Joint Inversion Using Multi-Objective Global Optimization Methods Peter G. Leli`evre1 , Rodrigo Bijani2 and Colin G. Farquharson*1
[email protected] http://www.esd.mun.ca/~peter/Home.html http://www.esd.mun.ca/~farq
1 Memorial
University, Department of Earth Sciences, St. John’s, Canada 2 Observat´ orio Nacional, Rio de Janeiro, Brasil
EAGE Conference, Vienna 2016, WS10
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Typical numerical approach for mesh-based inversion (underdetermined) • Local descent-based minimization • Weighted aggregate objective function
min fa (m) = m
X
wi fi (m)
i
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (1 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Typical numerical approach for mesh-based inversion (underdetermined) • Local descent-based minimization • Weighted aggregate objective function
min fa (m) = m
X
wi fi (m)
i
N 1 X fd = N j=1
djpred (m) − djobs
!2
σj2
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (1 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Typical numerical approach for mesh-based inversion (underdetermined) • Local descent-based minimization • Weighted aggregate objective function
min fa (m) = m
X
wi fi (m)
i
N 1 X fd = N j=1
djpred (m) − djobs
!2
σj2
min fa (m) = λfd (m) + fm (m) m
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (1 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Typical numerical approach for mesh-based inversion (underdetermined) • Local descent-based minimization • Weighted aggregate objective function
min fa (m) = m
X
wi fi (m)
i
N 1 X fd = N j=1
djpred (m) − djobs
!2
σj2
min fa (m) = λfd (m) + fm (m) m
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (1 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Disadvantages of the typical inversion approach
1
Appropriate weights must be determined for the aggregate objective function
minm fa (m) = λfd (m) + fm (m)
fa (m) =
X
+
X
λi fd,i (mi ) +
i
X
αj fm,j (mj )
j
ρk fc,k (mk,1 , mk,2 )
k
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (2 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Disadvantages of the typical inversion approach
1
Appropriate weights must be determined for the aggregate objective function
2
All objective functions must be differentiable
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (2 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Disadvantages of the typical inversion approach
1
Appropriate weights must be determined for the aggregate objective function
2
All objective functions must be differentiable
3
Local minima entrapment may occur, providing suboptimal solutions
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (2 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Pareto Multi-Objective Global Optimization (PMOGO) • Multi-Objective Problem (MOP):
h i min f(m) = f1 (m), f2 (m), . . . , fL (m) m
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (3 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Pareto Multi-Objective Global Optimization (PMOGO) • Multi-Objective Problem (MOP):
h i min f(m) = f1 (m), f2 (m), . . . , fL (m) m
• Concept of dominance:
fi (ma ) ≤ fi (mb )
for i = 1, . . . , L
fi (ma ) < fi (mb )
for at least one i
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (3 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Pareto Multi-Objective Global Optimization (PMOGO) • Multi-Objective Problem (MOP):
h i min f(m) = f1 (m), f2 (m), . . . , fL (m) m
• Concept of dominance:
fi (ma ) ≤ fi (mb )
for i = 1, . . . , L
fi (ma ) < fi (mb )
for at least one i
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (3 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Pareto Multi-Objective Global Optimization (PMOGO) • Multi-Objective Problem (MOP):
h i min f(m) = f1 (m), f2 (m), . . . , fL (m) m
• Concept of dominance:
fi (ma ) ≤ fi (mb )
for i = 1, . . . , L
fi (ma ) < fi (mb )
for at least one i
• We want to converge to the Pareto-optimal
curve/surface (related to Tikhonov curve)
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (3 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Pareto Multi-Objective Global Optimization (PMOGO) • Multi-Objective Problem (MOP):
h i min f(m) = f1 (m), f2 (m), . . . , fL (m) m
• Concept of dominance:
fi (ma ) ≤ fi (mb )
for i = 1, . . . , L
fi (ma ) < fi (mb )
for at least one i
• We want to converge to the Pareto-optimal
curve/surface (related to Tikhonov curve) • Non-dominated Sorting Genetic Algorithm
(NSGA-II) of Deb et al. (2002) Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (3 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Massive sulphide deposit scenario from Carter-McAuslan et al. (2015) 0
0
0
(b)
(c)
50
50
100
100
100
150
150
150
200
Depth (m)
50
Depth (m)
Depth (m)
(a)
200
250
250
250
300
300
300
350
350
350
400
400 0
50
0
100 x (m) 1
150
200
2
2
background (gneiss) intrusive (troctolite) lens (sulphide)
400 0
50
−2
Density (g/cc)
1
Rock types:
200
−1
100 x (m) 0
150
1
200
2
Slowness (s/km)
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
0
50
1
100 x (m) 2
150
200
3
Rock unit ID
1
Memorial University, 2 Observat´ orio Nacional (4 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Joint inversion of gravity data and traveltimes Aggregate objective function: Data misfits Model roughness Coupling h i h i fa (m1 , m2 ) = λ1 fd1 (m1 ) + λ2 fd2 (m2 ) + fm1 (m1 ) + fm2 (m2 ) + ρfc (m1 , m2 )
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (5 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Joint inversion of gravity data and traveltimes Aggregate objective function: Data misfits Model roughness Coupling h i h i fa (m1 , m2 ) = λ1 fd1 (m1 ) + λ2 fd2 (m2 ) + fm1 (m1 ) + fm2 (m2 ) + ρfc (m1 , m2 )
zik2
= (m1,k −
wik2 zik2
i=1 k=1 u1,i )2 +
2
2
1
1
Slowness (s/km)
fc (m1 , m2 ) =
C X M X
Slowness (s/km)
Joint coupling term (fuzzy c-means):
0
−1
(m2,k − u2,i )
−1
2 −2
−2 0
1
2
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
0
1 Density (g/cc)
2
0
1
1 Density (g/cc)
2
2
Memorial University, Observat´ orio Nacional (5 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Independent inversion results (aggregate & local minimization) 0
0
0
(a)
(b)
(c)
50
50
50
100
100
100
150
150
150
200
Slowness (s/km)
200
Depth (m)
Depth (m)
Depth (m)
(d) 2
200
250
250
250
300
300
300
350
350
350
400
400
400
1
0
−1
−2 0
50
0
100 x (m) 1
150
200
0
2
−2
Density (g/cc)
1
2
50
−1
100 x (m) 0
150
1
200
2
Slowness (s/km)
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
0
50
1
100 x (m) 2
150
0
200
1 Density (g/cc)
2
3
Rock unit ID
1
Memorial University, 2 Observat´ orio Nacional (6 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Joint inversion with careful local minimization (hand holding) 0
0
0
(a)
(b)
(c)
50
50
50
100
100
100
150
150
150
200
Slowness (s/km)
200
Depth (m)
Depth (m)
Depth (m)
(d) 2
200
250
250
250
300
300
300
350
350
350
400
400
400
1
0
−1
−2 0
50
0
100 x (m) 1
150
200
0
2
−2
Density (g/cc)
1
2
50
−1
100 x (m) 0
150
1
200
2
Slowness (s/km)
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
0
50
1
100 x (m) 2
150
0
200
1 Density (g/cc)
2
3
Rock unit ID
1
Memorial University, 2 Observat´ orio Nacional (7 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Joint inversion with careless local minimization 0
0
0
(a)
(b)
(c)
50
50
50
100
100
100
150
150
150
200
Slowness (s/km)
200
Depth (m)
Depth (m)
Depth (m)
(d) 2
200
250
250
250
300
300
300
350
350
350
400
400
400
1
0
−1
−2 0
50
0
100 x (m) 1
150
200
0
2
−2
Density (g/cc)
1
2
50
−1
100 x (m) 0
150
1
200
2
Slowness (s/km)
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
0
50
1
100 x (m) 2
150
0
200
1 Density (g/cc)
2
3
Rock unit ID
1
Memorial University, 2 Observat´ orio Nacional (8 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Lithological inversion 0
50
• Define several a priori rock types (3 here) 100
• Define physical property distributions for each rock type
Depth (m)
150
(homogeneous here) 200
• PMOGO inversion assigns a rock type to each mesh cell
250
• Simple to add numerically complicated topological
300
constraints, e.g. the model must contain: 350
400 0
50
1
100 x (m)
150
2
200
• 4 contiguous regions • all 3 rock types • 2 regions corresponding to the background
3
Rock unit ID
1
2
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (9 / 18)
Sulphide example
Results from typical strategy
Regularization 300 400 500 600
3
fit
.2
is
1.0 1.2 Gravity Misfit
1
.0 M 1 ty vi ra
G
0.8
2
1.2 0.8 1.0 Gravity Misfit
8 1 0.
2
1
Seismic Misfit
1
2
3
3
Pareto surface vs curve
Conclusion
3D Pareto front SeiRegularization smic Mis 300 fit400 500 600
Lithological inversion:
Results from PMOGO strategy
Regularization 300 400 500 600 S e is m ic M is fit
Introduction
3
3
1
1
1 0.8
2
2
2
2
1
Regularization Seism ic Misfit 30 40 50 60
Regularization Seismic Misfi t 300 400 500 600
Regularization Seismic Misfi 300 400 500t 600
3
1.0 1.2 Gravity Misfit
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
0.8
0.8
1.0 1.2 Gravity Misfit 1
1.0 1.2 Gravity Misfit
Memorial University, 2 Observat´ orio Nacional (10 / 18)
Introduction
Sulphide example
Results from PMOGO strategy
Conclusion
2
3
3
Regularization 300 400 500 600 S e is m ic M is fit
3D Pareto front
8 1 0.
2
G
ra
.0 M 1 ty vi
SeiRegularization smic Mis 300 fit400 500 600
Lithological inversion:
Results from typical strategy
Joint Inversion Using Multi-Objective Global Optimization Methods
.2
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected]
1
1.0 1.2 Gravity Misfit
it
0.8
f is
1
1
Memorial University, 2 Observat´ orio Nacional (10 / 18)
Introduction
Sulphide example
Results from typical strategy
Lithological inversion: 0
0
(c)
50
50
100
100
100
150
150
150 Depth (m)
50
Depth (m)
Depth (m)
(b)
200
250
250
300
300
300
350
350
350
400 0
50
100 x (m)
150
200
Misfits: (a) expected targets (b) high gravity (c) high seismic
200
250
400
Conclusion
three models in the Pareto front
0
(a)
200
Results from PMOGO strategy
400 0
50
100 x (m)
150
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
200
0
50
100 x (m)
150
200
1
Memorial University, 2 Observat´ orio Nacional (11 / 18)
Introduction
Sulphide example
Results from typical strategy
Lithological inversion: 0
0
(c)
50
50
100
100
100
150
150
150 Depth (m)
50
Depth (m)
Depth (m)
(b)
200
Rock types: 200
250
250
250
300
300
300
350
350
350
400
400 0
50
100 x (m)
0
50
150
200
2
100
(a) background (b) intrusive (c) sulphide
400 0
0
Percent
1
Conclusion
some rudimentary statistics
0
(a)
200
Results from PMOGO strategy
50
100 x (m)
150
50 Percent
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
200
0
100
0
50
100 x (m) 50
150
200
100
Percent
1
Memorial University, 2 Observat´ orio Nacional (12 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Surface-based inversion • Parameterization defines interfaces between rock units • No mesh required (very fast forward problem) • PMOGO inversion moves vertices
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (13 / 18)
Sulphide example
Results from typical strategy
Curvature 0.1 0.2 .0
M is m ic is S e
2.5
.0 1 .0 G
.0 2 it f is
.5 M 1 ity v ra
2 .5
2.5
2.0
2.0 2.5 1.0 1.5 Gravity Misfit
1
1.5 2.0 Gravity Misfit
1.5
1.0
.0
.5 1
2.0
1.5
1.0
3.0
.5
Seismic MiCurvature sfit 0.1 0.2
3 2
Seismic Misfit
2
3.0
2.5
1.0
Conclusion
3D Pareto front Curvature 0.1 0.2
Surface-based inversion:
Results from PMOGO strategy
fit
Introduction
3.0
Seismic Misfi Curvature t 0.1 0.2
2.5
Se ismic Misfit Curvature 0.1 0.2
3.0 2.5
2.0
2.0
1.0
2
1.5 2.0 Gravity Misfit
2.5
1
Leli` evre , Bijani and Farquharson ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
2.0
Curvature 0.1 0.2 1.0
1.0
1.0
2.5
1.5
1.5
1.5
1
Seismic Misfi
t
3.0
1.0
1.5 2.0 Gravity Misfit
2.5
1.0
1.5 2.0 Gravity Misfit 1
2.5
Memorial University, 2 Observat´ orio Nacional (14 / 18)
Introduction
Sulphide example
Results from PMOGO strategy
Conclusion
3D Pareto front
M is fit
.0 .5
2
is m ic
2
Seismic MCurvature isfit 0.1 0.2
3
Curvature 0.1 0.2
Surface-based inversion:
Results from typical strategy
S e
.0
3.0
1 .5 .0 1
2.5
ra
.5 M 1 ity v
.0 G 1
2.0
1.5
.0 2 it f is
1.0 2.5
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
.5
1.5 2.0 Gravity Misfit
2
1.0
1
Memorial University, 2 Observat´ orio Nacional (14 / 18)
Introduction
Sulphide example
Surface-based inversion: 50
Results from typical strategy
Results from PMOGO strategy
Conclusion
three models in the Pareto front
0
50
100
100
Legend: - - feasible region — true interfaces — expected target misfits — both misfits high — high seismic misfit
150
200
Depth (m)
Depth (m)
150
250
300
350
200
250
400 0
50
100 x (m)
150
200
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] 300 Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (15 / 18)
Introduction
Sulphide example
Surface-based inversion: 50
Results from typical strategy
Results from PMOGO strategy
Conclusion
statistics for surrounding solutions
0
50
100
100
Legend: - - feasible region — true interfaces — mean model • 2-st. dev. ellipses
150
200
Depth (m)
Depth (m)
150
250
300
350
200
250
400 0
50
100 x (m)
150
200
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] 300 Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (16 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Advantages and disadvantages of PMOGO Advantages: • Obviate the requirement of having to deal with trade-off parameters
→ Joint inversion greatly simplified
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (17 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Advantages and disadvantages of PMOGO Advantages: • Obviate the requirement of having to deal with trade-off parameters
→ Joint inversion greatly simplified • Automatically provide a suite of solutions across the Pareto front
→ Opportunities to calculate statistics
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (17 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Advantages and disadvantages of PMOGO Advantages: • Obviate the requirement of having to deal with trade-off parameters
→ Joint inversion greatly simplified • Automatically provide a suite of solutions across the Pareto front
→ Opportunities to calculate statistics • Any numerically complicated objective functions or constraints can be used • Avoid local minima entrapment
→ Fundamentally different model parameterizations
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (17 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Advantages and disadvantages of PMOGO Advantages: • Obviate the requirement of having to deal with trade-off parameters
→ Joint inversion greatly simplified • Automatically provide a suite of solutions across the Pareto front
→ Opportunities to calculate statistics • Any numerically complicated objective functions or constraints can be used • Avoid local minima entrapment
→ Fundamentally different model parameterizations • Easy to parallelize
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (17 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
Advantages and disadvantages of PMOGO Advantages: • Obviate the requirement of having to deal with trade-off parameters
→ Joint inversion greatly simplified • Automatically provide a suite of solutions across the Pareto front
→ Opportunities to calculate statistics • Any numerically complicated objective functions or constraints can be used • Avoid local minima entrapment
→ Fundamentally different model parameterizations • Easy to parallelize
Disadvantages: • Increased computing time (100-300x for mesh-based inversions, WITH CAVEATS) Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (17 / 18)
Introduction
Sulphide example
Results from typical strategy
Results from PMOGO strategy
Conclusion
References
• Bijani et al., 2015, Three-dimensional gravity inversion using graph theory to delineate the
skeleton of homogeneous sources. Geophysics, 80, G53–G66 • Carter-McAuslan, Lelievre & Farquharson, 2015, A study of fuzzy c-means coupling for
joint inversion, using seismic tomography and gravity data test scenarios. Geophysics, 80, W1–W15 • Deb et al., 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.
on Evol. Comp., 6, 182–197
Leli` evre1 , Bijani2 and Farquharson1 ,
[email protected] Joint Inversion Using Multi-Objective Global Optimization Methods
1
Memorial University, 2 Observat´ orio Nacional (18 / 18)