JHEP04(2017)029 - Imperial Spiral - Imperial College London

1 downloads 0 Views 666KB Size Report
6 Apr 2017 - 34 Institute for Nuclear Research of the Russian Academy of Sciences (INR ... 54 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom ... 60 University of Maryland, College Park, MD, United States.
Published for SISSA by

Springer

Received: January 31, 2017 Accepted: March 20, 2017 Published: April 6, 2017

The LHCb collaboration E-mail: [email protected] Abstract: The suppressed decay Λ0b → pπ − µ+ µ− , excluding the J/ψ and ψ(2S) → µ+ µ− resonances, is observed for the first time with a significance of 5.5 standard deviations. The analysis is performed with proton-proton collision data corresponding to an integrated luminosity of 3 fb−1 collected with the LHCb experiment. The Λ0b → pπ − µ+ µ− branching fraction is measured relative to the Λ0b → J/ψ(→ µ+ µ− )pπ − branching fraction giving B(Λ0b → pπ − µ+ µ− ) = 0.044 ± 0.012 ± 0.007, B(Λ0b → J/ψ(→ µ+ µ− )pπ − ) where the first uncertainty is statistical and the second is systematic. This is the first observation of a b → d transition in a baryonic decay. Keywords: B physics, Branching fraction, Flavour Changing Neutral Currents, HadronHadron scattering (experiments), Rare decay ArXiv ePrint: 1701.08705

Open Access, Copyright CERN, for the benefit of the LHCb Collaboration. Article funded by SCOAP3 .

doi:10.1007/JHEP04(2017)029

JHEP04(2017)029

Observation of the suppressed decay Λ0b → pπ −µ+µ−

Contents 1

2 Detector and simulation

2

3 Selection

3

4 Normalisation

4

5 Results

5

6 Systematic uncertainties

6

7 Conclusions

7

The LHCb collaboration

1

11

Introduction

The decay of the Λ0b baryon into the pπ − µ+ µ− final state, where the muons do not originate from a hadronic resonance, is mediated by a b → d transition. Such decays are highly suppressed in the Standard Model (SM), as the leading order amplitudes are described by loop diagrams and are also suppressed by the relevant Cabibbo-Kobayshi-Maskawa (CKM) factors. This suppression is not necessarily present in extensions to the SM, and such decays are therefore sensitive to contributions from new particles. One of the lowest-order diagrams for the decay Λ0b → pπ − µ+ µ− is shown in figure 1. The branching fraction of the decay1 Λ0b → pπ − µ+ µ− is expected to be of O(10−8 ). Together with the relevant form factors, a measurement of this branching fraction with respect to that of the analogous b → s transition Λ0b → pK − µ+ µ− , would allow the ratio of CKM elements |Vtd |/|Vts | to be determined. Comparing the value of |Vtd |/|Vts | from these processes with that measured via mixing processes would test the Minimal Flavour Violation hypothesis [1–3]. The decay, Λ0b → pK − µ+ µ− , has recently been observed for the first time by the LHCb collaboration [4]. At present, no form-factor calculations have been made for the Λ0b → pπ − µ+ µ− and Λ0b → pK − µ+ µ− channels due to the complicated hadronic structure in the proton-meson systems. However, recent advances in lattice calculations [5] could make this possible in the future. This paper describes a search for the decay Λ0b → pπ − µ+ µ− , using proton-proton collision data corresponding to an integrated luminosity of 3 fb−1 . The data were collected with 1

The inclusion of charge-conjugate processes is implied throughout this paper.

–1–

JHEP04(2017)029

1 Introduction

d

d

Λ0b u

u u

b

W−

p

u − d π

t Z 0/γ

µ+

Figure 1. One of the lowest-order diagrams for the decay Λ0b → pπ − µ+ µ− .

the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The branching fraction is determined relative to that of the tree-level decay, Λ0b →J/ψ (→µ+ µ− )pπ − , denoted as Λ0b → J/ψ pπ − hereafter, which has been measured with a precision of 15% [6, 7].

2

Detector and simulation

The LHCb detector [8, 9] is a single-arm forward spectrometer covering the pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter, is measured with a resolution of (15 + 29/pT ) µm, where pT is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two Ring-Imaging Cherenkov (RICH) detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection is performed by a trigger [10], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. Simulated events are used to optimise selection criteria and calculate the relative efficiency between the signal and normalisation channels. In the simulation, pp collisions are generated using Pythia [11, 12] with a specific LHCb configuration [13]. Decays of hadronic particles are described by EvtGen [14], in which final-state radiation is generated using Photos [15]. The interaction of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit [16, 17], as described in ref. [18].

–2–

JHEP04(2017)029

µ−

3

Selection

–3–

JHEP04(2017)029

The Λ0b → pπ − µ+ µ− signal candidates are first required to pass the hardware trigger, which selects events containing at least one muon with pT greater than 1.48 GeV/c in the 7 TeVdata or pT > 1.76 GeV/c in the 8 TeVdata. In the subsequent software trigger, at least one of the final-state particles is required to have pT > 1.7 GeV/c in the 7 TeVdata or pT > 1.6 GeV/c in the 8 TeVdata. For muon candidates, a softer requirement of pT > 1.0 GeV/c is applied. The final-state particles that satisfy these transverse momentum criteria are also required to have an impact parameter larger than 100 µm with respect to all PVs in the event. Finally, the tracks of two or more of the final-state particles are required to form a vertex that is significantly displaced from all PVs. Signal candidates are reconstructed by combining two oppositely-charged muons with two additional tracks that are identified as a proton and a pion using particle identification (PID) information that comes primarily from the RICH detectors. All final-state particles are required to have a good-quality track fit and to be inconsistent with originating from a PV. The pion (proton) candidates are required to have pT > 0.4 GeV/c and momentum greater than 2.0 (7.5) GeV/c. The four final-state particles are required to form a goodquality vertex, where the resulting Λ0b candidate is consistent with originating from a PV. The vertex is also required to be significantly displaced from this PV. In order to reject the background from Λ0b → J/ψ pπ − and Λ0b → ψ(2S)pπ − decays, the regions 8.0 < q 2 < 11.0 GeV2/c4 and 12.5 < q 2 < 15.0 GeV2/c4 are excluded from the signal search, where q 2 refers to the invariant mass squared of the two muons. In addition, contributions from Λ0b → Λ0 (→ pπ − )µ+ µ− decays are removed by requiring mpπ− > 1.12 GeV/c2 . Several fully reconstructed decays with at least one misidentified particle can form backgrounds that peak in the distribution of the pπ − µ+ µ− mass, mpπ− µ+ µ− . Specific vetoes are used to reject such backgrounds. The vetoes require that if the invariant mass of the candidate is consistent with a particular hypothesis, then a more restrictive PID requirement is applied. For example, if the proton candidate is assigned the kaon mass and falls within the mass range 5246 < mK + π− µ+ µ− < 5330 MeV/c2 , the PID cut is significantly tightened to reduce K → p misidentification from B 0 → K + π − µ+ µ− decays. Other possible sources of specific backgrounds are the decays Λ0b → pK − µ+ µ− , Bs0 → π + π − µ+ µ− , Bs0 → K + K − µ+ µ− and crossfeed from the normalisation channel Λ0b → J/ψ pπ − . After the vetoes have been applied, the only significant residual background contribution for the signal (normalisation) channel comes from the decay Λ 0b → pK − µ+ µ− (Λ0b → J/ψ (→ µ+ µ− )pK − ). This contamination is treated as a systematic uncertainty in the signal channel and is considered explicitly when extracting the yield of the normalisa− + − tion channel. Partially reconstructed Λ0b → (Λ+ c → pπ µ ν)µ ν decays, which contribute at mpπ− µ+ µ− below the nominal Λ0b mass, are also explicitly considered when determining the signal yield. A boosted decision tree (BDT) [19], with the AdaBoost algorithm [20] and a fivefold cross-validation method [21], is used to reduce combinatorial background. The BDT is trained and optimised on data. Candidates with mpπ− µ+ µ− > 6000 MeV/c2 are used as a sample representative of the background, and Λ0b → J/ψ (→ µ+ µ− )pK − candidates

P =

εsel √ , 3/2 + B

where εsel is the selection efficiency for the signal and B is the background expected within 40 MeV/c2 of the Λ0b mass. After candidates have been reconstructed and the above selection criteria have been applied, the requirement on the BDT output retains 65% of signal events and rejects 99% of the background.

4

Normalisation

The branching fraction of Λ0b → pπ − µ+ µ− can be determined from B(Λ0b → pπ − µ+ µ− ) = B(Λ0b → J/ψ pπ − )B(J/ψ → µ+ µ− ) ×

N (Λ0b → pπ − µ+ µ− ) ε(Λ0b → J/ψ pπ − ) , N (Λ0b → J/ψ pπ − ) ε(Λ0b → pπ − µ+ µ− )

(4.1)

where N (X) is the yield of the final state X and ε(X) is the efficiency to select that final state. The efficiencies are obtained from simulated events and specific control samples in the data. Since the normalisation channel Λ0b → J/ψ pπ − has the same final state and similar kinematics as the signal decay, many systematic uncertainties cancel in the efficiency ratio. Control channels selected from the data are used to account for several effects that are mismodelled in the simulation. For example, the PID efficiencies are obtained from data samples with decays where the final-state particles can be identified by kinematic constraints alone [24]. Further corrections are derived by comparing the data and simulation distributions of the Λ0b momentum, transverse momentum, decay time and the track multiplicity for the normalisation channel. The relative efficiency of the BDT is calculated using both Λ0b → J/ψ pK − and Λ0b → pK − µ+ µ− candidates selected from the data; the resulting efficiencies are consistent with each other. The most important difference in the efficiency between the signal and normalisation modes is due to the q 2 selection for the signal decay, which removes 30% of the signal candidates. For the full selection, including the dimuon mass vetoes, the total relative efficiency is found to be ε(Λ0b → pπ − µ+ µ− )/ε(Λ0b → J/ψ pπ − ) = 0.487 ± 0.022.

–4–

JHEP04(2017)029

selected from the data are used as a proxy for the signal sample. The BDT uses kinematic, geometric and PID variables associated with the proton to discriminate between the signal and background candidates. The two most discriminating input variables are the vertex quality of the Λ0b candidate and its consistency with originating from a PV. In order to reject background containing additional tracks in close proximity to the Λ 0b vertex, an isolation parameter [22] is also used as an input variable. As the presence of a proton from a displaced vertex is a distinctive signature, PID information on the proton candidate is used in the BDT in order to improve the rejection of background. Other, less discriminating variables used in the BDT include the minimum impact parameter with respect to any PV and the momenta of the final-state particles. The requirement on the BDT response is optimised by maximising the figure of merit [23] defined as

Candidates per 13 MeV/c2

350

LHCb

Data

300

Signal and bkg

250 200

Λb→ pπJ/ψ

150

Combinatorial

100

Λb→ pKJ/ ψ

50 0

5400

5600

5800

6000

Figure 2. Mass distribution of Λ0b → J/ψ pπ − candidates compared to the result of the fit. The fit parameterisation is described in the text.

For the normalisation channel, candidates are required to have a dimuon mass within 60 MeV/c2 of the known J/ψ mass. The yield of the normalisation channel is obtained by performing an extended unbinned maximum likelihood fit to the Λ0b → J/ψ pπ − mass distribution, as shown in figure 2. The shape of the Λ0b → J/ψ pπ − mass distribution is described by the sum of two Gaussian functions with power law tails and a shared mean, where the Gaussian parameters are allowed to vary in the fit and the tail parameters are obtained from the simulation. Combinatorial background is parameterised with an exponential function with a decay constant that is allowed to vary in the fit. Finally, there is a small contribution from the decay Λ0b → J/ψ pK − , the shape of which is determined from the simulation and included in the fit to the data. In total, 1017 ± 41 Λ0b → J/ψ pπ − candidates are observed. This yield is significantly lower than in refs. [7, 25], owing to the tighter selection employed to search for the Λ0b → pπ − µ+ µ− decay.

5

Results

The fit to the invariant mass distribution of Λ0b → pπ − µ+ µ− candidates, excluding the J/ψ and ψ(2S) regions, is shown in figure 3. The signal shape is determined from the fit to the normalisation decay mode in data, with corrections for the differences between the signal and normalisation modes obtained from the simulation. The combinatorial background is parameterised as in the fit for the normalisation mode. The shape of the partially reconstructed background is obtained from a fit to the Λ0b → pK − µ+ µ− mass spectrum and the yield is allowed to vary in the fit to the Λ0b → pπ − µ+ µ− mass distribution. A signal contribution is clearly visible and Wilks’ theorem [26] gives a significance of 5.5 standard deviations. The systematic uncertainties described in section 6 are mainly associated with the normalisation. Only the systematic uncertainty arising from the shape assumed for the partially reconstructed background has any appreciable impact on the significance. Releasing the constraints on the relevant parameters, the significance increases to 5.7 standard deviations. Pseudoexperiments indicate that, on-average, the significance would be expected to decrease by 0.3 standard deviations. Given the statistical variation, the observed increase is perfectly compatible with the expectation. This analysis therefore

–5–

JHEP04(2017)029

mpπJ/ ψ / (MeV/c2)

Candidates per 63 MeV/c2

30

LHCb

Data Signal and bkg

20

Λb→ pπµµ Combinatorial

10

0

Part reco

5500

6000

6500

7000

Figure 3. Mass distribution of Λ0b → pπ − µ+ µ− candidates compared to the result of the fit. The fit parameterisation is described in the text.

constitutes the first observation of the decay Λ0b → pπ − µ+ µ− . The number of signal candidates is found to be 22 ± 6, which is converted to relative and absolute branching fractions of B(Λ0b → pπ − µ+ µ− ) = 0.044 ± 0.012 ± 0.007 B(Λ0b → J/ψ (→ µ+ µ− )pπ − ) and −8 B(Λ0b → pπ − µ+ µ− ) = (6.9 ± 1.9 ± 1.1+1.3 −1.0 ) × 10

using eq. (4.1). In both cases, the first uncertainty given is statistical and the second is the systematic uncertainty, which is discussed in the next section. The third uncertainty on B(Λ0b → pπ − µ+ µ− ) arises from the limited knowledge of the Λ0b → J/ψ pπ − [6, 7] and J/ψ →µ+ µ− [27] branching fractions.

6

Systematic uncertainties

The systematic uncertainties are summarised in table 1. The total systematic uncertainty is 16.1%, which is comparable to but smaller than the statistical uncertainty. The largest systematic uncertainty originates from the decay model used to simulate the signal. There are two components to this uncertainty. The first originates from the unknown q 2 distribution for the signal decay. As no model for the Λ0b → pπ − µ+ µ− decay currently exists, the model for the decay Λ0b → Λ0 (→ pπ − )µ+ µ− from ref. [28] is used to derive the q 2 distribution. To assess the systematic uncertainty from this assumption, the decay Λ0b → pK − µ+ µ− is instead assumed to describe the signal q 2 distribution and the difference in relative efficiency is assigned as a systematic uncertainty. The q 2 distribution for the Λ0b → pK − µ+ µ− decay is obtained from data weighted using the sPlot technique [29]. An uncertainty of 7.9% is found. The second component of the systematic uncertainty due to the decay model is the distribution of the pπ − invariant mass. In this case, the distribution in the simulation is weighted to match the data for the Λ 0b → J/ψ pπ − decay

–6–

JHEP04(2017)029

mpπµµ / (MeV/c2)

Source

Uncertainty (%) 7.9 7.7 6.9 5.6 4.4 4.0 3.4 2.2 1.6 1.3 1.0

Total

16.1

Table 1. Summary of the systematic uncertainties on the Λ0b → pπ − µ+ µ− branching fraction.

and the efficiency is reevaluated. The difference of 7.7% in relative efficiency between these two cases is taken as a systematic uncertainty. Another important source of systematic uncertainty is related to the assumption that the partially reconstructed background for the signal has the same shape as the partially reconstructed background in Λ0b → pK − µ+ µ− decays. The effect of this assumption is estimated by allowing the shape parameters for the partially reconstructed background component to vary in the fit, and then calculating the resulting bias in the background estimation using pseudoexperiments. This results in a 6.9% uncertainty on the signal yield. As noted above, this is the only systematic uncertainty that has an appreciable effect on the significance for the observation of the decay Λ0b → pπ − µ+ µ− . Other, smaller uncertainties are assigned to the calculation of the efficiency: the calibration of the BDT efficiency using data (5.6%); the finite size of the simulation samples used (4.4%) and possible mismodelling of the trigger (3.4%). The statistical uncertainty on the Λ0b → J/ψ pπ − yield gives rise to a systematic uncertainty of 4.0%. Due to the low number of signal candidates, a small bias in the signal yield is observed. The size of this bias is calculated using pseudoexperiments and results in a 2.2% systematic uncertainty. No Λ0b → pK − µ+ µ− contribution is considered for the Λ0b → pπ − µ+ µ− fit, due to the low expected yield. The Λ0b → J/ψ pK − decay is used to assess the resulting systematic uncertainty, which is 1.6%. The corrections applied to the simulation give rise to a small systematic uncertainty (1.3%), as does the calibration of the PID efficiency using data (1.0%).

7

Conclusions

A search for the rare decay Λ0b → pπ − µ+ µ− has been performed with proton-proton collision data collected with the LHCb experiment corresponding to 3 fb−1 of integrated luminosity. The search is made excluding the J/ψ and ψ(2S) →µ+ µ− resonances. A signal is observed

–7–

JHEP04(2017)029

Modelling of the q 2 distribution Modelling of the pπ − mass distribution Effect of the partially reconstructed background fit shape Choice of BDT efficiency proxy Finite size of the simulated sample Statistical uncertainty on Λ0b → J/ψ pπ − yield Trigger efficiency Fit bias Λ0b → pK − µ+ µ− contamination Simulation corrections PID efficiency

with a significance of 5.5 standard deviations, which constitutes the first observation of a b → d transition in a baryonic decay. The relative and absolute branching fractions are measured to be B(Λ0b → pπ − µ+ µ− ) = 0.044 ± 0.012 ± 0.007 B(Λ0b → J/ψ (→ µ+ µ− )pπ − ) and

where the first uncertainties are statistical and the second are systematic. The third uncertainty on B(Λ0b → pπ − µ+ µ− ) arises from the limited knowledge of the Λ0b → J/ψ pπ − [7] and J/ψ →µ+ µ− [27] branching fractions. With further advances in lattice QCD combined with a Λ0b → pK − µ+ µ− branching fraction measurement, this result will allow |Vtd |/|Vts | to be measured, enabling a test of the Minimal Flavour Violation hypothesis.

Acknowledgments We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (U.S.A.). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil G´en´eral de Haute-Savoie, Labex ENIGMASS and OCEVU, R´egion Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom). Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References [1] A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

–8–

JHEP04(2017)029

−8 B(Λ0b → pπ − µ+ µ− ) = (6.9 ± 1.9 ± 1.1+1.3 −1.0 ) × 10 ,

[2] T. Feldmann and T. Mannel, Minimal flavour violation and beyond, JHEP 02 (2007) 067 [hep-ph/0611095] [INSPIRE]. [3] LHCb collaboration, First measurement of the differential branching fraction and CP asymmetry of the B ± → π ± µ+ µ− decay, JHEP 10 (2015) 034 [arXiv:1509.00414] [INSPIRE]. [4] LHCb collaboration, Observation of the decay Λ0b → pK − µ+ µ− and a search for CP violation, arXiv:1703.00256 [INSPIRE].

0

[6] LHCb collaboration, Study of the production of Λ0b and B hadrons in pp collisions and first measurement of the Λ0b → J/ψpK − branching fraction, Chin. Phys. C 40 (2016) 011001 [arXiv:1509.00292] [INSPIRE]. [7] LHCb collaboration, Observation of the Λ0b → J/ψpπ − decay, JHEP 07 (2014) 103 [arXiv:1406.0755] [INSPIRE]. [8] LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE]. [9] LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE]. [10] R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE]. [11] T. Sj¨ ostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [12] T. Sj¨ ostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [13] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE]. [14] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE]. [15] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE]. [16] Geant4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. [17] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [18] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE]. [19] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California U.S.A. (1984). [20] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

–9–

JHEP04(2017)029

¯ [5] D.J. Wilson, R.A. Briceno, J.J. Dudek, R.G. Edwards and C.E. Thomas, Coupled ππ, K K scattering in P -wave and the ρ resonance from lattice QCD, Phys. Rev. D 92 (2015) 094502 [arXiv:1507.02599] [INSPIRE].

[21] M. Stone, Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc. B 36 (1974) 111. [22] LHCb collaboration, Measurement of the ratio of branching fractions ¯ 0 → D∗+ τ − ν¯τ )/B(B ¯ 0 → D∗+ µ− ν¯µ ), Phys. Rev. Lett. 115 (2015) 111803 B(B [arXiv:1506.08614] [INSPIRE]. [23] G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C 030908 (2003) MODT002 [physics/0308063] [INSPIRE]. [24] LHCb RICH Group collaboration, M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].

[26] S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60. [27] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE]. [28] W. Detmold, C.J.D. Lin, S. Meinel and M. Wingate, Λb → Λ`+ `− form factors and differential branching fraction from lattice QCD, Phys. Rev. D 87 (2013) 074502 [arXiv:1212.4827] [INSPIRE]. [29] M. Pivk and F.R. Le Diberder, SPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].

– 10 –

JHEP04(2017)029

[25] LHCb collaboration, Evidence for exotic hadron contributions to Λ0b → J/ψpπ − decays, Phys. Rev. Lett. 117 (2016) 082003 [arXiv:1606.06999] [INSPIRE].

The LHCb collaboration

– 11 –

JHEP04(2017)029

R. Aaij40 , B. Adeva39 , M. Adinolfi48 , Z. Ajaltouni5 , S. Akar59 , J. Albrecht10 , F. Alessio40 , M. Alexander53 , S. Ali43 , G. Alkhazov31 , P. Alvarez Cartelle55 , A.A. Alves Jr59 , S. Amato2 , S. Amerio23 , Y. Amhis7 , L. An41 , L. Anderlini18 , G. Andreassi41 , M. Andreotti17,g , J.E. Andrews60 , R.B. Appleby56 , F. Archilli43 , P. d’Argent12 , J. Arnau Romeu6 , A. Artamonov37 , M. Artuso61 , E. Aslanides6 , G. Auriemma26 , M. Baalouch5 , I. Babuschkin56 , S. Bachmann12 , J.J. Back50 , A. Badalov38 , C. Baesso62 , S. Baker55 , W. Baldini17 , R.J. Barlow56 , C. Barschel40 , S. Barsuk7 , W. Barter40 , M. Baszczyk27 , V. Batozskaya29 , B. Batsukh61 , V. Battista41 , A. Bay41 , L. Beaucourt4 , J. Beddow53 , F. Bedeschi24 , I. Bediaga1 , L.J. Bel43 , V. Bellee41 , N. Belloli21,i , K. Belous37 , I. Belyaev32 , E. Ben-Haim8 , G. Bencivenni19 , S. Benson43 , J. Benton48 , A. Berezhnoy33 , R. Bernet42 , A. Bertolin23 , C. Betancourt42 , F. Betti15 , M.-O. Bettler40 , M. van Beuzekom43 , Ia. Bezshyiko42 , S. Bifani47 , P. Billoir8 , T. Bird56 , A. Birnkraut10 , A. Bitadze56 , A. Bizzeti18,u , T. Blake50 , F. Blanc41 , J. Blouw11,† , S. Blusk61 , V. Bocci26 , T. Boettcher58 , A. Bondar36,w , N. Bondar31,40 , W. Bonivento16 , I. Bordyuzhin32 , A. Borgheresi21,i , S. Borghi56 , M. Borisyak35 , M. Borsato39 , F. Bossu7 , M. Boubdir9 , T.J.V. Bowcock54 , E. Bowen42 , C. Bozzi17,40 , S. Braun12 , M. Britsch12 , T. Britton61 , J. Brodzicka56 , E. Buchanan48 , C. Burr56 , A. Bursche2 , J. Buytaert40 , S. Cadeddu16 , R. Calabrese17,g , M. Calvi21,i , M. Calvo Gomez38,m , A. Camboni38 , P. Campana19 , D.H. Campora Perez40 , L. Capriotti56 , A. Carbone15,e , G. Carboni25,j , R. Cardinale20,h , A. Cardini16 , P. Carniti21,i , L. Carson52 , K. Carvalho Akiba2 , G. Casse54 , L. Cassina21,i , L. Castillo Garcia41 , M. Cattaneo40 , Ch. Cauet10 , G. Cavallero20 , R. Cenci24,t , D. Chamont7 , M. Charles8 , Ph. Charpentier40 , G. Chatzikonstantinidis47 , M. Chefdeville4 , S. Chen56 , S.-F. Cheung57 , V. Chobanova39 , M. Chrzaszcz42,27 , X. Cid Vidal39 , G. Ciezarek43 , P.E.L. Clarke52 , M. Clemencic40 , H.V. Cliff49 , J. Closier40 , V. Coco59 , J. Cogan6 , E. Cogneras5 , V. Cogoni16,40,f , L. Cojocariu30 , G. Collazuol23,o , P. Collins40 , A. Comerma-Montells12 , A. Contu40 , A. Cook48 , G. Coombs40 , S. Coquereau38 , G. Corti40 , M. Corvo17,g , C.M. Costa Sobral50 , B. Couturier40 , G.A. Cowan52 , D.C. Craik52 , A. Crocombe50 , M. Cruz Torres62 , S. Cunliffe55 , R. Currie55 , C. D’Ambrosio40 , F. Da Cunha Marinho2 , E. Dall’Occo43 , J. Dalseno48 , P.N.Y. David43 , A. Davis3 , O. De Aguiar Francisco2 , K. De Bruyn6 , S. De Capua56 , M. De Cian12 , J.M. De Miranda1 , L. De Paula2 , M. De Serio14,d , P. De Simone19 , C.T. Dean53 , D. Decamp4 , M. Deckenhoff10 , L. Del Buono8 , M. Demmer10 , A. Dendek28 , D. Derkach35 , O. Deschamps5 , F. Dettori40 , B. Dey22 , A. Di Canto40 , H. Dijkstra40 , F. Dordei40 , M. Dorigo41 , A. Dosil Su´arez39 , A. Dovbnya45 , K. Dreimanis54 , L. Dufour43 , G. Dujany56 , K. Dungs40 , P. Durante40 , R. Dzhelyadin37 , A. Dziurda40 , A. Dzyuba31 , N. D´el´eage4 , S. Easo51 , M. Ebert52 , U. Egede55 , V. Egorychev32 , S. Eidelman36,w , S. Eisenhardt52 , U. Eitschberger10 , R. Ekelhof10 , L. Eklund53 , S. Ely61 , S. Esen12 , H.M. Evans49 , T. Evans57 , A. Falabella15 , N. Farley47 , S. Farry54 , R. Fay54 , D. Fazzini21,i , D. Ferguson52 , A. Fernandez Prieto39 , F. Ferrari15,40 , F. Ferreira Rodrigues2 , M. Ferro-Luzzi40 , S. Filippov34 , R.A. Fini14 , M. Fiore17,g , M. Fiorini17,g , M. Firlej28 , C. Fitzpatrick41 , T. Fiutowski28 , F. Fleuret7,b , K. Fohl40 , M. Fontana16,40 , F. Fontanelli20,h , D.C. Forshaw61 , R. Forty40 , V. Franco Lima54 , M. Frank40 , C. Frei40 , J. Fu22,q , W. Funk40 , E. Furfaro25,j , C. F¨arber40 , A. Gallas Torreira39 , D. Galli15,e , S. Gallorini23 , S. Gambetta52 , M. Gandelman2 , P. Gandini57 , Y. Gao3 , L.M. Garcia Martin69 , J. Garc´ıa Pardi˜ nas39 , J. Garra Tico49 , L. Garrido38 , P.J. Garsed49 , D. Gascon38 , C. Gaspar40 , 10 L. Gavardi , G. Gazzoni5 , D. Gerick12 , E. Gersabeck12 , M. Gersabeck56 , T. Gershon50 , Ph. Ghez4 , S. Gian`ı41 , V. Gibson49 , O.G. Girard41 , L. Giubega30 , K. Gizdov52 , V.V. Gligorov8 , D. Golubkov32 , A. Golutvin55,40 , A. Gomes1,a , I.V. Gorelov33 , C. Gotti21,i , M. Grabalosa G´andara5 , R. Graciani Diaz38 , L.A. Granado Cardoso40 , E. Graug´es38 ,

– 12 –

JHEP04(2017)029

E. Graverini42 , G. Graziani18 , A. Grecu30 , P. Griffith47 , L. Grillo21,40,i , B.R. Gruberg Cazon57 , O. Gr¨ unberg67 , E. Gushchin34 , Yu. Guz37 , T. Gys40 , C. G¨obel62 , T. Hadavizadeh57 , C. Hadjivasiliou5 , G. Haefeli41 , C. Haen40 , S.C. Haines49 , S. Hall55 , B. Hamilton60 , X. Han12 , S. Hansmann-Menzemer12 , N. Harnew57 , S.T. Harnew48 , J. Harrison56 , M. Hatch40 , J. He63 , T. Head41 , A. Heister9 , K. Hennessy54 , P. Henrard5 , L. Henry8 , E. van Herwijnen40 , M. Heß67 , A. Hicheur2 , D. Hill57 , C. Hombach56 , H. Hopchev41 , W. Hulsbergen43 , T. Humair55 , M. Hushchyn35 , N. Hussain57 , D. Hutchcroft54 , M. Idzik28 , P. Ilten58 , R. Jacobsson40 , A. Jaeger12 , J. Jalocha57 , E. Jans43 , A. Jawahery60 , F. Jiang3 , M. John57 , D. Johnson40 , C.R. Jones49 , C. Joram40 , B. Jost40 , N. Jurik57 , S. Kandybei45 , W. Kanso6 , M. Karacson40 , J.M. Kariuki48 , S. Karodia53 , M. Kecke12 , M. Kelsey61 , M. Kenzie49 , T. Ketel44 , E. Khairullin35 , B. Khanji12 , C. Khurewathanakul41 , T. Kirn9 , S. Klaver56 , K. Klimaszewski29 , S. Koliiev46 , M. Kolpin12 , I. Komarov41 , R.F. Koopman44 , P. Koppenburg43 , A. Kosmyntseva32 , A. Kozachuk33 , M. Kozeiha5 , L. Kravchuk34 , K. Kreplin12 , M. Kreps50 , P. Krokovny36,w , F. Kruse10 , W. Krzemien29 , W. Kucewicz27,l , M. Kucharczyk27 , V. Kudryavtsev36,w , A.K. Kuonen41 , K. Kurek29 , T. Kvaratskheliya32,40 , D. Lacarrere40 , G. Lafferty56 , A. Lai16 , G. Lanfranchi19 , C. Langenbruch9 , T. Latham50 , C. Lazzeroni47 , R. Le Gac6 , J. van Leerdam43 , A. Leflat33,40 , J. Lefran¸cois7 , R. Lef`evre5 , F. Lemaitre40 , E. Lemos Cid39 , O. Leroy6 , T. Lesiak27 , B. Leverington12 , T. Li3 , Y. Li7 , T. Likhomanenko35,68 , R. Lindner40 , C. Linn40 , F. Lionetto42 , X. Liu3 , D. Loh50 , I. Longstaff53 , J.H. Lopes2 , D. Lucchesi23,o , M. Lucio Martinez39 , H. Luo52 , A. Lupato23 , E. Luppi17,g , O. Lupton57 , A. Lusiani24 , X. Lyu63 , F. Machefert7 , F. Maciuc30 , O. Maev31 , K. Maguire56 , S. Malde57 , A. Malinin68 , T. Maltsev36 , G. Manca7 , G. Mancinelli6 , P. Manning61 , J. Maratas5,v , J.F. Marchand4 , U. Marconi15 , C. Marin Benito38 , P. Marino24,t , J. Marks12 , G. Martellotti26 , M. Martin6 , M. Martinelli41 , D. Martinez Santos39 , F. Martinez Vidal69 , D. Martins Tostes2 , L.M. Massacrier7 , A. Massafferri1 , R. Matev40 , A. Mathad50 , Z. Mathe40 , C. Matteuzzi21 , A. Mauri42 , E. Maurice7,b , B. Maurin41 , A. Mazurov47 , M. McCann55 , J. McCarthy47 , A. McNab56 , R. McNulty13 , B. Meadows59 , F. Meier10 , M. Meissner12 , D. Melnychuk29 , M. Merk43 , A. Merli22,q , E. Michielin23 , D.A. Milanes66 , M.-N. Minard4 , D.S. Mitzel12 , A. Mogini8 , J. Molina Rodriguez1 , I.A. Monroy66 , S. Monteil5 , M. Morandin23 , P. Morawski28 , A. Mord`a6 , M.J. Morello24,t , J. Moron28 , A.B. Morris52 , R. Mountain61 , F. Muheim52 , M. Mulder43 , M. Mussini15 , D. M¨ uller56 , J. M¨ uller10 , K. M¨ uller42 , 10 48 41 51 57 2 V. M¨ uller , P. Naik , T. Nakada , R. Nandakumar , A. Nandi , I. Nasteva , M. Needham52 , N. Neri22 , S. Neubert12 , N. Neufeld40 , M. Neuner12 , T.D. Nguyen41 , C. Nguyen-Mau41,n , S. Nieswand9 , R. Niet10 , N. Nikitin33 , T. Nikodem12 , A. Novoselov37 , D.P. O’Hanlon50 , A. Oblakowska-Mucha28 , V. Obraztsov37 , S. Ogilvy19 , R. Oldeman16,f , C.J.G. Onderwater70 , J.M. Otalora Goicochea2 , A. Otto40 , P. Owen42 , A. Oyanguren69 , P.R. Pais41 , A. Palano14,d , F. Palombo22,q , M. Palutan19 , J. Panman40 , A. Papanestis51 , M. Pappagallo14,d , L.L. Pappalardo17,g , W. Parker60 , C. Parkes56 , G. Passaleva18 , A. Pastore14,d , G.D. Patel54 , M. Patel55 , C. Patrignani15,e , A. Pearce56,51 , A. Pellegrino43 , G. Penso26 , M. Pepe Altarelli40 , S. Perazzini40 , P. Perret5 , L. Pescatore41 , K. Petridis48 , A. Petrolini20,h , A. Petrov68 , M. Petruzzo22,q , E. Picatoste Olloqui38 , B. Pietrzyk4 , M. Pikies27 , D. Pinci26 , A. Pistone20 , A. Piucci12 , V. Placinta30 , S. Playfer52 , M. Plo Casasus39 , T. Poikela40 , F. Polci8 , A. Poluektov50,36 , I. Polyakov61 , E. Polycarpo2 , G.J. Pomery48 , A. Popov37 , D. Popov11,40 , B. Popovici30 , S. Poslavskii37 , C. Potterat2 , E. Price48 , J.D. Price54 , J. Prisciandaro39,40 , A. Pritchard54 , C. Prouve48 , V. Pugatch46 , A. Puig Navarro42 , G. Punzi24,p , W. Qian57 , R. Quagliani7,48 , B. Rachwal27 , J.H. Rademacker48 , M. Rama24 , M. Ramos Pernas39 , M.S. Rangel2 , I. Raniuk45 , F. Ratnikov35 , G. Raven44 , F. Redi55 , S. Reichert10 , A.C. dos Reis1 , C. Remon Alepuz69 , V. Renaudin7 , S. Ricciardi51 , S. Richards48 , M. Rihl40 , K. Rinnert54 , V. Rives Molina38 , P. Robbe7,40 , A.B. Rodrigues1 , E. Rodrigues59 , J.A. Rodriguez Lopez66 ,

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Centro Brasileiro de Pesquisas F´ısicas (CBPF), Rio de Janeiro, Brazil Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil Center for High Energy Physics, Tsinghua University, Beijing, China LAPP, Universit´e Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France Clermont Universit´e, Universit´e Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille, France LAL, Universit´e Paris-Sud, CNRS/IN2P3, Orsay, France LPNHE, Universit´e Pierre et Marie Curie, Universit´e Paris Diderot, CNRS/IN2P3, Paris, France I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany Fakult¨ at Physik, Technische Universit¨ at Dortmund, Dortmund, Germany Max-Planck-Institut f¨ ur Kernphysik (MPIK), Heidelberg, Germany Physikalisches Institut, Ruprecht-Karls-Universit¨ at Heidelberg, Heidelberg, Germany School of Physics, University College Dublin, Dublin, Ireland Sezione INFN di Bari, Bari, Italy

– 13 –

JHEP04(2017)029

P. Rodriguez Perez56,† , A. Rogozhnikov35 , S. Roiser40 , A. Rollings57 , V. Romanovskiy37 , A. Romero Vidal39 , J.W. Ronayne13 , M. Rotondo19 , M.S. Rudolph61 , T. Ruf40 , P. Ruiz Valls69 , J.J. Saborido Silva39 , E. Sadykhov32 , N. Sagidova31 , B. Saitta16,f , V. Salustino Guimaraes1 , C. Sanchez Mayordomo69 , B. Sanmartin Sedes39 , R. Santacesaria26 , C. Santamarina Rios39 , M. Santimaria19 , E. Santovetti25,j , A. Sarti19,k , C. Satriano26,s , A. Satta25 , D.M. Saunders48 , D. Savrina32,33 , S. Schael9 , M. Schellenberg10 , M. Schiller53 , H. Schindler40 , M. Schlupp10 , M. Schmelling11 , T. Schmelzer10 , B. Schmidt40 , O. Schneider41 , A. Schopper40 , K. Schubert10 , M. Schubiger41 , M.-H. Schune7 , R. Schwemmer40 , B. Sciascia19 , A. Sciubba26,k , A. Semennikov32 , A. Sergi47 , N. Serra42 , J. Serrano6 , L. Sestini23 , P. Seyfert21 , M. Shapkin37 , I. Shapoval45 , Y. Shcheglov31 , T. Shears54 , L. Shekhtman36,w , V. Shevchenko68 , B.G. Siddi17,40 , R. Silva Coutinho42 , L. Silva de Oliveira2 , G. Simi23,o , S. Simone14,d , M. Sirendi49 , N. Skidmore48 , T. Skwarnicki61 , E. Smith55 , I.T. Smith52 , J. Smith49 , M. Smith55 , H. Snoek43 , l. Soares Lavra1 , M.D. Sokoloff59 , F.J.P. Soler53 , B. Souza De Paula2 , B. Spaan10 , P. Spradlin53 , S. Sridharan40 , F. Stagni40 , M. Stahl12 , S. Stahl40 , P. Stefko41 , S. Stefkova55 , O. Steinkamp42 , S. Stemmle12 , O. Stenyakin37 , S. Stevenson57 , S. Stoica30 , S. Stone61 , B. Storaci42 , S. Stracka24,p , M. Straticiuc30 , U. Straumann42 , L. Sun64 , W. Sutcliffe55 , K. Swientek28 , V. Syropoulos44 , M. Szczekowski29 , T. Szumlak28 , S. T’Jampens4 , A. Tayduganov6 , T. Tekampe10 , M. Teklishyn7 , G. Tellarini17,g , F. Teubert40 , E. Thomas40 , J. van Tilburg43 , M.J. Tilley55 , V. Tisserand4 , M. Tobin41 , S. Tolk49 , L. Tomassetti17,g , D. Tonelli40 , S. Topp-Joergensen57 , F. Toriello61 , E. Tournefier4 , S. Tourneur41 , K. Trabelsi41 , M. Traill53 , M.T. Tran41 , M. Tresch42 , A. Trisovic40 , A. Tsaregorodtsev6 , P. Tsopelas43 , A. Tully49 , N. Tuning43 , A. Ukleja29 , A. Ustyuzhanin35 , U. Uwer12 , C. Vacca16,f , V. Vagnoni15,40 , A. Valassi40 , S. Valat40 , G. Valenti15 , A. Vallier7 , R. Vazquez Gomez19 , P. Vazquez Regueiro39 , S. Vecchi17 , M. van Veghel43 , J.J. Velthuis48 , M. Veltri18,r , G. Veneziano57 , A. Venkateswaran61 , M. Vernet5 , M. Vesterinen12 , B. Viaud7 , D. Vieira1 , M. Vieites Diaz39 , H. Viemann67 , X. Vilasis-Cardona38,m , M. Vitti49 , V. Volkov33 , A. Vollhardt42 , B. Voneki40 , A. Vorobyev31 , V. Vorobyev36,w , C. Voß67 , J.A. de Vries43 , C. V´ azquez Sierra39 , R. Waldi67 , C. Wallace50 , R. Wallace13 , J. Walsh24 , J. Wang61 , D.R. Ward49 , H.M. Wark54 , N.K. Watson47 , D. Websdale55 , A. Weiden42 , M. Whitehead40 , J. Wicht50 , G. Wilkinson57,40 , M. Wilkinson61 , M. Williams40 , M.P. Williams47 , M. Williams58 , T. Williams47 , F.F. Wilson51 , J. Wimberley60 , J. Wishahi10 , W. Wislicki29 , M. Witek27 , G. Wormser7 , S.A. Wotton49 , K. Wraight53 , K. Wyllie40 , Y. Xie65 , Z. Xing61 , Z. Xu41 , Z. Yang3 , Y. Yao61 , H. Yin65 , J. Yu65 , X. Yuan36,w , O. Yushchenko37 , K.A. Zarebski47 , M. Zavertyaev11,c , L. Zhang3 , Y. Zhang7 , Y. Zhang63 , A. Zhelezov12 , Y. Zheng63 , X. Zhu3 , V. Zhukov9,33 , S. Zucchelli15

15 16 17 18 19 20 21 22 23 24 25

27 28

29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

– 14 –

JHEP04(2017)029

26

Sezione INFN di Bologna, Bologna, Italy Sezione INFN di Cagliari, Cagliari, Italy Sezione INFN di Ferrara, Ferrara, Italy Sezione INFN di Firenze, Firenze, Italy Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy Sezione INFN di Genova, Genova, Italy Sezione INFN di Milano Bicocca, Milano, Italy Sezione INFN di Milano, Milano, Italy Sezione INFN di Padova, Padova, Italy Sezione INFN di Pisa, Pisa, Italy Sezione INFN di Roma Tor Vergata, Roma, Italy Sezione INFN di Roma La Sapienza, Roma, Italy Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krak´ ow, Poland AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak´ ow, Poland National Center for Nuclear Research (NCBJ), Warsaw, Poland Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia Yandex School of Data Analysis, Moscow, Russia Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia Institute for High Energy Physics (IHEP), Protvino, Russia ICCUB, Universitat de Barcelona, Barcelona, Spain Universidad de Santiago de Compostela, Santiago de Compostela, Spain European Organization for Nuclear Research (CERN), Geneva, Switzerland Institute of Physics, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland Physik-Institut, Universit¨ at Z¨ urich, Z¨ urich, Switzerland Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine University of Birmingham, Birmingham, United Kingdom H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom Department of Physics, University of Warwick, Coventry, United Kingdom STFC Rutherford Appleton Laboratory, Didcot, United Kingdom School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom Imperial College London, London, United Kingdom School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom Department of Physics, University of Oxford, Oxford, United Kingdom Massachusetts Institute of Technology, Cambridge, MA, United States University of Cincinnati, Cincinnati, OH, United States University of Maryland, College Park, MD, United States Syracuse University, Syracuse, NY, United States Pontif´ıcia Universidade Cat´ olica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to2

63 64 65

66 67 68 69

70

b c d e f g h i j k l

m n o p q r s t u v w

Universidade Federal do Triˆ angulo Mineiro (UFTM), Uberaba-MG, Brazil Laboratoire Leprince-Ringuet, Palaiseau, France P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia Universit` a di Bari, Bari, Italy Universit` a di Bologna, Bologna, Italy Universit` a di Cagliari, Cagliari, Italy Universit` a di Ferrara, Ferrara, Italy Universit` a di Genova, Genova, Italy Universit` a di Milano Bicocca, Milano, Italy Universit` a di Roma Tor Vergata, Roma, Italy Universit` a di Roma La Sapienza, Roma, Italy AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Krak´ ow, Poland LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain Hanoi University of Science, Hanoi, Viet Nam Universit` a di Padova, Padova, Italy Universit` a di Pisa, Pisa, Italy Universit` a degli Studi di Milano, Milano, Italy Universit` a di Urbino, Urbino, Italy Universit` a della Basilicata, Potenza, Italy Scuola Normale Superiore, Pisa, Italy Universit` a di Modena e Reggio Emilia, Modena, Italy Iligan Institute of Technology (IIT), Iligan, Philippines Novosibirsk State University, Novosibirsk, Russia † Deceased

– 15 –

JHEP04(2017)029

a

University of Chinese Academy of Sciences, Beijing, China, associated to 3 School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to3 Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to 8 Institut f¨ ur Physik, Universit¨ at Rostock, Rostock, Germany, associated to 12 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 32 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to38 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 43