly in a geologically brief period. [2] The results of these investigations are important for a number of reasons, including the evaluated best measurements indicate the state of the metrology of isotope-abundance measurements, the best measurements provide benchmark data for isotopic reference materials, and the combination of best

*Sponsoring body: IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights: see more details on page 408. ‡Corresponding author

397

M. BERGLUND AND M. E. WIESER

398

measurements and documented variations serve as the basis for the determination of the standard atomic weights of the elements. The table of the isotopic compositions of the elements was produced by CIAAW to accompany the 2007 table of standard atomic weights of the elements (TSAW) [3]. Entries in TSAW 2007 [3] are based on the atomic masses of the nuclides [4,5]. This report presents an updated table of the isotopic compositions of the elements as evaluated by SIAM and SNIF in the period July 2005 to July 2009. The previous table of the isotopic compositions of the elements was published in 2005 [6], following CIAAW deliberations in 2003. The table of the isotopic compositions of the elements was produced by CIAAW to accompany the table of standard atomic weights of the elements [3], based on data evaluated by CIAAW published 2009. The table is intended to include data for normal terrestrial materials and does not include published values for meteoritic or other extraterrestrial materials. Additional supporting data and background information can be found in de Laeter et al. [1] and Coplen et al. [7,8]. The table consists of 9 columns, as follows: Column l: Column 2: Column 3: Column 4:

Column 5:

Column 6:

The elements are tabulated in ascending order of atomic number (Z). The symbols for the elements (E) are listed using the abbreviations recommended by IUPAC. The mass number (A) for each isotope that can be found in normal terrestrial material. Range of natural variations No data are given in this column unless a range has been reliably established (see, e.g., Coplen et al. [8]). The limits given may not include those of certain exceptional samples, which are indicated with a “g” in Column 5. Explanation of the annotations. Note that the annotations apply to all isotopes of a given element. g geologically exceptional specimens are known in which the element has an isotopic composition outside the reported range. m modified isotopic compositions may be found in commercially available material that has been subjected to an undisclosed or inadvertent isotope fractionation. Substantial deviations from the listed isotopic compositions can occur (refers to column 9). r range in isotopic composition of normal terrestrial material prevents more precise values (for column 9) to be given. The tabulated values should be applicable to any normal material. The best measurement from a single terrestrial source. The values are reproduced or calculated by CIAAW from the original literature. The uncertainties on the last digits are given in parentheses. As they are not reported in any uniform manner in the literature, “ls”, “2s”, or “3s” indicates l, 2, or 3 standard deviations, “P” indicates some other “uncertainty” as defined by the author, and “se” indicates standard error (standard deviation of the mean). “C” is appended when calibrated mixtures have been used to correct the mass spectrometer for bias, giving an “absolute” result within the “uncertainty” stated in the original publication. “F” is appended when calibrated mixtures have been used to correct for isotope fractionation but the measurement fails to fulfill all of the requirements of a “C” measurement. “L” is appended when the linearity of the mass spectrometer has been established for the relevant abundance ratios by using synthetic mixtures of isotopes or certified reference materials. “N” is appended when none of the above requirements are met.

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

Isotopic compositions of the elements 2009

399

Users should be aware of the following: a) A “best measurement” is not necessarily free of systematic errors, nor is it necessarily calibrated; it is just the best measurement available. b) If a range of isotope-abundance ratios has been established for an element, the sample used for the “best measurement” may represent any part of the range. c) Because the data are reproduced from the literature, the sum of the isotope mole fractions may not equal l. Reference for the best measurement in column 6. In this column are listed the isotopic reference materials that were used for the best measurements given in column 6 (with asterisk) and agencies that distribute additional isotopic reference materials (see Section “Sources of isotopic reference materials”). If no asterisk is given, the best measurement was made on a substance that was not a recognized reference material. Representative isotopic composition. In this column are listed the values that, in the opinion of CIAAW, represent the isotopic composition of chemicals and/or natural materials that are likely to be encountered in the laboratory. These values generally are consistent with the standard atomic weights [3]; however, for elements with known isotope-abundance variations, they may not necessarily correspond to the best measurements. The expanded uncertainties listed in parentheses include the range of probable isotope-abundance variations among different materials as well as measurement uncertainties. Users should be aware of the following: a) Values in column 9 can be used to determine the average properties of the element in materials of unspecified natural terrestrial origin, but those values may not represent the most abundant materials and it is possible that no real sample exists having the exact values listed. b) When precise work is to be undertaken, such as assessment of isotope-dependent properties, samples with precisely known isotopic compositions (such as those listed in column 8) should be used or suitable isotopic analyses should be made.

Column 7: Column 8:

Column 9:

Table 1 Isotopic compositions of the elements 2009. Z

E

Mass number

Observed range of natural variations (mole fraction) 4

1

2

3

1

H

1 2

0.999 816–0.999 974 0.000 026–0.000 184

2

He

3 4

4.6 × 10–10–0.000 041 0.999 959–1

3

Li

6 7

0.072 25–0.077 14 0.922 75–0.927 86

4

Be

9

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5 g,m,r

g,r

g,m,r

Ref.

Available reference materialsa

7

8

Representative isotopic composition (mole fraction) 9

0.999 844 26(5) 2s C 0.000 155 74(5)

[9]

VSMOW* IAEA NIST

0.999 885(70) 0.000 115(70)b

0.000 001 343(13) 1s C 0.999 998 657(13)

[10]

Air*

0.000 001 34(3) 0.999 998 66(3) (in air)

0.075 89(24) 2s C 0.924 11(24)

[11]

IRMM-016* IAEA NIST IRMM

1

[12]

[0.0759(4)]c [0.9241(4)]

1

(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

M. BERGLUND AND M. E. WIESER

400 Table 1 (Continued). Z

E

Mass number

1

2

3

Observed range of natural variations (mole fraction) 4

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5

5

B

10 11

0.189 29–0.203 86 0.796 14–0.810 71

g,m,r

6

C

12 13

0.988 53–0.990 37 0.009 63–0.011 47

7

N

14 15

8

O

16 17 18

9

F

19

10

Ne

20 21 22

11

Na

23

12

Mg

24 25 26

13

Al

27

14

Si

28 29 30

15

P

31

16

S

32 33 34 36

0.944 54–0.952 81 0.007 30–0.007 93 0.039 76–0.047 34 0.000 13–0.000 19

g,r

17

Cl

35 37

0.756 44–0.759 23 0.240 77–0.243 56

g,m,r

18

Ar

36 38 40

19

K

39 40 41

Ref.

Available reference materialsa

7

8

Representative isotopic composition (mole fraction) 9

0.1982(2) 2s C 0.8018(2)

[13]

IRMM-011* NIST IRMM BAM

0.199(7) 0.801(7)

g,r

0.988 922(28) P C 0.011 078(28)

[14]

NBS 19* IAEA NIST

0.9893(8) 0.0107(8)

0.995 79–0.996 54 0.003 46–0.004 21

g,r

0.996 337(4)d P C 0.003 663(4)d

[15]

Air* IAEA NIST

0.996 36(20) 0.003 64(20)

0.997 38–0.997 76 0.000 37–0.000 40 0.001 88–0.002 22

g,r

0.997 6206(5)e 1s N 0.000 3790(9)e 0.002 0004(5)e

[16,17]

VSMOW* IAEA NIST

0.997 57(16) 0.000 38(1) 0.002 05(14)

1

[18]

0.904 838(90) 1s C 0.002 696(5) 0.092 465(90)

[19]

1

[20]

0.789 92(25) 2s C 0.100 03(9) 0.110 05(19)

[21]

1

[20]

0.922 2968(44) 2s C 0.046 8316(32) 0.030 8716(32)

[22]

1

[12]

0.950 4074(88) 2s C 0.007 4869(60) 0.041 9599(66) 0.000 145 79(89)

[23]

IAEA-S1* IAEA NIST IRMM

0.9499(26) 0.0075(2) 0.0425(24) 0.0001(1)

0.757 71(45) 2s C 0.242 29(45)

[24]

NISTSRM975* IRMM

0.7576(10) 0.2424(10)

0.003 3361(35) 1s F 0.000 6289(12) 0.996 0350(42)

[25]

Air*

0.003 336(21) 0.000 629(7) 0.996 035(25)h (in air)

0.932 5811(292) 2s C 0.000 116 72(41) 0.067 3022(292)

[26]

NISTSRM985*

0.932 581(44) 0.000 117(1) 0.067 302(44)

0.8847–0.9051 0.0027–0.0171 0.0920–0.0996

g,m

0.789 58–0.790 17 0.099 96–0.100 12 0.109 87–0.110 30

0.922 05–0.922 41 0.046 78–0.046 92 0.030 82–0.031 02

r

g,r

1 Air*

0.9048(3) 0.0027(1) 0.0925(3) (in air) 1

NISTSRM980* IRMM

0.7899(4) 0.1000(1) 0.1101(3) 1

IAEA IRMM NIST

0.922 23(19) 0.046 85(8) 0.030 92(11) 1

(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

Isotopic compositions of the elements 2009

401

Table 1 (Continued). Z

E

Mass number

1

2

3

20

Ca

40 42 43 44 46 48

21

Sc

22

Observed range of natural variations (mole fraction) 4 0.969 33–0.969 47 0.006 46–0.006 48 0.001 35–0.001 35 0.020 82–0.020 92 0.000 04–0.000 04 0.001 86–0.001 88

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5 g

Ref.

Available reference materialsa

7

8

0.969 41(156)h 0.006 47(23) 0.001 35(10) 0.020 86(110) 0.000 04(3) 0.001 87(21)

0.969 41(6) 2s N 0.006 47(3) 0.001 35(2) 0.020 86(4) 0.000 04(1) 0.001 87(1)

[27]

45

1

[28]

1

Ti

46 47 48 49 50

0.082 49(21) 2s C 0.074 37(14) 0.737 20(22) 0.054 09(10) 0.051 85(13)

[29]

0.0825(3) 0.0744(2) 0.7372(3) 0.0541(2) 0.0518(2)

23

V

50 51

0.002 487–0.002 502 0.997 498–0.997 513

0.002 497(6) 1s F 0.997 503(6)

[30]

0.002 50(4) 0.997 50(4)

24

Cr

50 52 53 54

0.042 94–0.043 45 0.837 62–0.837 90 0.095 01–0.095 53 0.023 65–0.023 91

0.043 452(85) 2s C 0.837 895(117) 0.095 006(110) 0.023 647(48)

[31]

25

Mn

55

1

[12]

26

Fe

54 56 57 58

0.058 45(23) 2s C 0.917 54(24) 0.021 191(65) 0.002 819(27)

[32]

27

Co

59

1

[12]

28

Ni

58 60 61 62 64

r

0.680 769(59) 2s C 0.262 231(51) 0.011 399(4) 0.036 345(11) 0.009 256(6)

[33]

NISTSRM986*

0.680 77(19) 0.262 23(15) 0.011 399(13) 0.036 346(40) 0.009 255(19)

29

Cu

63 65

r

0.691 74(20) 2s C 0.308 26(20)

[34]

NISTSRM976* IRMM

0.6915(15) 0.3085(15)

30

Zn

64 66 67 68 70

r

0.491 704(83) 2s C 0.277 31(11) 0.040 401(18) 0.184 483(69) 0.006 106(11)

[35]

IRMM3702* IRMM

0.4917(75) 0.2773(98) 0.0404(16) 0.1845(63) 0.0061(10)

31

Ga

69 71

0.601 079(62) 2s C 0.398 921(62)

[36]

NISTSRM994*

0.601 08(9) 0.398 92(9)

0.058 37–0.058 61 0.917 42–0.917 60 0.021 16–0.021 21 0.002 81–0.002 82

0.689 83–0.693 38 0.306 62–0.310 17

NISTSRM915*

Representative isotopic composition (mole fraction) 9

NISTSRM979* IRMM

0.043 45(13) 0.837 89(18) 0.095 01(17) 0.023 65(7) 1

IRMM-014* IRMM

0.058 45(35) 0.917 54(36) 0.021 19(10) 0.002 82(4) 1

(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

M. BERGLUND AND M. E. WIESER

402 Table 1 (Continued). Z

E

Mass number

1

2

3

32

Ge

70 72 73 74 76

0.205 69(90) 1s C 0.2745(11) 0.077 50(40) 0.365 03(67) 0.077 31(40)

[37]

0.2057(27) 0.2745(32) 0.0775(12) 0.3650(20) 0.0773(12)

33

As

75

1

[12]

1

34

Se

74 76 77 78 80 82

0.008 89(3) 1s N 0.093 66(18) 0.076 35(10) 0.237 72(20) 0.496 07(17) 0.087 31(10)

[38]

0.0089(4) 0.0937(29) 0.0763(16) 0.2377(28) 0.4961(41) 0.0873(22)

35

Br

79 81

0.506 86(26) 2s C 0.493 14(26)

[39]

36

Kr

78 80 82 83 84 86

g,m

0.003 5518(32) 2s C 0.022 8560(96) 0.115 930(62) 0.114 996(58) 0.569 877(58) 0.172 790(32)

[40]

37

Rb

85 87

g

0.721 654(132) 2s C 0.278 346(132)

[41]

NISTSRM984* IRMM

0.7217(2) 0.2783(2)

38

Sr

84 86 87 88

g,r

0.005 574(16) 2s C 0.098 566(34) 0.070 015(26) 0.825 845(66)

[42]

NISTSRM987* NIST IRMM

0.0056(1) 0.0986(1) 0.0700(1)h 0.8258(1)

39

Y

89

1

[43]

1

40

Zr

90 91 92 94 96

0.514 52(9) 2s N 0.112 23(12) 0.171 46(7) 0.1738(12) 0.027 99(5)

[44]

0.5145(40) 0.1122(5) 0.1715(8) 0.1738(28) 0.0280(9)

41

Nb

93

1

[20]

1

[45]

0.1453(30) 0.0915(9) 0.1584(11) 0.1667(15) 0.0960(14) 0.2439(37) 0.0982(31)

42

43

Mo

Observed range of natural variations (mole fraction) 4

Annotations

5

r

0.0055–0.0058 0.0975–0.0999 0.0694–0.0714 0.8229–0.8275

92 94 95 96 97 98 100

Tc

Best measurement from a single terrestrial source (mole fraction) 6

g

g

0.145 25(15)o 0.091 514(74) 0.158 375(98) 0.166 72(19) 0.095 991(73) 0.243 91(18) 0.098 24(50) –

1s F

Ref.

Available reference materialsa

7

8

NISTSRM977*

Representative isotopic composition (mole fraction) 9

0.5069(7) 0.4931(7) 0.003 55(3) 0.022 86(10) 0.115 93(31) 0.115 00(19) 0.569 87(15) 0.172 79(41) (in air)



(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

Isotopic compositions of the elements 2009

403

Table 1 (Continued). Z

E

Mass number

1

2

3

44

Ru

96 98 99 100 101 102 104

45

Rh

103

46

Pd

102 104 105 106 108 110

47

Ag

48

Observed range of natural variations (mole fraction) 4

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5 g

Ref.

Available reference materialsa

7

8

Representative isotopic composition (mole fraction) 9

0.055 420(1) 1s N 0.018 688(2) 0.127 579(6) 0.125 985(4) 0.170 600(10) 0.315 519(11) 0.186 210(11)

[46]

0.0554(14) 0.0187(3) 0.1276(14) 0.1260(7) 0.1706(2) 0.3155(14) 0.1862(27)

1

[12]

1

g

0.01020(8) 2s C 0.1114(5) 0.2233(5) 0.2733(2) 0.2646(6) 0.1172(6)

[47]

0.0102(1) 0.1114(8) 0.2233(8) 0.2733(3) 0.2646(9) 0.1172(9)

107 109

g

0.518 392(51) 2s C 0.481 608(51)

[48]

NISTSRM978*

0.518 39(8) 0.481 61(8)

Cd

106 108 110 111 112 113 114 116

g

0.0125(2) 2s F 0.0089(1) 0.1249(6) 0.1280(4) 0.2413(7) 0.1222(4) 0.2873(14) 0.0749(6)

[49]

IRMM BAM

0.0125(6) 0.0089(3) 0.1249(18) 0.1280(12) 0.2413(21) 0.1222(12) 0.2873(42) 0.0749(18)

49

In

113 115

0.042 88(5) 2s N 0.957 12(5)

[50]

0.0429(5) 0.9571(5)

50

Sn

112 114 115 116 117 118 119 120 122 124

g

0.009 73(3) 1s C 0.006 59(3)f 0.003 39(3)f 0.145 36(31) 0.076 76(22) 0.242 23(30) 0.085 85(13) 0.325 93(20) 0.046 29(9) 0.057 89(17)

[51,52]

0.0097(1) 0.0066(1) 0.0034(1) 0.1454(9) 0.0768(7) 0.2422(9) 0.0859(4) 0.3258(9) 0.0463(3) 0.0579(5)

51

Sb

121 123

g

0.572 13(32) 2s C 0.427 87(32)

[53]

0.5721(5) 0.4279(5)

52

Te

120 122 123 124 125 126 128 130

g

0.000 96(1)i 2se N 0.026 03(1)i 0.009 08(1)i 0.048 16(2)i 0.071 39(2)i 0.189 52(4)i 0.316 87(4)i 0.337 99(3)i

[54]

0.0009(1) 0.0255(12) 0.0089(3) 0.0474(14) 0.0707(15) 0.1884(25) 0.3174(8) 0.3408(62)

(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

M. BERGLUND AND M. E. WIESER

404 Table 1 (Continued). Z

E

Mass number

1

2

3

53

I

127

54

Xe

124 126 128 129 130 131 132 134 136

55

Cs

56

Observed range of natural variations (mole fraction) 4

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5

Ref.

Available reference materialsa

7

8

Representative isotopic composition (mole fraction) 9

1

[55]

1

0.000 952(3) 3s C 0.000 890(2) 0.019 102(8) 0.264 006(82) 0.040 710(13) 0.212 324(30) 0.269 086(33) 0.104 357(21) 0.088 573(44)

[56]

0.000 952(3) 0.000 890(2) 0.019 102(8) 0.264 006(82) 0.040 710(13) 0.212 324(30) 0.269 086(33) 0.104 357(21) 0.088 573(44) (in air)

133

1

[20]

1

Ba

130 132 134 135 136 137 138

0.001 058(2) 3se F 0.001 012(2) 0.024 17(3) 0.065 92(2) 0.078 53(4) 0.112 32(4) 0.716 99(7)

[57]

0.001 06(1) 0.001 01(1) 0.024 17(18) 0.065 92(12) 0.078 54(24) 0.112 32(24) 0.716 98(42)

57

La

138 139

g

0.000 8881(24) 2s N 0.999 1119(24)

[58]

0.000 8881(71) 0.999 1119(71)

58

Ce

136 138 140 142

g

0.001 86(1) 2s C 0.002 51(1) 0.884 49(34) 0.111 14(34)

[59]

0.001 85(2) 0.002 51(2)h 0.884 50(51) 0.111 14(51)

59

Pr

141

1

[43]

1

60

Nd

142 143 144 145 146 148 150

0.271 53(19) 2s C 0.121 73(18) 0.237 98(12) 0.082 93(7) 0.171 89(17) 0.057 56(8) 0.056 38(9)

[60]

0.271 52(40) 0.121 74(26)h 0.237 98(19) 0.082 93(12) 0.171 89(32) 0.057 56(21) 0.056 38(28)

61

Pm

62

Sm

144 147 148 149 150 152 154

g

0.030 734(9) 2s F 0.149 934(18) 0.112 406(15) 0.138 189(18) 0.073 796(14) 0.267 421(66) 0.227 520(68)

[61]

0.0307(7) 0.1499(18) 0.1124(10) 0.1382(7) 0.0738(1) 0.2675(16) 0.2275(29)

63

Eu

151 153

g

0.478 10(42) 2se C 0.521 90(42)

[62]

0.4781(6) 0.5219(6)

g,m

0.001 85–0.001 86 0.002 51–0.002 54 0.884 46–0.884 49 0.111 14–0.111 14

g





(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

Isotopic compositions of the elements 2009

405

Table 1 (Continued). Z

E

Mass number

1

2

3

64

Gd

152 154 155 156 157 158 160

65

Tb

159

66

Dy

156 158 160 161 162 163 164

67

Ho

165

68

Er

162 164 166 167 168 170

69

Tm

169

70

Yb

168 170 171 172 173 174 176

71

Lu

175 176

72

Hf

174 176 177 178 179 180

73

Ta

74

W

Observed range of natural variations (mole fraction) 4

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5 g

Ref.

Available reference materialsa

7

8

Representative isotopic composition (mole fraction) 9

0.002 029(4) 2se N 0.021 809(4) 0.147 998(17) 0.204 664(6) 0.156 518(9) 0.248 347(16) 0.218 635(7)

[63]

0.0020(1) 0.0218(3) 0.1480(12) 0.2047(9) 0.1565(2) 0.2484(7) 0.2186(19)

1

[43]

1

0.000 56(2) 2s C 0.000 95(2) 0.023 29(12) 0.188 89(28) 0.254 75(24) 0.248 96(28) 0.2826(36)

[64]

0.000 56(3) 0.000 95(3) 0.023 29(18) 0.188 89(42) 0.254 75(36) 0.248 96(42) 0.282 60(54)

1

[43]

1

0.001 391(30) 2s C 0.016 006(20) 0.335 014(240) 0.228 724(60) 0.269 852(120) 0.149 013(240)

[65]

0.001 39(5) 0.016 01(3) 0.335 03(36) 0.228 69(9) 0.269 78(18) 0.149 10(36)

1

[43]

1

g

0.001 232(4) 2s F 0.029 82(6) 0.140 86(20) 0.216 86(19) 0.161 03(9) 0.320 25(12) 0.129 95(13)

[66]

0.001 23(3) 0.029 82(39) 0.140 9(14) 0.216 8(13) 0.161 03(63) 0.320 26(80) 0.129 96(83)

g

0.974 013(12) 2s N 0.025 987(12)

[67]

0.974 01(13) 0.025 99(13)

0.001 620(9) 2se N 0.052 604(56) 0.185 953(12) 0.272 811(22) 0.136 210(9) 0.350 802(26)

[68]

0.0016(1) 0.0526(7)h 0.1860(9) 0.2728(7) 0.1362(2) 0.3508(16)

180 181

0.000 1201(8) 2s L 0.999 8799(8)

[69]

0.000 1201(32) 0.999 8799(32)

180 182 183 184 186

0.001 198(2) 1s N 0.264 985(49) 0.143 136(6) 0.306 422(13) 0.284 259(62)

[70]

0.0012(1) 0.2650(16) 0.1431(4) 0.3064(2) 0.2843(19)

g

g

0.001 619–0.001 621 0.052 06–0.052 71 0.185 93–0.186 06 0.272 78–0.272 97 0.136 19–0.1363 0.350 76–0.351

(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

M. BERGLUND AND M. E. WIESER

406 Table 1 (Continued). Z

E

Mass number

1

2

3

75

Re

185 187

76

Os

184 186 187 188 189 190 192

77

Ir

78

Observed range of natural variations (mole fraction) 4

Annotations

Best measurement from a single terrestrial source (mole fraction) 6

5

Ref.

Available reference materialsa

7

8

0.373 98(16) 2s C 0.626 02(16)

[71]

0.000 197(5) 1s N 0.015 859(44) 0.019 644(12) 0.132 434(19) 0.161 466(16) 0.262 584(14) 0.407 815(22)

[72]

0.0002(1) 0.0159(3) 0.0196(2)h 0.1324(8) 0.1615(5) 0.2626(2) 0.4078(19)

191 193

0.372 72(15) 1s N 0.627 28(15)

[73]

0.373(2) 0.627(2)

Pt

190 192 194 195 196 198

0.000 1172(58) 1s F 0.007 818(80) 0.328 6(14) 0.337 75(79) 0.252 10(11) 0.073 56(43)

[74]

79

Au

197

1

[12]

80

Hg

196 198 199 200 201 202 204

0.001 5344(19) 1s N 0.099 68(13) 0.168 73(17) 0.230 96(26) 0.131 81(13) 0.298 63(33) 0.068 65(7)

[75]

IRMM NRC-CNRC

0.0015(1) 0.0997(20) 0.1687(22) 0.2310(19) 0.1318(9) 0.2986(26) 0.0687(15)

81

Tl

203 205

0.294 94–0.295 28 0.704 72–0.705 06

0.295 24(9) 2s C 0.704 76(9)

[76]

NISTSRM997* IRMM

0.2952(1) 0.7048(1)

82

Pb

204 206 207 208

0.0104–0.0165 0.2084–0.2748 0.1762–0.2365 0.5128–0.5621

0.014 245(12) 2s C 0.241 447(57) 0.220 827(27) 0.523 481(86)

[77]

NISTSRM981* NIST

0.014(1) 0.241(1)h 0.221(1)h 0.524(1)h

83

Bi

209

1

[12]

84

Po

85

At

86

Rn

87

Fr

88

Ra

89

Ac

90

Th

232

1

[78]

91

Pa

231

1

[79]

g

g,r

g

NISTSRM989*

Representative isotopic composition (mole fraction) 9

IRMM-010*

0.3740(2) 0.6260(2)

0.000 12(2) 0.007 82(24) 0.328 6(40) 0.337 8(24) 0.252 1(34) 0.073 56(130) 1

1

IRMM

1 1

(continues on next page)

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

Isotopic compositions of the elements 2009

407

Table 1 (Continued). Z

E

Mass number

1

2

3

92

U

234 235 238

Observed range of natural variations (mole fraction) 4 0.000 050–0.000 059 0.007 198–0.007 207 0.992 739–0.992 752

Annotations

5 g,m

Best measurement from a single terrestrial source (mole fraction) 6 0.000 054 20(42) 2s C 0.007 200(1) 0.992 745(10)

Ref.

Available reference materialsa

7

8

Representative isotopic composition (mole fraction) 9

IRMM-184* IRMM NBL

[0.000 054(5)] [0.007 204(6)]c [0.992 742(10)]

[80]

aNIST materials previously were labeled NBS. IRMM materials previously were labeled CBNM. An asterisk (*) indicates the reference material used for the best measurement (column 6). bTank hydrogen has reported 2H mole fractions as low as 0.000 032. cMaterials depleted in 6Li and 235U are commercial sources of laboratory shelf reagents. In the case of Li, such samples are known to have 6Li mole fractions in the range of 0.020 07 to 0.076 72, with natural materials at the higher end of this range. In the case of U, the 235U mole fractions are reported to range from 0.0021 to 0.007 207, far removed from the natural value. dCIAAW recommends that a value of 272 be employed for N(14N)/N(15N) of N in air where N is the number fraction, for the 2 calculation of the mole fraction of 15N from measured (15N) values. eThe best measurement was derived by combining independent analyses of the N(18O/16O) and N(17O/16O) ratios in VSMOW. fThe original data for Sn were adjusted to account for possible errors due to 115In contamination, and an error in the 114Sn abundance. hThe abundance of this radiogenic isotope may vary substantially. iAn electron multiplier was used for the Te measurements and the measured abundances were adjusted by using a “square root of the masses” correction factor. oDuring its biennial evaluation in 2007, SIAM found that the best measurement of the isotope-amount abundance of 92Mo published in [44] is incorrect. It appears as 0.145 246(15), but based on data that appears in the paper, it should be 0.145 25(15).

SOURCES OF ISOTOPIC REFERENCE MATERIALS IAEA

NIST

IRMM

NBL

© 2011, IUPAC

Isotope Hydrology Laboratory International Atomic Energy Agency Room No. G-162 P.O. Box 100 A-1400, Vienna, Austria Standard Reference Materials® Program NIST 100 Bureau Drive, Stop 2300 Gaithersburg, MD 20899-2300, USA European Commission Joint Research Centre Institute for Reference Materials and Measurements Reference Materials Unit ATTN: Reference Materials Sales Retieseweg 111 B-2440 Geel, Belgium U.S. Department of Energy New Brunswick Laboratory, Bldg. 350 ATTN: Reference Materials Sales 9800 South Cass Avenue Argonne, IL 60439, USA

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

408 NRC-CNRC

BAM

M. BERGLUND AND M. E. WIESER Institute for National Measurement Standards National Research Council Canada, Government of Canada 1200 Montreal Road, Ottawa ON K1A 0R6, Canada BAM and European Reference Materials Programme Richard-Wilistaetter-Str. 11 12489 Berlin, Germany

MEMBERSHIP OF SPONSORING BODY Membership of the Inorganic Chemistry Division Committee for the period 2008–2009 was as follows: President: K. Tatsumi (Japan); Past President: A. R. West (UK); Secretary: L. V. Interrante (USA); Vice President: R. D. Loss (Australia); Titular Members: T. B. Coplen (USA); T. Ding (China/Beijing); J. García-Martínez (Spain); M. Leskelä (Finland); L. A. Oro (Spain); J. Reedijk (Netherlands); M. P. Suh (Korea); Associate Members: A. V. Chadwick (UK); M. Drábik (Slovakia); N. E. Holden (USA); S. Mathur (Germany); K. Sakai (Japan); J. Takats (Canada); National Representatives: T. V. Basova (Russia); A. Bologna Alles (Uruguay); R. Gonfiantini (Italy); P. Karen (Norway); L.-K. Liu (China/Taipei); L. R. Öhrström (Sweden). Membership of the Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights for the period 2008–2009 was as follows: Chair: R. Gonfiantini (Italy); Secretary: M. E. Wieser (Canada); Titular Members: M. Berglund (Belgium); M. Gröning (Austria); T. Walczyk (Singapore); S. Yoneda (Japan); Associate Members: W. Brand (Germany); T. Hirata (Japan); R. Schönberg (Germany); X. K. Zhu (China); National Representatives: J. K Böhlke (USA); P. De Bièvre (Belgium); J. R. de Laeter (Australia). REFERENCES 1. J. R. de Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, P. D. P. Taylor. Pure Appl. Chem. 75, 683 (2003). 2. H. S. Peiser, N. E. Holden, P. D. Bièvre, I. L. Barnes, R. Hagemann, J. R. de Laeter, T. J. Murphy, E. Roth, M. Shima, H. G. Thode. Pure Appl. Chem. 56, 695 (1984). 3. M. E. Wieser, M. Berglund. Pure Appl. Chem. 81, 2131 (2009). 4. G. Audi, A. H. Wapstra. Nucl. Phys. A 565, 1 (1993). 5. G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A 729, 337 (2003). 6. J. K. Böhlke, J. R. de Laeter, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, P. D. P. Taylor. J. Phys. Chem. Ref. Data 34, 57 (2005). 7. T. B. Coplen, J. A. Hopple, J. K. Böhlke, H. S. Peiser, S. E. Rieder, H. R. Krouse, K. J. R. Rosman, T. Ding, R. D. Vocke Jr., K. M. Révész, A. Lamberty, P. D. P. Taylor, P. De Bièvre. U.S. Geological Survey Water-Resources Investigations Report 01-4222 (2002). 8. T. B. Coplen, J. K. Böhlke, P. De Bièvre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, H. S. Peiser, K. Révész, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke, Y. Xiao. Pure Appl. Chem. 74, 1987 (2002). 9. R. Hagemann, G. Nief, E. Roth. Tellus 22, 712 (1970). 10. Y. Sano, H. Wakita, X. Sheng. Geochem. J. 22, 177 (1988). 11. H.-P. Qi, P. D. P. Taylor, M. Berglund, P. De Bièvre. Int. J. Mass. Spectrom. Ion Proc. 171, 263 (1997). 12. F. D. Leipziger. Appl. Spectrosc. 17, 158 (1963). 13. P. De Bièvre, G. H. Debus. Int. J. Mass Spectrom. Ion Phys. 2, 15 (1969). © 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

Isotopic compositions of the elements 2009 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.

409

T.-L. Chang, W.-J. Li. Chin. Sci. Bull. 35, 290 (1990). G. Junk, H. J. Svec. Geochim. Cosmochim. Acta 14, 234 (1958). P. Baertschi. Earth Planet. Sci. Lett. 31, 341 (1976). W.-J. Li, D. Jin, T.-L. Chang. Kexue Tinboa 33, 1610 (1988). F. W. Aston. Philos. Mag. 40, 628 (1920). D. J. Bottomley, J. D. Ross, W. B. Clarke. Geochim. Cosmochim. Acta 48, 1973 (1984). F. A. White, T. L. Collins, F. M. Rourke. Phys. Rev. 101, 1786 (1956). J. R. White, A. E. Cameron. Phys. Rev. 74, 991 (1948). R. Gonfiantini, P. De Bièvre, S. Valkiers, P. D. P. Taylor. IEEE Trans. Instrum. Meas. 46, 566 (1997). T. Ding, S. Valkiers, H. Kipphardt, R. Damen, P. De Bièvre, P. D. P. Taylor, R. Gonfiantini, H. R. Krouse. Geochim. Cosmochim. Acta 65, 2433 (2001). W. R. Shields, T. J. Murphy, E. L. Garner, V. H. Dibeler. J. Am. Chem. Soc. 84, 1519 (1961). J.-Y. Lee, K. Marti, J. P. Severinghaus, K. Kawamura, H.-S. Yoo, J. B. Lee, J. S. Kim. Geochim. Cosmochim. Acta 70, 4507 (2006). E. L. Garner, T. J. Murphy, J. W. Gramlich, P. J. Paulsen, I. L. Barnes. J. Res. Natl. Bur. Stand. (U.S.) 79A, 713 (1975). L. J. Moore, L. A. Machlan. Anal. Chem. 44, 2291 (1972). W. T. Leland. Phys. Rev. 77, 634 (1950). M. Shima, N. Torigoye. Int. J. Mass Spectrom. Ion Proc. 123, 29 (1993). G. D. Flesch, J. Capellen, H. J. Svec. Advanced Mass Spectrometry III, pp. 571–581, Leiden, London (1996). W. R. Shields, T. J. Murphy, E. J. Catanzaro, E. L. Garner. J. Res. Natl. Bur. Stand. (U.S.) 70A, 193 (1966). P. D. P. Taylor, R. Maeck, P. De Bièvre. Int. J. Mass Spectrom. Ion. Proc. 121, 111 (1992). J. W. Gramlich, L. A. Machlan, I. L. Barnes, P. J. Paulsen. J. Res. Natl. Bur. Stand. (U.S.) 94, 347 (1989). W. R. Shields, S. S. Goldich, E. L. Garner, T. J. Murphy. J. Geophys. Res. 70, 479 (1965). E. Ponzevera, C. R. Quétel, M. Berglund, P. D. P. Taylor, P. Evans, R. D. Loss, G. Fortunato. J. Am. Soc. Mass Spectrom. 17, 1413 (2006). L. A. Machlan, J. W. Gramlich, L. J. Powell, G. M. Lambert. J. Res. Nat. Bur. Stand. (U.S.) 91, 323 (1986). H. Kipphardt, S. Valkiers, F. Henriksen, P. De Bièvre, P. D. P. Taylor, G. Tölg. Int. J. Mass Spectrom. 189, 27 (1999). O. Hönigschmid, L. Görnhardt. Naturwissenschaften 32, 68 (1944). E. J. Catanzaro, T. J. Murphy, E. L. Garner, W. R. Shields. J. Res. Natl. Bur. Stand. (U.S.) 68A, 593 (1964). Y. Aregbe, S. Valkiers, J. Poths, J. Norgaard, H. Kipphardt, P. De Bièvre, P. D. P. Taylor. Int. J. Mass Spectrom. 206, 129 (2001). E. J. Catanzaro, T. J. Murphy, E. L. Garner, W. R. Shields. J. Res. Natl. Bur. Stand. (U.S.) 73A, 511 (1969). L. J. Moore, T. J. Murphy, I. L. Barnes, P. J. Paulsen. J. Res. Natl. Bur. Stand. (U.S.) 87, 1 (1982). T. L. Collins, F. M. Rourke, F. A. White. Phys. Rev. 105, 196 (1957). M. Nomura, K. Kogure, M. Okamoto. Int. J. Mass Spectrom. Ion Phys. 50, 219 (1983). M. E. Wieser, J. R. de Laeter. Phys. Rev. C 75, 055802 (2007). M. Huang, A. Masuda. Anal. Chem. 69, 1135 (1997). M. Shima. Int. J. Mass Spectrom. Ion Phys. 28, 129 (1978). L. J. Powell, T. J. Murphy, J. W. Gramlich. J. Res. Natl. Bur. Stand. (U.S.) 87, 9 (1982). K. J. R. Rosman, I. L. Barnes, L. J. Moore, J. W. Gramlich. Geochem. J. 14, 269 (1980). T.-L. Chang, Y.-K. Xiao. Chin. Chem. Lett. 2, 407 (1991).

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011

M. BERGLUND AND M. E. WIESER

410 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80.

C. Devillers, T. Lecomte, R. Hagemann. Int. J. Mass Spectrom. Ion Phys. 50, 20517 (1983). K. J. R. Rosman, R. D. Loss, J. R. de Laeter. Int. J. Mass Spectrom. Ion Proc. 56, 281 (1984). T.-L. Chang, Q.-Y. Qian, M.-T. Zhao, J. Wang. Int. J. Mass Spectrom. Ion Proc. 123, 77 (1993). C. L. Smith, K. J. R. Rosman, J. R. de Laeter. Int. J. Mass Spectrom. Ion Phys. 28, 7 (1978). W. T. Leland. Phys. Rev. 76, 992 (1949). S. Valkiers, Y. Aregbe, P. D. P. Taylor, P. De Bièvre. Int. J. Mass Spectrom. Ion Proc. 173, 55 (1998). O. Eugster, F. Tera, G. J. Wasserburg. J. Geophys. Res. 74, 3897 (1969). J. R. de Laeter, N. Bukilic. Int. J. Mass Spectrom. 244, 91 (2005). T.-L. Chang, Q.-Y. Qian, M.-T. Zhao, J. Wang, Q.-Y. Lang. Int. J. Mass Spectrom. Ion Proc. 142, 125 (1995). M. Zhao, T. Zhou, J. Wang, H. Lu, F. Xiang. Int. J. Mass Spectrom. 245, 36 (2005). T.-L. Chang, G.-S. Qiao. Chin. Chem. Lett. 8, 91 (1997). T.-L. Chang, Q.-Y. Qian, M.-T. Zhao, J. Wang. Int. J. Mass Spectrom. Ion Proc. 139, 95 (1994). O. Eugster, F. Tera, D. S. Burnett, G. J. Wasserburg. J. Geophys. Res. 75, 2753 (1970). T.-L. Chang, W.-J. Li, M.-T. Zhao, J. Wang, Q.-Y. Qian. Int. J. Mass Spectrom. 207, 13 (2001). T.-L. Chang, M.-T. Zhao, W.-J. Li, J. Wang, Q.-Y. Qian, Z.-Y. Chu. Int. J. Mass Spectrom. Ion Proc. 177, 131 (1998). J. R. de Laeter, N. Bukilic. Int. J. Mass Spectrom. 252, 222 (2006). J. R. de Laeter, N. Bukilic. Phys. Rev. C 73, 045806 (2006). P. J. Patchett. Geochim. Cosmochim. Acta 47, 81 (1983). J.R. de Laeter, N. Bukilic. Phys. Rev. C 72, 025801 (2005). J. Völkening, M. Köppe, K. G. Heumann. Int. J. Mass Spectrom. Ion Proc. 107, 361 (1991). J. W. Gramlich, T. J. Murphy, E. L. Garner, W. R. Shields. J. Res. Natl. Bur. Stand. (U.S.) 77A, 691 (1973). J. Völkening, T. Walczyk, K. G. Heumann. Int. J. Mass Spectrom. Ion Proc. 105, 147 (1991). T. Walczyk, K. G. Heumann. Int. J. Mass Spectrom. Ion Proc. 123, 139 (1993). C. S. J. Wolff Briche, A. Held, M. Berglund, P. De Bièvre, P. D. P. Taylor. Anal. Chim. Acta 460, 41 (2002). M. G. Zadnik, S. Specht, F. Begemann. Int. J. Mass Spectrom. Ion Proc. 89, 103 (1989). L. P. Dunstan, J. W. Gramlich, I. L. Barnes, W. C. Purdy. J. Res. Natl. Bur. Stand. (U.S.) 85, 1 (1980). E. J. Catanzaro, T. J. Murphy, W. R. Shields, E. L. Garner. J. Res. Nat. Bur. Stand. (U.S.) 72A, 261 (1968). A. J. Dempster. Nature (London) 138, 120 (1936). D. Brown. Gmelin Handbuch der Anorg. Chem., 8th ed., Syst. 51, Erg. -Bd. 1,6, Springer (1977). S. Richter, A. Alonso, W. De Bolle, R. Wellum, P. D. P. Taylor. Int. J. Mass Spectrom. Ion Proc. 193, 9 (1999).

Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

© 2011, IUPAC

Pure Appl. Chem., Vol. 83, No. 2, pp. 397–410, 2011