The intrinsic integer-geometric circular number 3 of an ÐSpace-Pi3 unit circle ... Exact symbolic definition of iPrimeâ° - â°Space Magic Prime 6961 Hâ°SpaceL.
ÂSpace - Exact Symbolic Equations for Important Physical Constants - SI Table We present over 50 exact symbolic equations for important physical constants like e, h, a, R¶, G and Planck constants, usable and fully interchangeable between SI, ÂSpace and Planck units (or any other unit system, for that matter). The fit of these arbitrary precision integer geometric results to the officially recommended CODATA values normalized and averaged from experiment and theory is breathtaking. The constants are derived from very simple equations and presented in the logical order of their dependencies allowing anyone to follow. All of this was meant to be completely impossible by current state of the art physical standards. Luckily someone forgot to tell me before i started. And probably we should have a look on these standards ...
Document Status and Version Information Document Status! Filename: ”Exact Symbolic Equations for Physical Constants - SI Table.nb” - Created: 2014-03-18-0028 - Version: 2014-12-21-2355 Document title: " ÂSpace - Exact Symbolic Equations for Important Physical Constants - SI Table" Author: Christian G. Wolf, P.O. Box 1113, 85571 Neubiberg, Germany Contact: Christian G. Wolf, , +49-160-8233717
Change History Started: 2014-03-18 initial creation of the document with title “ÂSpace - Exact Symbolic Equations for Important Physical Constants - Table” Update: 2014-05-21 Derivation of “ÂSpace - Exact Symbolic Equations for Important Physical Constants - SI Table” from “Table” variant Update: 2014-05-25 added “Table of Contents” and “References” section, internal review cycle to cross-check equations and proof-reading Update: 2014-12-21 added reference CODATA 1998-2010 measurement values from NIST database for comparison of SI to ÂSpace values
Abstract The road to the exact ÂSpace theoretical values of Planck constant h, electron charge e and with this fine–structure constant a paved the way to find a simple yet highly plausible ÂSpace quantum-geometric equation for the very weak force of gravitation [1][2]. This made it possible to identify further exact symbolic equations for the only unprecise measured Newtonian gravitational constant G, as well as the very precise measured Rydberg constant R¶ all of which fully fit to and comply with past and current normalized CODATA measurement and theoretical results [3-6]. With this toolset at hand and by using appropriate software [7] it is only work to derive the exact value for nearly all Planck constants (except kB related temperature), which in turn allowed with an exact R¶ to construct an electron model and derive its mass and charge factors from ÂSpace geometry, primarily based on the concept of GoldenRatio and the rarely seen mathematical tool of using a changed distance definition. By taking the derived electron and Planck mass it is possible to get an exact value for aG, the unitless gravitational coupling constant. Following the simplicity of the road from exact per definition constants like speed of light c and magnetic constant m0 in SI unit system over concepts like ÂSpace base time to all the symbolic relations allowing arbitrary precision for more than 50 constants of nature many of which are primary and/or fundamental can be mind boggling. We are confident to conclude that the electron is geometrically not a point particle, let alone an euclidic one. It shows a very rich internal structure, building up mass by the help of R¶ and charge by the help of Golden-Ratio and the revealed equations suggest in many ways we should get comfortable with a most likely 10D space/subspacetime, 6D of which seem to be folded in a very interesting and surprising way which could best be described as an integer variant of a Calabi-Yau model in some discrete space like NKS [8-9]. But of course all this can also be some big coincidence, seeing exponents like a10 right at the heart of the gravitational constant G [10]. Please come to your own conclusion and check the equations yourself.
Table of Contents / Overview of Document Structure
ÂSpace - Exact Symbolic Equations for Important Physical Constants - SI Table Document Status and Version Information Document Status Change History
Abstract Table of Contents / Overview of Document Structure Deriving exact symbolic ÂSpace relations for over 50 physical constants (incl. Primary and Fundamental constants) Input - Definition of 2 important well known exact symbolic primary physical constants c0 and m0 identical to their definition by the CODATA commitee Input - Definition of 3*3 additional ÂSpace integer, integer-geometric and geometric constants to derive all other constants by simple mathematical relations Input - Definition of 3 primary exact symbolic ÂSpace geometric and integer-geometric constants like f and 2 less obvious ÂSpace integer circular numbers Input - Definition of 3 primary ubiquitous ÂSpace integer constants like the ÂSpace “magic” prime 6961, an ÂSpace/SI time conversion- and an inflation-factor Input - Definition of 3 primary mass related ÂSpace integer constants named Electronic Mass Factor EMFÂ, Hadronic Mass Factor HMFÂ and cosmological LÂ
Output - Derivation of important physical constants by a sequence of simple yet powerful exact symbolic equations ordered by their natural dependencies Output - Derivation of Planck constants which like aG depend on exact symbolic relations for gravitational constant GÂ, Planck constant hÂ, c0 and m0 [2] AddOn - Derivation of additional relations for constants with enhanced precision (e.g. exact Plank temperature TPl needs an exact Boltzmann constant kB ) AddOn - Derivation of additional exact symbolic relations for unit-conversion constants to calculate results with ÂSpace precision in other unit systems
Conclusion References Document Footer
Deriving exact symbolic ÂSpace relations for over 50 physical constants (incl. Primary and Fundamental constants) Input - Definition of 2 important well known exact symbolic primary physical constants c0 and m0 identical to their definition by the CODATA commitee
Exact symbolic definition of c‰, c0‰ - ‰Space Speed of Light Constant in Vacuum HSIL
(1)
Since the historic adoption to its current exact per definition integer value the constant c or c0 defining the vacuum speed of light in SI is the most important Primary Physical Constant - hence it is first in ÂSpace:
Meter = 2.99792458 µ 108 Am s-1E HexactL Second = c0SI HCODATA-1998ê2002ê2006ê2010L = 2.99792458 µ 108 Am s-1E HexactL
c = c0 = 299 792 458 cSI
Exact symbolic definition of m0‰ - ‰Space Magnetic Constant HSIL
(2)
With the adoption of c the constant of magnetic permeability m0 in a classical vacuum was also defined exact symbolic in SI making ÂSpace theory possible in the first place - hence it is second in ÂSpace:
m 0Â =
4 * p Volt Second = 12.5663706143591729538505735331180115367887 … µ 10-7 AN A-2E 107 Ampere Meter m0SI HCODATA-1998ê2002ê2006ê2010L = 12.5663706143591729538505735331180115367887 … µ 10-7 AN A-2E
© iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717 | Version: 2014-12-21-2355
2
| Exact Symbolic Equations for Physical Constants - SI Table.nb
Input - Definition of 3*3 additional ÂSpace integer, integer-geometric and geometric constants to derive all other constants by simple mathematical relations Input - Definition of 3 primary exact symbolic ÂSpace geometric and integer-geometric constants like f and 2 less obvious ÂSpace integer circular numbers
Exact symbolic definition of p3‰ - ‰Space–Pi3 Circular Number 3 H‰SpaceL
(3)
The intrinsic integer-geometric circular number 3 of an ÂSpace-Pi3 unit circle with properties of a hexagonal honeycomb based on a LEGO® like changed distance definition with probabilistic discrete “hops” [11]:
p3Â = Pi3 = Pi3 = 3 HexactL Exact symbolic definition of p4‰ - ‰Space–Pi4 Circular Number 4 H‰SpaceL
(4)
The intrinsic integer-geometric circular number 4 of an ÂSpace-Pi4 unit circle with properties of an odd square based on a LEGO® like changed distance definition with probabilistic discrete “hops” [12]:
p4Â = Pi4 = Pi4 = 4 HexactL Exact symbolic definition of f‰ - ‰Space Phi or Golden–Ratio 1.618 … H‰SpaceL
(5)
The geometric properties of “Golden-Ratio” bridges the gap between its integer-ratio form of LucasL[n]/LucasL[n-1] (n>100 for shown precision) and its continuum mathematical form of J 5 + 1N í 2 (exact):
f = GoldenRatio =
LucasL@nD 1 = * I 5 + 1M = 1.61803398874989484820458683436563811772031 … LucasL@n - 1D 2
Input - Definition of 3 primary ubiquitous ÂSpace integer constants like the ÂSpace “magic” prime 6961, an ÂSpace/SI time conversion- and an inflation-factor
Exact symbolic definition of iPrime‰ - ‰Space Magic Prime 6961 H‰SpaceL
(6)
The prime number 6961 is the ubiquitous integer throughout all of ÂSpace theory but cannot be rationally deduced or explained and needs to be accepted as “magic” (you will see that it really is magic):
iPrime = 6961 HexactL Exact symbolic definition of iTime‰ - ‰Space Time to SI Time Conversion Factor H‰SpaceL
(7)
Multiplying the prime numbers 47 and 14665487 results in an integer conversion factor primarily used in tBÂ and fBÂ (see below) to convert a time from ÂSpace quantum units to SI standard time (and back):
iTime = H47 * 14 665 487L = 689 277 889 HexactL Exact symbolic definition of iFlat‰ - ‰Space Inflation Flatness Factor 1024 H‰SpaceL
(8)
The ÂSpace Inflation Flatness Factor 1024 known as SI prefix “Yotta” enshures correct ÂSpace exponent relations but also flattens results mimicking inflation phase or scaling quantum effects to the lab range:
iFlat = 1024 = 1 000 000 000 000 000 000 000 000 HexactL Input - Definition of 3 primary mass related ÂSpace integer constants named Electronic Mass Factor EMFÂ, Hadronic Mass Factor HMF and cosmological LÂ
Exact symbolic definition of EMF‰ - ‰Space Electronic Mass Factor H‰SpaceL
(9)
EMFÂ is the Electronic Mass Factor (and of course also the Positronic), an ÂSpace-Pi4 circle with diameter 111111 plus 2 , in other words - the diameter including its border cells:
6
EMFÂ = ‚ 10i-1 + 2 = 111 111 + 2 = 111 113 = i=1
107 + H17 * 10L 106 107 + H17 * 10L 106 + 17 * = = HexactL 7 2 2 10 p3Â 10 * p3Â p 3Â 2
Exact symbolic definition of HMF‰ - ‰Space Hadronic Mass Factor H‰SpaceL
(10)
HMF is the Hadronic Mass Factor, a somewhat heuristic determined equation based on ÂSpace geometric assumptions and symmetry considerations of the upcoming R¶Â equation (possibly not in its final form):
2
HMFÂ =
p3 3 + 107 + HH2 * p3 * 10L + 10L2 + iPrime * 10 p3 2
= 11 111 111 119 391 + 2 = 11 111 111 119 393 HexactL
Exact symbolic definition of L‰ - ‰Space Cosmological Expansion Factor H‰SpaceL
(11)
The somewhat surprising razor sharp exactness of the cosmological ÂSpace speed factor L will justify itself in the really surprising calculation of the gravitational strength Fg required to determine R , R¶Â and G :
LÂ =
104 Meter 1 Meter = = 1 µ 10-3 Am s-1E = 0.001 Am s-1E HexactL 107 Second 103 Second
Output - Derivation of important physical constants by a sequence of simple yet powerful exact symbolic equations ordered by their natural dependencies
Exact symbolic relation for e0‰ - ‰Space Electric Constant HSIL e 0Â =
(12)
1 1 * = 8.85418781762038985053656303171075026060837 … µ 10-12 AF m-1E m 0 c  2
e0SI HCODATA-1998ê2002ê2006ê2010L = 8.85418781762038985053656303171075026060837 … µ 10-12 AF m-1E Exact symbolic relation for CC‰ - ‰Space Coulomb Constant HSIL CCÂ =
m0 * c 1 =  4 * p * e 0 4*p
2
(13)
= 8.9875517873681764 µ 109 Am F-1E HexactL
CCSI HCODATA-1998ê2002ê2006ê2010L = 8.9875517873681764 µ 109 Am F-1E HexactL Exact symbolic relation for Z0‰ - ‰Space Impedance of Free Space HSIL
(14)
Z0 = m0 * c = 376.730313461770655468198400420319308268624 … @WD Z0SI HCODATA-1998ê2002ê2006ê2010L = 376.730313461770655468198400420319308268624 … @WD Exact symbolic relation for WPl‰ - ‰Space Planck Resistance Halso ZPl‰ L HSIL WPl = CC *
(15)
Z 0 m0 * c 1 1 1 = * = =  = 299 792 458 µ 10-7 @WD = 29.9792458 @WD HexactL c 4 * p * e 0 c  4*p 4*p
Exact symbolic relation for tB‰ - ‰Space Base Time H‰SpaceL
(16)
iTime tB = Second = 9.90199524493607240339031748312024134463439 … µ 10-20 @sD iPrime * iFlat Exact symbolic relation for fB‰ - ‰Space Base Frequency H‰SpaceL iPrime * iFlat 1 fB = = 1.00989747547233449700865132495204702555024 … µ 1019 @HzD iTime Second
Version: 2014-12-21-2355 | © iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717
(17)
Exact Symbolic Equations for Physical Constants - SI Table.nb |
Exact symbolic relation for e‰ - ‰Space Elementary Charge H‰Space ê SIL
3
(18)
e = tB * Hf * 1 AmpereL = 1.60217648627464052570382567635216160884957 … µ 10-19 @A sD or @CD eSI HCODATA-1998L = 1.602176462 H63L µ 10-19 @CD ur = 3.9 ä 10-8 eSI HCODATA-2002L = 1.60217653 H14L µ 10-19 @CD
ur = 8.5 ä 10-8
eSI HCODATA-2006L = 1.602176487 H40L µ 10
-19
@CD
ur = 2.5 ä 10-8
eSI HCODATA-2010L = 1.602176565 H35L µ 10
-19
@CD
ur = 2.2 ä 10-8
Exact symbolic relation for h‰ - ‰Space Planck Constant H‰Space ê SIL
(19)
h = e * tB * H2 * p3 * iPrime * 1 VoltL = 6.62606895758893017474589920852009104600807 … µ 10 hSI HCODATA-1998L = 6.62606876 H52L µ 10-34 @J sD ur = 7.8 ä 10-8 hSI HCODATA-2002L = 6.6260693 H11L µ 10-34 @J sD hSI HCODATA-2010L = 6.62606957 H29L µ 10
@J sD
ur = 1.7 ä 10-7
hSI HCODATA-2006L = 6.62606896 H33L µ 10-34 @J sD -34
-34
ur = 5.0 ä 10-8 ur = 4.4 ä 10-8
@J sD
Exact symbolic relation for KJ‰ - ‰Space Josephson Constant HSIL K JÂ
(20)
1 fB 2 * e = * = = 483 597.890854922423506513108725780312000308 … µ 109 AHz V-1E p3 iPrime * 1 Volt h KJSI HCODATA-1998L = 483 597.898 H19L µ 109 AHz V-1E
ur = 3.9 ä 10-8
9
-1
ur = 8.5 ä 10-8
9
-1
KJSI HCODATA-2006L = 483 597.891 H12L µ 10 AHz V E
ur = 2.5 ä 10-8
KJSI HCODATA-2010L = 483 597.870 H11L µ 109 AHz V-1E
ur = 2.2 ä 10-8
KJSI HCODATA-2002L = 483 597.879 H41L µ 10 AHz V E
Exact symbolic relation for F0‰ - ‰Space Magnetic Flux Quantum HSIL F 0Â
(21)
1 h = * H2 * p3 * iPrime * 1 VoltL * tB = 1 ê KJ = = 2.067833667 µ 10-15 @V sD or @WbD HexactL 2 2 * e F0SI HCODATA-1998L = 2.067833636 H81L µ 10-15 @WbD ur = 3.9 ä 10-8 F0SI HCODATA-2002L = 2.06783372 H18L µ 10-15 @WbD
ur = 8.5 ä 10-8
F0SI HCODATA-2006L = 2.067833667 H52L µ 10
-15
@WbD
ur = 2.5 ä 10-8
F0SI HCODATA-2010L = 2.067833758 H46L µ 10
-15
@WbD
ur = 2.2 ä 10-8
Exact symbolic relation for G0‰ - ‰Space Conductance Quantum HSIL
(22)
2
G 0Â =
Hf + 1L * Hf - 1L * 2 Ampere e = 2 *  = 7.7480916953976672326992617649075234292023 … µ 10-5 AW-1E H2 * p3 * iPrime * 1 VoltL h G0SI HCODATA-1998L = 7.748091696 H28L µ 10-5 @SD
ur = 3.7 ä 10-9
G0SI HCODATA-2002L = 7.748091733 H26L µ 10-5 @SD
ur = 3.3 ä 10-9
G0SI HCODATA-2006L = 7.7480917004 H53L µ 10
-5
@SD
ur = 6.8 ä 10-10
G0SI HCODATA-2010L = 7.7480917346 H25L µ 10
-5
@SD
ur = 3.2 ä 10-10
Exact symbolic relation for WQH‰ - ‰Space Quantum Hall Resistance Halso QHE‰ or RK‰ L HSIL WQHÂ = RKÂ =
(23)
H2 * p3 * iPrime * 1 VoltL h = Â2 = 25 812.8075741281082301127737241152416247064 … @WD f * 1 Ampere e RKSI HCODATA-1998L = 25 812.807572 H95L @WD ur = 3.7 ä 10-9 RKSI HCODATA-2002L = 25 812.807449 H86L @WD
ur = 3.3 ä 10-9
RKSI HCODATA-2006L = 25 812.807557 H18L @WD
ur = 6.8 ä 10-10
RKSI HCODATA-2010L = 25 812.8074434 H84L @WD
ur = 3.2 ä 10-10
Exact symbolic relation for a‰ - ‰Space Fine–Structure Constant HSIL
(24)
2
a = 2 * p *
WPl m0 * c e =  * = 7.29735253284426304214030535293316736157410 … µ 10-3 WQH 2 h aSI HCODATA-1998L = 7.297352533 H27L µ 10-3
ur = 3.7 ä 10-9
-3
ur = 3.3 ä 10-9
aSI HCODATA-2002L = 7.297352568 H24L µ 10
-3
ur = 6.8 ä 10-10
aSI HCODATA-2010L = 7.2973525698 H24L µ 10-3
ur = 3.2 ä 10-10
aSI HCODATA-2006L = 7.2973525376 H50L µ 10
Exact symbolic relation for a‰-1 - ‰Space Inverse Fine–Structure Constant HSIL a = aÂ-1
(25)
RK 2 h = 2*  = *  = 137.035999768293168977036702342995309148275 … Z 0 m0 * c  e  2 aSI aSI aSI aSI
= aSI HCODATA-1998L-1 = aSI HCODATA-2002L-1 = aSI HCODATA-2006L-1 = aSI HCODATA-2010L-1
= 137.03599976 H50L ur = 3.7 ä 10-9 = 137.03599911 H46L ur = 3.3 ä 10-9 = 137.035999679 H94L ur = 6.8 ä 10-10 = 137.035999074 H44L ur = 3.2 ä 10-10
© iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717 | Version: 2014-12-21-2355
4
| Exact Symbolic Equations for Physical Constants - SI Table.nb
Exact symbolic relations from EMF‰ - ‰Space Electronic Mass Factor Relations H‰SpaceL
(26)
EMFwoBÂ is the EMFÂ ÂSpace-Pi4 circle diameter minus 2, in other words - the diameter of the inner circle excluding its border cells:
EMFwoBÂ = EMFÂ - 2 = 111 111 HexactL EMFÂSquared is the area of an ÂSpace-Pi4 circle with EMFÂ diameter, in other words - the EMFÂ circle area including its border cells:
EMFÂSquared = EMFÂ2 = 12 346 098 769 HexactL EMFwoBÂSquared is the area of an ÂSpace-Pi4 circle with EMFÂ diameter minus 2, in other words - the EMFÂ circle area excluding its border cells (note the numeric symmetry center of this area):
EMFwoBÂSquared = HEMFÂ - 2L2 = 12 345 654 321 = EMFÂ2 - 444 448 = EMFÂ2 - p4Â * 111 112 HexactL Exact symbolic relations from HMF‰ - ‰Space Hadronic Mass Factor Relations H‰SpaceL
(27)
HMFwoBÂ is the HMFÂ ÂSpace circle diameter minus 2, in other words - the diameter of the inner circle excluding its border cells:
2
HMFwoBÂ = HMFÂ - 2 = 11 111 111 119 391 = 11 111 111 119 393 - 2 =
107 + H19 * 3923L - 2 HexactL p3Â 2
HMFÂSquared is the area of an ÂSpace circle with HMFÂ diameter, in other words - the HMFÂ circle area including its border cells:
HMFÂSquared = HMFÂ2 = 123 456 790 307 498 765 500 688 449 =
107 p3Â 1
4
+
74 537 p3Â 2
2
2
+
2 * 107 * 74 537 p3Â 4
1
HexactL
HMFwoBÂSquared is the area of an ÂSpace circle with HMFÂ diameter minus 2, in other words - the HMFÂ circle area excluding its border cells:
HMFwoBÂSquared = HHMFÂ - 2L2 = 123 456 790 307 454 321 056 210 881 = HMFÂ2 - 44 444 444 477 568 HexactL Exact symbolic relation for Fg‰ - ‰Space Gravitational Force of Graviton H‰SpaceL
(28)
2 * p3 * 1 HNewton MeterL 1 L 4 L 4 Fg = * K O * Â4 = p3 * 1 Newton * K  O = 3.71397044170836071737 … µ 10-46@ND 2 1 Meter c c Exact symbolic relation for REMF‰ or R‰ - ‰Space Rydberg–EMF‰ Constant H‰SpaceL
(29)
The ÂSpace Electronic Mass Factor EMFÂ defined by ÂSpace-Pi4 geometry is enough to calculate electron mass (see below) within full CODATA precision but is not enough to calculate R¶ to 5.0 µ 10-12 :
REMFÂ = RÂHEMF
Â
onlyL
=
2 10
1 Meter iFlatÂ2
2
*
EMF * I107M h * fB * a * Fg iFlatÂ-1
6
= 10 973 731.560334749537933930934 … Am-1E
R¶SI HCODATA-1998L = 10 973 731.568549 H83L Am-1E
ur = 7.6 ä 10-12
-1
ur = 6.6 ä 10-12
-1
ur = 6.6 ä 10-12
-1
ur = 5.0 ä 10-12
R¶SI HCODATA-2002L = 10 973 731.568525 H73L Am E R¶SI HCODATA-2006L = 10 973 731.568527 H73L Am E R¶SI HCODATA-2010L = 10 973 731.568539 H55L Am E Exact symbolic relation for R•‰ - ‰Space Rydberg–Infinity Constant HSIL
(30)
The ÂSpace Hadronic Mass Factor HMFÂ is a currently heuristic determined factor from ÂSpace geometric assumptions about an intermediate result in the course of the initial derivation of the REMFÂ constant:
R¶Â = R¶Â HEMF +HMF L = Â
Â
1 Meter iFlatÂ2
10
2
*
2 * p3 * EMF 2 * p3 * HMF h * fB * * -1 a * Fg iFlat iFlatÂ-1
= 10 973 731.5685142 … Am-1E
R¶SI HCODATA-1998L = 10 973 731.568549 H83L Am-1E R¶SI HCODATA-2002L = 10 973 731.568525 H73L Am-1E R¶SI HCODATA-2006L = 10 973 731.568527 H73L Am-1E R¶SI HCODATA-2010L = 10 973 731.568539 H55L Am-1E Exact symbolic relation for a0‰ - ‰Space Bohr Radius HSIL
(31)
a a 0 = = 0.52917720863717692779209570950225052568605 … µ 10-10 @mD 4 * p * R a0SI HCODATA-1998L = 0.5291772083 H19L µ 10-10 @mD ur = 3.7 ä 10-9 a0SI HCODATA-2002L = 0.5291772108 H18L µ 10-10 @mD
ur = 3.3 ä 10-9
a0SI HCODATA-2006L = 0.52917720859 H36L µ 10
-10
@mD
ur = 6.8 ä 10-10
a0SI HCODATA-2010L = 0.52917721092 H17L µ 10
-10
@mD
ur = 3.2 ä 10-10
Exact symbolic relation for le‰ - ‰Space Electron Compton Wavelength HSIL
(32)
2
1 a * Â = 2.42631021616607544725169130809866306042609 … µ 10-12 @mD RÂ 2 leSI HCODATA-1998L = 2.426310215 H18L µ 10-12 @mD ur = 7.3 ä 10-9
l e =
leSI HCODATA-2002L = 2.426310238 H16L µ 10-12 @mD leSI HCODATA-2006L = 2.4263102175 H33L µ 10-12 @mD leSI HCODATA-2010L = 2.4263102389 H16L µ 10
-12
@mD
ur = 6.7 ä 10-9 ur = 1.4 ä 10-9 ur = 6.5 ä 10-10
Exact symbolic relation for me‰ - ‰Space Electron Mass in Kilogram HSIL m eÂ
1 h = *  = 9.10938214673629989328651884285560488235943 … µ 10-31 @kgD l e c Â
meSI HCODATA-1998L = 9.10938188 H72L µ 10-31 @kgD meSI HCODATA-2002L = 9.1093826 H16L µ 10
-31
@kgD
ur = 7.9 ä 10-8 ur = 1.7 ä 10-7
meSI HCODATA-2006L = 9.10938215 H45L µ 10
-31
@kgD
ur = 5.0 ä 10-8
meSI HCODATA-2010L = 9.10938291 H40L µ 10
-31
@kgD
ur = 4.4 ä 10-8
Version: 2014-12-21-2355 | © iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717
(33)
Exact Symbolic Equations for Physical Constants - SI Table.nb |
5
The following equation shows a plausible ÂSpace geometric representation of the above derived electron mass result ratio in SI unit kg:
H2 * p3Â * iPrimeÂL6 *
m e ã
10 Volt Ampere iPrimeÂ
* EMFÂ
H2 * p * fÂL * Hp * p3Â * 1 MeterL2
* tBÂ3 = 9.10938214673629989328 … µ 10-31 AV A s3 m-2 = kgE
The following equation shows how the ÂSpace Base-Time tBÂ interlocks perfectly with the ÂSpace geometry when using a normalized time (only the geometric factors will remain in dividend):
meÂkg HEMF
tN L
3 tBÂ I 1 Second M
ã 20 *
H2 * p3 * iPrimeÂL4 * EMF * iPrime f * p3
@kgD ã
47 071 500 170 261 669 264 400 816 960 @kgD f * p3
Exact symbolic relation for UnitJoule2eV‰ - ‰Space Joule HVAsL to eV Conversion Factor HSIL
(34)
1 1 ElectronVolt eV * = 6.24150964994615986927752582241791153328447 … µ 1018 B F e 1 Volt J UnitJoule2eVSI HCODATA-2010L = 6.24150934 H14L µ 1018 @eV ê JD ur = 2.2 ä 10-8
UnitJoule2eVÂ =
Exact symbolic relation for me‰ in eV ë c2 - ‰Space Electron Mass in Electron Volt HSIL
(35)
2
meÂeV = me * c * UnitJoule2eV = 0.510998909895906978901295835346660403120869 … @eVD meSIeV HCODATA-1998L = 0.510998902 H21L @eVD ur = 4.0 ä 10-8 meSIeV HCODATA-2002L = 0.510998918 H44L @eVD
ur = 8.6 ä 10-8
meSIeV HCODATA-2006L = 0.510998910 H13L @eVD
ur = 2.5 ä 10-8
meSIeV HCODATA-2010L = 0.510998928 H11L @eVD
ur = 2.2 ä 10-8
The following equation shows a plausible ÂSpace geometric representation of the above derived electron mass result ratio in accepted SI unit eV/c2 :
5
EMFÂ1 * HiTime * cÂL2 * iPrimeÂ3 * p3 4 * I 15 M * I 101 7 M
meÂeV HEMF L ==
f 2 * p3
Â
6
*
ElectronVolt Meter I Second M
2
The following equation incorporates also the Hadronic Mass Factor HMF from R¶Â which results in a slightly different but less precise (!) value for the electron mass result ratio in accepted SI unit eV/c2 :
5
meÂeV HEMF +HMF L = Â
EMFÂ1 * HMFÂ1 * HiTime * cÂL2 * iPrimeÂ3 * I 15 M * p3 6 * I 101 7 M f 2 * p3
Â
8
*
ElectronVolt Meter I Second M
2
The following equation shows how the ÂSpace Base-Time tBÂ interlocks perfectly with the ÂSpace geometry of meÂeV HEMF L when using a normalized time (only the geometric factors will remain in dividend): Â
meÂeV HEMF
tN L
 *c I 1tB M Second
2
ã 20 *
H2 * p3 * iPrimeÂL4 * EMF * iPrime f 2 * p3
eV 47 071 500 170 261 669 264 400 816 960 eV B 2Fã B 2F c f 2 * p3 c
This allows a rather interesting insight about an actually only geometrically reasoned ratio between the electron mass in unit [kg] and the electron mass in unit [eV/c2 ] when using normalized ÂSpace-BaseTime:
meÂeV-EMF
tN
meÂkg-EMF
tN
=
47 071 500 170 261 669 264 400 816 960 eV 47 071 500 170 261 669 264 400 816 960 1 B 2 Fì @kgD ã f f 2 * p3 c f * p3
Exact symbolic relation for E1‰ - ‰Space First Ionization Energy HSIL
(36)
E1 = -me * cÂ2 * aÂ2 ë 2 = -2.17987196726474437467651577093141236426372 … µ 10-18 @JD E1SI HCODATA-1998L = -2.17987190 H17L µ 10-18 @JD
ur = 7.8 ä 10-8
E1SI HCODATA-2002L = -2.17987209 H37L µ 10
-18
@JD
ur = 1.7 ä 10-7
E1SI HCODATA-2006L = -2.17987197 H11L µ 10
-18
@JD
ur = 5.0 ä 10-8
E1SI HCODATA-2010L = -2.179872171 H96L µ 10
-18
ur = 4.4 ä 10-8
@JD
Exact symbolic relation for E1‰ in eV - ‰Space First Ionization Energy in Electron Volt HSIL
(37)
E1ÂeV = E1Â * UnitJoule2eVÂ = -13.6056919193300215276508980243124019783562 … @eVD E1SIeV HCODATA-1998L = -13.60569172 H53L @eVD ur = 3.9 ä 10-8 E1SIeV HCODATA-2002L = -13.6056923 H12L @eVD
ur = 8.5 ä 10-8
E1SIeV HCODATA-2006L = -13.60569193 H34L @eVD
ur = 2.5 ä 10-8
E1SIeV HCODATA-2010L = -13.60569253 H30L @eVD
ur = 2.2 ä 10-8
Exact symbolic relation for re‰ - ‰Space Classical Electron Radius HSIL r eÂ
(38)
m 0 1 = *J * eÂ2N = 2.81794028598420868977816631313917074508658 … µ 10-15 @mD m e 4*p E1SI HCODATA-1998L = 2.817940285 H31L µ 10-15 @mD E1SI HCODATA-2002L = 2.817940325 H28L µ 10
-15
E1SI HCODATA-2006L = 2.8179402894 H58L µ 10
@mD
-15
@mD
E1SI HCODATA-2010L = 2.8179403267 H27L µ 10-15 @mD
ur = 1.1 ä 10-8 ur = 1.0 ä 10-8 ur = 2.1 ä 10-9 ur = 9.7 ä 10-10
The following equation allows to derive the electron internal ÂSpace-Pi4 EMF Unit Cell Width (UCW) from classical electron radius re times 2*p (ratio of re circumfence length to ÂSpace-Pi4 EMF circle at border):
iEMFp4
ÂUCW
=
2 * p * r e = 3.98373735541737662038790471639852699125673 … µ 10-20 @mD p4 * HEMF - 1L
© iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717 | Version: 2014-12-21-2355
6
| Exact Symbolic Equations for Physical Constants - SI Table.nb
Exact symbolic relation for sTe - ‰Space Total Thomson Cross–Section for the Electron H‰Space ê SIL
(39)
‰
s Te = K Â
8*p O 3
6
-1
a 1 * 6 p * R 2
*
= re 2 = 7.94078745537276385751459187948444292350876 … µ 10-30 Am2E
Exact symbolic relation for se‰ - ‰Space Thomson Cross–Section for the Electron H‰Space ê SIL a 6 1 * 6 p * R 2
s e =
(40)
8*p =K O * re 2 = 0.665245854227121681608523102817914108981778 … µ 10-28 Am2E 3 seSI HCODATA-1998L = 0.665245854 H15L µ 10-28 Am2E seSI HCODATA-2002L = 0.665245873 H13L µ 10
-28
ur = 2.2 ä 10-8 ur = 2.0 ä 10-8
2
Am E Am E
ur = 4.1 ä 10-9
seSI HCODATA-2010L = 0.6652458734 H13L µ 10-28 Am2E
ur = 1.9 ä 10-9
seSI HCODATA-2006L = 0.6652458558 H27L µ 10
-28
2
Exact symbolic relation for mB‰ - ‰Space Bohr Magneton HSIL m BÂ
(41)
1 h e = * *  = 927.400913720529601481143982928915766842110 … µ 10-26 AJ T-1E 2 2 * p m e mBSI HCODATA-1998L = 927.400899 H37L µ 10-26 AJ T-1E mBSI HCODATA-2002L = 927.400949 H80L µ 10
-26
mBSI HCODATA-2006L = 927.400915 H23L µ 10
-26
ur = 4.0 ä 10-8
-1
ur = 8.6 ä 10-8
-1
AJ T E
ur = 2.5 ä 10-8
mBSI HCODATA-2010L = 927.400968 H20L µ 10-26 AJ T-1E
ur = 2.2 ä 10-8
AJ T E
The following equation shows a plausible ÂSpace geometric representation of the above derived ÂSpace Bohr Magneton result ratio in ÂSpace unit Ampere*Meter2 (SI unit Joule/Tesla):
3
Hp * 1 MeterL2 1 f * * 10 * EMF * iPrime 2 2 * p3 * iPrimeÂ
m BÂ ã
* H1 AmpereL AA m2 = J T-1E
Exact symbolic relation for G‰ - ‰Space Gravitational Constant H‰Space ê SIL GÂ = aÂ
10
* He * RÂL
-4
* H4 * p * m0Â L
-2
(42)
* Fg = 6.67411240886558638081686786228248718524716 … µ 10
GSI HCODATA-1998L = 6.673 H10L µ 10
-11
3
Am kg
-1
-2
s E
GSI HCODATA-2002L = 6.6742 H10L µ 10-11 Am3 kg-1 s-2E GSI HCODATA-2010L = 6.67384 H80L µ 10-11 Am3 kg-1 s-2E
ur = 1.2 ä 10-4
Am kg
-1
kg s2
F
ur = 1.5 ä 10-4 ur = 1.0 ä 10-4
3
B
m3
-3
s E
GSI HCODATA-2006L = 6.67428 H67L µ 10
-11
ur = 1.5 ä 10
-11
-2
Exact symbolic relation for aG‰ - ‰Space Gravitational Coupling Constant HSIL aGÂ =
m eÂ
2
h I 2*p *
c M GÂ
= 1.75175987408291775584773314462132128637135 … µ 10-45 B
(43) 2
kg = 1F kg2
Exact symbolic relation for aG‰-1 - ‰Space Inverse Gravitational Coupling Constant HSIL aGÂ = aGÂ-1 =
h I 2*p
c M GÂ
*
m e 2
(44)
= 5.70854495981374457648774543832205082308204 … µ 1044
Output - Derivation of Planck constants which like aGÂ depend on exact symbolic relations for gravitational constant GÂ, Planck constant hÂ, c0Â and m0Â [2]
Exact symbolic relation for Planck Unit ZPl‰ - ‰Space Planck Impedance Halso WPl‰ L HSIL ZPlÂ
(45)
m0 1 1 h 1 = CC ê c = * = * = * c = WPl = 29.9792458 @WD HexactL 4 * p * e0 c 2 * p qPl 2 4*p
Exact symbolic relation for Planck Unit qPl‰ - ‰Space Planck Charge HSIL qPl = e ë
a = e ì
m0 * c  e  2 * = 2 hÂ
K
m0 * c 1 -1 * O = 1.87554586953090863429 … µ 10-18 @CD 2 hÂ
Exact symbolic relation for Planck Unit VPl‰ - ‰Space Planck Electric Potential HSIL VPl = EPl ê qPl =
CCÂ *
c 4 = GÂ
1 c 4 * Â = 4 * p * e 0Â GÂ
c 2 c 4 * = CC GÂ
1 4 * p * e 0Â
-1
*
c 6 = GÂ
c 4 ì GÂ
2 * h = m0 * cÂ
m0 * c 2 * c  7 2 * h * GÂ
2
=
FPl c 3 ì qPl =  ì c GÂ
2 * h = m 0 * c Â
m 0 * c  7 2 * h * GÂ
2
=
Version: 2014-12-21-2355 | © iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717
(49)
m 0 * c  3 c 6 * 2 = 6.4529991027667 … µ 1061 AV m-1E 2 * h GÂ
Exact symbolic relation for Planck Unit BfPl‰ - ‰Space Planck Magnetic Field HSIL BfPl =
(48)
4*p c 6 * Â = 3.4789216451769684 … µ 1025 @AD 2 GÂ m 0Â * cÂ
Exact symbolic relation for Planck Unit EfPl‰ - ‰Space Planck Electric Field HSIL EfPl = FPl ê qPl =
(47)
m0Â c 6 * Â = 1.04295447119700719556 … µ 1027 @VD 4*p GÂ
Exact symbolic relation for Planck Unit IPl‰ - ‰Space Planck Current HSIL IPl = qPl ê tPl =
(46)
m0 * c c  6 * 2 = 2.152488807028875629 … µ 1053 @TD 2 * h GÂ
(50)
Exact Symbolic Equations for Physical Constants - SI Table.nb |
Exact symbolic relation for Planck Unit lPl‰ - ‰Space Planck Length HSIL
(51)
h G *  = 1.61623216521111445637329221674505738559198 … µ 10-35 @mD 2 * p c3Â
lPl = c * tPl =
lPlSI HCODATA-1998L = 1.6160 H12L µ 10-35 @mD lPlSI HCODATA-2002L = 1.61624 H12L µ 10
-35
@mD
ur = 7.5 ä 10-4 ur = 7.5 ä 10-5
lPlSI HCODATA-2006L = 1.616252 H81L µ 10
-35
@mD
ur = 5.0 ä 10-5
lPlSI HCODATA-2010L = 1.616199 H97L µ 10
-35
@mD
ur = 6.0 ä 10-5
Exact symbolic relation for Planck Unit tPl‰ - ‰Space Planck Time HSIL
(52)
h G *  = 5.39117019818795593708128647033894823862440 … µ 10-44 @sD 2 * p c 5
tPl = lPl ê c =
tPlSI HCODATA-1998L = 5.3906 H40L µ 10-44 @sD
ur = 7.5 ä 10-4
tPlSI HCODATA-2002L = 5.39121 H40L µ 10
-44
@sD
ur = 7.5 ä 10-5
tPlSI HCODATA-2006L = 5.39124 H27L µ 10
-44
@sD
ur = 5.0 ä 10-5
tPlSI HCODATA-2010L = 5.39106 H32L µ 10-44 @sD
ur = 6.0 ä 10-5
Exact symbolic relation for Planck Unit wPl‰ - ‰Space Planck Angular Frequency HSIL wPl = 1 ê tPl =
K
APl = c ê tPl =
(53)
h -1 cÂ5 O * = 1.85488486402472196208047423046149143260048 … µ 1043 @HzD 2*p GÂ
Exact symbolic relation for Planck Unit APl‰ - ‰Space Planck Acceleration HSIL K
(54)
h -1 cÂ7 O * = 5.56080492692967169778688163355708990925239 … µ 1051 Am s-2E 2*p GÂ
Exact symbolic relation for Planck Unit EPl‰ - ‰Space Planck Energy HSIL
(55)
h c 5 *  = 1.95610895056233986474205604249492240124958 … µ 109 @JD 2*p GÂ
EPl = mPl * cÂ2 =
Exact symbolic relation for Planck Unit pPl‰ - ‰Space Planck Momentum HSIL
(56)
h c 3 *  = 6.52487712203333635812164441606773977365894 … Akg m s-1E 2*p GÂ
pPl = EPl ê c =
Exact symbolic relation for Planck Unit mPl‰ - ‰Space Planck Mass HSIL
(57)
h c *  = 2.17646473349017217708713820147795038047920 … µ 10-8 @kgD 2 * p GÂ
mPl = EPl ë cÂ2 =
mPlSI HCODATA-1998L = 2.1767 H16L µ 10-8 @kgD
ur = 7.5 ä 10-5
mPlSI HCODATA-2006L = 2.17644 H11L µ 10-8 @kgD
ur = 5.0 ä 10-5
mPlSI HCODATA-2010L = 2.17651 H13L µ 10
-8
ur = 7.5 ä 10-4
@kgD
mPlSI HCODATA-2002L = 2.17645 H16L µ 10
-8
@kgD
ur = 6.0 ä 10-5
Exact symbolic relation for Planck Unit FPl‰ - ‰Space Planck Force HSIL FPl = EPl ê lPl =
(58)
4
c = 1.21028958132808242788913836675842942578224 … µ 1044 @ND GÂ
Exact symbolic relation for Planck Unit PPl‰ - ‰Space Planck Power HSIL PPl = EPl ê tPlÂ
7
(59)
c 5 = Â = 3.62835688478136735483492542472615049774786 … µ 1052 @WD GÂ
Exact symbolic relation for Planck Unit UPl‰ - ‰Space Planck Energy Density Hidentical to PpPl‰ L HSIL UPl = EPl ë lPl 3 = K
h O 2*p
*
c = 4.63320806438459218562119458881615647661309 … µ 10113 AJ m-3E G 2
Exact symbolic relation for Planck Unit PpPl‰ - ‰Space Planck Pressure Hidentical to UPl‰ L HSIL PpPl = FPl ë lPl 2 = K
h O 2*p
h O 2*p
(61)
7
-1
*
c = 4.63320806438459218562119458881615647661309 … µ 10113 AN m-2E G 2
Exact symbolic relation for Planck Unit rPl‰ - ‰Space Planck Density HSIL rPl = mPl ë lPl 3 = K
(60)
7
-1
(62)
5
-1
*
c = 5.15513921254559345321723646104788494477173 … µ 1096 Akg m-3E G 2
© iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717 | Version: 2014-12-21-2355
8
| Exact Symbolic Equations for Physical Constants - SI Table.nb
AddOn - Derivation of additional relations for constants with enhanced precision (e.g. exact Plank temperature TPl needs an exact Boltzmann constant kB )
Enhanced precision relation for Planck Unit TPlk
BSI
ICODATA-2010M
- ‰Space Planck Temperature HSIL
(63)
Planck temperature can be derived with enhanced precision using exact symbolic EPl from ÂSpace theory and kBSI from CODATA-2010 SI value (1.380 µ 6488 H13Lµ10-23 with relative std. uncert. ur = 9.1ä10-7 ):
TPlk = EPl ê kBSI = BSI
h c 5 *  ì kBSI = 1.4168042 H13L µ 1032 @KD 2*p G TPlk
BSI HCODATA-2010L
= 1.416833 H85L µ 10-32 @KD
Enhanced precision relation for Avogadro Constant NAHN ×hL A
SI
HCODATA-2010L
ur = 9.1 µ 10-7 HkBSI L ur = 6.0 ä 10-5
- ‰Space Avogadro Constant HSIL
(64)
Deriving Avogadro constant NA with enhanced precision using exact h from ÂSpace theory and molar Planck constant (NA ·h) from CODATA-2010 SI value (3.990 µ 312 µ 7176 H28Lµ10-10 | ur = 7.0ä10-10 ):
NAHN ÿhL = HNA ÿ hLSI ê h = 6.0221418508 H42L µ 1023 Amol-1E A
ur = 7.0 µ 10-10 HNA ÿ hLSI
SI
NASI
HCODATA-2010L
= 6.02214129 H27L µ 1023 Amol-1E
ur = 4.4 ä 10-8
Enhanced precision relation for Faraday Constant FHNA×eLSI HCODATA-2010L - ‰Space Faraday Constant HSIL
(65)
Deriving Faraday constant F with enhanced precision using exact e and h from ÂSpace theory and molar Planck constant (NA ·h) from CODATA-2010 SI value (3.990 µ 312 µ 7176 H28Lµ10-10 | ur = 7.0ä10-10 ):
FHNAÿeLSI = HNA ÿ hLSI * e ê h = 96 485.340704 H67L AC mol-1E -1
FSIHCODATA-2010L = 96 485.3365 H21LAC mol E
ur = 7.0 µ 10-10 HNA ÿ hLSI ur = 2.2 ä 10-8
AddOn - Derivation of additional exact symbolic relations for unit-conversion constants to calculate results with ÂSpace precision in other unit systems
Exact symbolic relation for UnitKg2eV‰ - ‰Space kg IV A s3 m-2M to eV c-2 Conversion Factor HSIL
(66)
Conversion ÂSpace Constant - identical to conversion factor in SI:
UnitKg2eVÂ = cÂ2 * UnitJoule2eVÂ = 5.60958912102493301403953509387058155199836 … µ 1035 B UnitKg2eVSI HCODATA-2010L = 5.60958885 H12L µ 1035 B
eV F kg
eV F kg
ur = 4.7 µ 10-7
Conclusion Honest? I really wish i had one. But I have nothing of substance to offer. I could give you my opinion but you surely have your own. Nothing i could say comes even close to the simple mathematical facts shown. The century old riddle of the fine–structure constant has just been replaced with a bigger one of 6961. Some people will probably become very enthusiastic about this while other will surely condemn it as too simple to be useful. I am sure the intrinsic precision of ÂSpace theory will open a multitude of new possibilities in many fields of science but there is much more. Current and future experimental capabilities will enable many of the predicted values and relations to be precisely verified but the really big question is open. And the really big question is not to find unidentified ÂSpace mass factors or the surely existing final geometric relationships to identify all hadronic masses in the particle zoo. The really big question is how Douglas Adams could know when he wrote the answer to life, universe and everything is “42” and the most important question is “How much is 7×6?” [13-15]. Welcome to my world deducing all this during my over 20 year long journey throughout all of IT but really not even much of physics - why did i have to do this alone and where have you been all the time …? Yes, i am just an ambitioned hobbyist. But before someone finds an answer how i possibly could have found out and write all this down the “Hitchhiker” has long ago made clear what will happen to people like me …
References [1]
Christian G. Wolf, Theoretical Equation for e and h, http://www.wolframscience.com/summerschool/2012/alumni/images/Theoreticalequationforeandh.pdf but also permanently available under http://web.archive.org/web/20140525191753/http://www.wolframscience.com/summerschool/2012/alumni/images/Theoreticalequationforeandh.pdf (courtesy “The Internet Archive”)
[2]
John A. Macken, The Universe is Only Spacetime (Revision 7.1, May 2013), p. 6-21 and p. 6-23, http://onlyspacetime.com/OnlySpacetime.pdf but also permanently available under http://web.archive.org/web/20131031110540/http://onlyspacetime.com/OnlySpacetime.pdf (courtesy “The Internet Archive”)
[3]
Peter J. Mohr, Barry N. Taylor, David B. Newell, CODATA Recommended Values of the Fundamental Physical Constants: 2010, [arXiv:1203.5425 [physics.atom-ph]], http://arxiv.org/pdf/1203.5425v1.pdf
[4]
Peter J. Mohr, Barry N. Taylor, David B. Newell, CODATA Recommended Values of the Fundamental Physical Constants: 2006, [arXiv:0801.0028 [physics.atom-ph]], http://arxiv.org/pdf/0801.0028v1.pdf
[5]
Peter J. Mohr, Barry N. Taylor, CODATA recommended values of the fundamental physical constants: 2002, http://physics.nist.gov/cuu/Archive/2002RMP.pdf but also permanently available under http://web.archive.org/web/20130605164805/http://physics.nist.gov/cuu/Archive/2002RMP.pdf (courtesy “The Internet Archive”)
[6]
Peter J. Mohr, Barry N. Taylor, CODATA recommended values of the fundamental physical constants: 1998, http://physics.nist.gov/cuu/Archive/1998RMP.pdf but also permanently available under http://web.archive.org/web/20130606005003/http://physics.nist.gov/cuu/Archive/1998RMP.pdf (courtesy “The Internet Archive”)
[7]
Stephen Wolfram, The Mathematica Book, 5th ed. (Wolfram Media, 2003), ISBN 1-57955-022-3, http://www.stephenwolfram.com/publications/mathematica-book
[8]
Todd Rowland, “Calabi-Yau Space. From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein.”, http://mathworld.wolfram.com/Calabi-YauSpace.html
[9]
Stephen Wolfram, A New Kind of Science, (Wolfram Media, 2002), ISBN 1-57955-008-8, http://www.wolframscience.com
[10]
Jean-Philippe Uzan, The fundamental constants and their variation: observational status and theoretical motivations, [arXiv:hep-ph/0205340], http://arxiv.org/pdf/hep-ph/0205340v1.pdf
[11]
Phillip Sheridan, Spiral Architecture for Machine Vision, PhD Thesis, University of Technology, Sydney, February 1996
[12]
Kevin P. Thompson, Arbitrary Sectioning of Angles in Taxicab Geometry, [arXiv:1101.2920 [math.MG]], http://arxiv.org/pdf/1101.2920v1.pdf
[13]
Douglas Adams, The Hitchhiker’s Guide to the Galaxy, (Pan Books (UK), 1979), ISBN 0-330-25864-8, Volume One in the Trilogy of Five
[14]
Douglas Adams, The Restaurant at the End of the Universe, (Pan Books (UK), 1980), ISBN 0-345-39181-0, Volume Two in the Trilogy of Five
[15]
Douglas Adams, “Life, the Universe and Everything”, (Pan Books (UK), 1982), ISBN 0-330-26738-8, Volume Three in the Trilogy of Five
Document Footer End of file "Exact Symbolic Equations for Physical Constants - SI Table.nb" • Version 2014-12-21-2355 • Written and compiled with Mathematica 9.0.1.0 (Mac OS X x86, 32-bit, 64-bit Kernel) on Mac OS X 10.7.5
Version: 2014-12-21-2355 | © iSpace-Theory 2000-2014 by Christian G. Wolf • P.O. Box. 1113 • D-85571 Neubiberg • • +49-160-8233717