knowledge-‐based position location on mobile robots

1 downloads 0 Views 148KB Size Report
matching them to a map so this position location technique is called feature ..... [19] H.P. Moravec & A. Elfes, “High Resolution Maps from Wide Angle Sonar,” ...
S.Y.  Harmon,  “Knowledge  Based  Position  Location  on  Mobile  Robots,”  Proc.  1985  IEEE  International  Conf.  on   Industrial  Electronics,  Controls,  and  Instrumentation,  San  Francisco,  CA,  18-­‐22  November  1985,  pp174-­‐179.  

KNOWLEDGE-­‐BASED  POSITION  LOCATION  ON  MOBILE  ROBOTS   S.Y.  Harmon   Code  442,  Naval  Ocean  Systems  Center   San  Diego,  CA  92152  

ABSTRACT   This  paper  discusses  application  of  techniques  resulting  from  artificial  intelligence   research  to  the  problem  of  position  location  for  mobile  robots  for  both  indoor  and   outdoor  environments.    Knowledge-­‐based  techniques  have  been  demonstrated  most   useful  for  position  location  by  matching  sensor  perceptions  of  local  features  with  a   map  of  the  region.    In  addition,  knowledge-­‐based  techniques  have  proven  promise   to  be  useful  in  merging  several  independent  estimates  of  absolute  position.  

INTRODUCTION   The  basic  purpose  for  every  mobile  robot  is  to  transit  from  one  place  to  another.  The   process  of  navigating  to  the  goal  requires  two  functions:  position  location  and  route   finding.    Developments  in  artificial  intelligence  have  influenced  design  and   implementation  of  both  of  these  functions  on  mobile  robots.    Clearly,  techniques  for   knowledge  representation,  automated  planning  and  sensor  data  understanding   impact  path  finding.    However,  the  relation  of  knowledge-­‐based  techniques  to  the   position  location  problem  is  less  obvious.  This  paper  considers  various  knowledge-­‐ based  concepts  to  assist  the  position  location  of  mobile  robots  for  both  indoor  and   outdoor  environments.   The  application  of  computing  intensive  knowledge-­‐based  techniques  to  the  problem   of  position  location  might  seem  like  overkill.    After  all,  there  are  several  electronic   navigation  aids  that  do  not  require  the  complexity  of  knowledge-­‐based  techniques   [1,  2]  and  several  techniques  have  been  developed  for  automated  vehicle  location   that  could  be  applied  to  mobile  robots  [3].    In  fact,  position  location  is  one  of  the   most  important  and  difficult  problems  in  mobile  robots  today.    The  accuracy  of   position  measurements  greatly  affects  the  complexity  of  the  robot's  control  strategy   [4].    Furthermore,  although  many  sensors  exist  which  provide  direct  access  to   position  information  each  of  these  has  limitations  that  make  it  unsuitable  for  a  large   range  of  situations.    Knowledge-­‐based  position  location  techniques  simply  add  to  an   expanding  bag  of  tricks  that  increase  mobile  robot  capabilities  by  guaranteeing   continuous  access  to  accurate  position  information.   A  mobile  robot  can  determine  its  position  either  by  monitoring  its  motion  after   leaving  a  known  location  or  by  locating  itself  relative  to  external  reference  points   with  known  positions.    Vehicle  motion  tracking  includes  both  dead  reckoning   systems  and  inertial  navigation  systems.    External  references  can  be  either   intentional  or  unintentional  navigation  references.    All  of  these  techniques  have   been  used  or  proposed  for  mobile  robot  position  location.   1

The  largest  number  of  past  and  present  mobile  robots  by  far  locates  their  positions   using  various  vehicle  motion  and  orientation  sensors  for  dead  reckoning  [5-­‐12].     Early  simulation  studies  for  a  Martian  rover  determined  that  dead  reckoning   navigation  was  vastly  superior  to  inertial  navigation  and  was  adequate  for  effective   planetary  rover  guidance  over  many  kilometers  travel  if  daily  position  updates  were   available  from  an  independent  source  [11].    In  spite  of  the  modern  alternatives,   dead  reckoning  navigation  has  recently  been  recommended  for  a  mobile  robot  for   military  applications  [13].    However,  only  one  of  the  mobile  robot  efforts  cited   above  explored  knowledge-­‐based  techniques  in  support  of  dead  reckoning  position   location.    In  this  case,  stereovision  obtained  information  about  the  robot's  motion   [9].    These  studies  indicate  that  visual  navigation  is  presently  quite  fragile  [9].    In   one  series  of  experiments,  a  stereovision  system  was  found  to  estimate  robot   translation  poorly  and  always  short  and  to  estimate  rotation  most  accurately  [14].     While  this  work  shows  the  promise  and  versatility  of  visual  sensors  more  extensive   use  of  knowledge-­‐based  techniques  for  dead  reckoning  is  not  foreseeable.   Dead  reckoning  can  provide  extremely  accurate  position  estimates  for  very  low  cost   but  they  integrate  their  errors  over  time  and  are,  thus,  unsuitable  for  long  distance   navigation.    Unfortunately,  all  vehicle  motion  monitoring  approaches  to  position   location  suffer  from  the  same  inherent  problem.    Wheel  skid  and  spin  contribute   significantly  to  this  drift  in  robots  that  derive  all  motion  information  from  the   locomotion  system  [12].    Doppler  speed  sensing  systems  offer  some  relief  from  this   contribution  to  position  error  [12,  15]  but  they  are  not  panaceas.    While  cost   effective  for  some  applications,  long-­‐term  precision  for  either  dead  reckoning  or   inertial  systems  requires  prohibitively  expensive  components  for  most  applications   [16].    In  short  if  a  mobile  robot  is  to  operate  over  long  distances  (or  short  distances   many  times)  then  it  needs  position  information  from  some  vehicle  independent   source.   External  references  for  position  location  have  many  different  forms.    The  only   requirements  for  an  external  reference  to  be  useful  in  position  location  are  that  its   absolute  location  be  known  to  the  desired  accuracy  (if  it  is  to  be  used  to  provide   absolute  position),  that  it  be  unambiguously  observable  (many  a  ship  has  gone   down  by  being  lured  onto  the  rocks  by  fake  lighthouses)  and  that  the  robot's   position  relative  to  the  reference  can  be  determined  with  the  desired  accuracy.     External  references  designed  specifically  for  navigation  can  be  passive  or  active  and   either  fixed  location  sites  or  orbiting  satellites.    Active  beacons  can  use  any  part  of   the  electromagnetic  or  acoustic  spectrum.    Fixed  navigational  references  offer   considerable  near  term  opportunity  for  implementation  in  the  factory  environments.     These  have  demonstrated  their  utility  in  several  mobile  robot  implementations  [4,   16,  17].   While  the  precision  of  external  reference  systems  is  better  than  vehicle  monitoring   systems  over  the  long  term  and  some  external  reference  systems  are  excellent  for   the  short  term  (e.g.,  painted  marks  on  the  floor),  any  form  of  beacons  or  reflectors   amounts  to  structuring  the  world  and,  thus,  does  not  provide  a  universal  solution   (e.g.,  beacons  can  be  obscured  by  other  objects  in  world)  [16].    In  many  cases  it  is  

2

not  economical  to  navigate  using  references  precisely  located  in  the  environment   specifically  for  position  location.    In  these  cases,  references  of  opportunity  must  be   used.    Uncooperative  references  include  celestial  sources  (e.g.,  stars,  Sun),  distinct   landmarks  and  recognizable  topographical  or  structural  features.    Several  authors   have  suggested  using  landmarks  or  local  terrain  features  for  position  location  [18-­‐ 28].    Determining  location  from  the  relative  positions  of  local  features  requires   matching  them  to  a  map  so  this  position  location  technique  is  called  feature   matching.    The  widest  application  of  knowledge-­‐based  techniques  to  position   location  has  been  in  those  approaches  using  uncooperative  references  for  feature   matching.   Each  of  the  techniques  discussed  above  has  its  own  limitations  and  error  sources.     These  sources  are  often  independent  or  only  weakly  coupled  so  position   information  from  several  different  sensors  can  be  combined  to  improve  the   combined  position  estimate  accuracy  under  a  wide  range  of  conditions.    The  fusion   of  different  position  estimates  is  one  of  the  most  promising  but  least  explored   applications  of  knowledge-­‐based  techniques  to  mobile  robot  position  location.  

FEATURE  MATCHING  TECHNIQUES   If  the  robot  has  knowledge  of  the  absolute  location  of  several  recognizable   structural  features  in  the  environment  then  by  determining  its  location  relative  to   those  features  it  can  compute  its  own  absolute  position.    This  approach  to  position   location  has  several  advantages.    Accuracy  is  limited  only  by  the  knowledge  of   landmark  positions  and  by  the  accuracy  with  which  the  robot  can  determine  its   position  relative  to  those  landmarks.    This  accuracy  should  not  drift  with  distance   traveled  or  operating  time.    This  approach  does  not  require  the  environment  to  be   structured  in  any  way  (no  beacons,  reflectors  or  satellites)  although  the  area  of   interest  must  be  minimally  surveyed  and  contain  sufficient  recognizable  features.     Feature  matching  is  computationally  expensive  but  it  is  also  a  perfect  complement   to  the  computationally  cheaper  dead  reckoning.    Feature  matching  also  takes   advantage  of  sensors  normally  required  for  the  path  finding  process  (e.g.,  vision  and   ranging)  so  there  could  be  no  extra  sensor  expense  for  this  capability.    However,   enhanced  sensor  orienting  accuracy  may  be  required  for  very  distant  features  (e.g.,   celestial  objects).   Several  researchers  have  suggested  feature  matching  using  environmental   information  from  widely  different  sensors  [20,  25,  27].    Some  of  these  efforts  have   explored  locating  indoor  robots  by  matching  features  gained  from  acoustic  ranging   sensors  [19,  21,  25]  or  laser  rangefinders  [22,  27]  to  the  maps  of  room  interiors.     Others  have  suggested  using  visual  landmark  recognition  for  navigation  in  outdoor   domains  [18,  20].    One  of  the  most  interesting  feature  navigation  techniques  has   been  suggested  for  a  planetary  rover  [24].    In  this  technique,  the  robot  position  is   computed  from  landmark  position  information  observed  by  an  orbiting  satellite  and   from  the  robot's  observation  of  the  orbiter  position.    Position  location  using  feature   matching  is  considered  the  most  general  and  complex  of  all  navigation  techniques   for  mobile  robots  [28].  

3

Position  location  from  feature  matching  is  usually  done  in  two  steps.    First,   surrounding  features  are  recognized  and  their  relative  locations  identified  using  the   robot's  sensors.    Then  that  set  of  collected  features  is  matched  to  a  known  map.    The   robot's  absolute  position  is  deduced  from  this  correlation.    Three  elements  are   necessary  for  feature  matching:  a  map  representing  at  least  the  known  absolute   positions  of  the  features  and  possibly  other  characteristics  to  assist  feature   recognition,  a  map  representing  the  sensor  perception  of  the  surrounding  features   and  their  positions  relative  to  the  robot  and  a  technique  for  matching  the  perception   map  to  the  known  map.    The  two  maps  should  use  the  same  representation  to  ease   this  matching  problem.    This  discussion  of  feature  matching  considers  the  issues  of   map  representation,  feature  location  and  various  algorithms  for  map  matching.  

Map  Representations   A  good  map  representation  is  key  for  effective  position  location  using  feature   matching  techniques.    The  choice  of  representation  determines  what  features  can  be   represented  and  what  algorithms  can  be  used  for  map  matching.    The   representation  must  be  designed  to  be  augmented  with  new  but  uncertain  sensor   information.    Unfortunately,  most  internal  map  representations  for  mobile  robots   were  developed  to  facilitate  route  planning  more  than  position  location  [5-­‐7,  9,  29,   30].   Map  representations  vary  considerably  depending  upon  whether  the  robot  is   working  indoors  or  out.    Virtually  all  of  the  work  with  indoor  mobile  robots  has   assumed  a  simple  two  dimensional  world  populated  by  polygonal  objects.    In  this   world,  features  are  either  polygon  sides  or  vertices.    In  spite  of  these  commonalities,   several  different  map  representations  have  been  developed  for  indoor  robots   including  uniform  cells,  line  segments  and  object  frames.   The  simplest  of  indoor  representations  is  a  grid  of  cells  that  represent  the   probability  that  that  cell  is  occupied  or  not.    This  representation  is  particularly   useful  for  easily  combining  multiple  sonar  range  measurements  [19].    The  cell   representation  has  also  been  used  in  such  vintage  indoor  robots  as  SHAKY  [5]  and   JASON  [6].    Sonar  mapping  measurements  have  also  been  represented  as  connected   line  segments  [21,  25].    In  these  representations  space  is  divided  into  convex   regions  with  line  segments  representing  object  surfaces.    One  of  the  most   sophisticated  indoor  map  representations  is  used  in  the  robot  HILARE  [8,  22,  28].     Object  vertices  are  the  primitive  features  in  this  representation.    These  features  are   grouped  into  object  frames  (i.e.,  all  the  vertices  for  one  object  into  the  same  frame).     HILARE's  world  space  is  organized  into  a  hierarchy  of  more  complex  frames   containing  objects,  rooms  and  frontiers.    This  hierarchy  represents  geometrical,   topological  and  semantic  information.    Geometrical  information  is  constructed  from   sensor  perceptions  and  the  remaining  information  is  inferred  from  the  geometrical   model  [28].   Several  map  representations  have  been  developed  for  less  structured  outdoor   environments.    In  spite  of  the  need  for  three  dimensional  representation  [18,  31],  all   of  these  techniques  have,  like  their  indoor  counterparts,  assumed  a  two  dimensional   4

world.    The  representations  vary  from  simple  property-­‐less  features  to  complex   landmark  databases.   The  simplest  of  the  map  representations  for  outdoor  environments  was  developed   for  position  location  of  a  robot  submersible  using  sonar  sensors  [26].    In  this   representation,  features  are  simply  sonar  returns  for  which  range  and  bearing  can   be  computed.    A  known  map  of  these  features  would  describe  where  sonar  returns   were  expected.    Early  work  in  landmark  navigation  evolved  from  efforts  to  develop   a  mobile  robot  from  planetary  exploration  [23,  24].    In  this  work,  map  features   represented  mountain  peaks  and  craters  [23].    The  landmark  database  is  the  most   complex  outdoor  representation  that  has  been  proposed  [20].    This  database   supports  visual  landmark  recognition  for  an  autonomous  ground  vehicle.    This   database  represents  such  landmark  properties  as  size,  position  and  a  list  of   boundary  points  that  can  be  correlated  to  the  edge  map  from  a  visual  image  [20].   Brooks  warns  against  the  dangers  of  using  simplified  two  dimensional   representations  of  the  three  dimensional  world  [18].    For  instance,  algorithms   developed  using  inadequate  map  representations  could  suffer  significant  time   performance  degradation  when  applied  to  the  real  world's  complexity  and  in   stability  could  arise  in  maintaining  the  correspondence  between  the  perceived   environment  and  the  internal  map  over  slight  changes  in  position,  orientation  or   illumination.    When  the  mapping  between  the  world  model  and  the  perceived   representation  becomes  unstable  matching  new  perceptions  with  the  partial  world   model  becomes  difficult  and  polygonal  representations  become  hopelessly   fragmented.    He  suggests  using  a  relational  map  that  is  rubbery  and  stretchy  instead   of  the  typical  rigid  two-­‐dimensional  representation.    This  relational  map  stores   primarily  the  geometric  relationships  between  map  primitives  thus  easing  the   matching  with  uncertain  sensor  perceptions  [18].   All  known  measurement  techniques  have  sources  of  error.    These  sensor  errors   produce  uncertainty  in  perception.    Since  position  location  is  based  upon   measurement  it  too  is  concerned  with  uncertainty.    Both  sensors  and  maps  are   sources  of  uncertainty.    Most  investigators  have  represented  uncertainty  in  their   sensor  maps.    In  cell  representations,  cell  labeling  represents  the  probability  that  a   cell  is  believed  to  be  occupied  (p  >  0)  or  not  (p  <  0)  [19].    In  segment  maps,  time  and   observation  dependent  values  for  each  segment  represent  uncertainty  [21].    In   HILARE's  hierarchical  representation  each  object  property  has  an  associated   measurement  uncertainty  and  these  values  are  combined  to  compute  the   uncertainties  associated  with  the  parent  frames  [28].    Toward  greater  generality  at   the  expense  of  simplicity,  uncertainty  manifolds  have  been  proposed  to  represent'   sensor  induced  uncertainty  [18].  

Feature  Location   It  is  not  surprising  that,  like  map  representations,  feature  location  approaches  vary   from  indoor  robot  to  outdoor  robot.    Indoor  robots  which  use  feature  matching  for   position  location  use  primarily  ranging  sensors  to  collect  feature  information.    They   have  also  had  much  simpler  environments  to  represent  and  match.    In  the  outdoor   5

robots  landmarks  were  located  using  sonar  [26],  vision  [20,  23]  or  laser  rangefinder   [24].    While  the  outdoor  environment  offers  opportunity  for  complexity  only  one  of   the  outdoor  feature  location  approaches  used  a  sophisticated  capability  for  feature   recognition  [20].   Features  in  indoor  environments  were  either  object  segments  [19,  21,  25]  or  object   vertices  [27,  28].    This  division  depended  upon  the  sensor  used  for  range   measurements.    Those  modeling  the  world  as  connected  line  segments  used  acoustic   sensors  with  low  angular  resolution  for  feature  location.    Those  efforts  that   represent  objects  as  connected  vertices  used  laser  rangefinders  with  very  high   angular  resolution.    In  indoor  environments  the  process  of  locating  a  feature  is   simply  a  matter  of  pointing  the  sensor  and  interpreting  the  range  measurement   although  vertex  finding  operations  may  be  necessary  if  laser  rangefinders  are  used.     This  simplicity  is  sufficient  for  structured  indoor  environments.    Some  complexity   does  arise  when  combining  sensor  measurements  and  it  is  usually  necessary  to   build  segment  maps  [21]  or  object  models  [27,  28]  from  several  different  sensor   measurements.   The  choice  of  features  varied  widely  for  approaches  to  locating  outdoor  landmarks.     The  simplest  feature  is  just  a  sensor  return  (i.e.,  no  information  which  would   distinguish  one  feature  from  another  other  than  its  position  relative  to  the  robot)   [26].    This  approach  was  devised  for  underwater  navigation  using  information  from   only  a  sonar  sensor.    The  complexity  of  this  problem  arises  from  the  large  number  of   features  within  the  sensor's  field  of  view.    Researchers  in  planetary  rovers  limited   feature  types  to  just  mountain  peaks  and  craters  [23,  24].    Only  one  approach  has   been  proposed  for  guiding  a  mobile  robot  from  several  different  types  of  features   [20].   This  approach  uses  visual  landmark  recognition  for  position  location.    In  this   approach,  a  selector  module  identifies  from  previous  position  location  estimates  a   set  of  landmarks  that  should  be  observable  by  the  robot.    These  landmark  options   are  presented  to  a  finder  module  that  orients  the  camera  and  adjusts  the  focus   properly.    The  finder  then  directs  the  matcher  to  locate  possible  landmark  positions   in  an  image.    The  matcher  detects  image  edges,  matches  landmark  templates  using  a   generalized  Hough  transform,  and  interprets  the  uncertainty  of  the  matches.    False   peaks  in  Hough  space  are  reduced  by  using  a  measure  of  gradient  direction   informativeness  to  eliminate  uninformative  sources  of  spurious  patterns.    The   finder  then  locates  the  possible  landmark  positions  from  a  set  of  candidates   provided  by  the  matcher  using  geometric  constraint  propagation.    After  the   landmarks  are  consistently  located  by  the  finder  the  selector  then  computes  the   vehicle's  actual  position  and  the  new  position  uncertainty  [20].  

Map  Matching   Once  a  set  of  features  has  been  identified  these  must  be  matched  to  a  map.    This   problem  can  be  generalized  to  one  of  finding  the  correspondence  between  two   intersecting  sets  of  objects.    This  general  problem  is  well  known  in  artificial   intelligence  and  it  can  be  extremely  difficult  if  there  are  a  large  number  of  features   6

in  the  observed  set,  on  the  map  or  both.    Several  different  techniques  have  been   developed  to  solve  the  map  matching  problem  for  both  indoor  and  outdoor   situations.    Map  matching  can  be  as  difficult  a  problem  indoors  as  outdoors.    In  spite   of  the  variety  of  map  matching  techniques  they  all  use  some  type  of  search  to   determine  the  best  estimate  of  correspondence  and  they  all  constrain  the  search  in   various  ways.   Several  different  constraints  have  been  used  for  map  matching.    The  simplest  is  to   match  only  features  of  like  type  (mountain  peaks  to  peaks  and  craters  to  craters)   [23,  26].    Geometric  constraints  are  very  common  in  map  matching  [23,  25,  26].     These  constraints  eliminate  feature  matches  which  do  not  have  a  consistent   orientation  or  position  relative  to  other  features  or  which  do  not  produce  a  robot   position  estimate  that  is  consistent  with  other  estimates.    Prediction  models  can  also   be  used  to  constrain  landmark  matches  by  identifying  the  feature  matches  that  are   possible  if  the  robot  moved  in  the  way  measured  by  its  motion  monitoring  sensors   [28].    In  addition,  measurements  of  absolute  robot  orientation  can  even  further   constrain  the  search  in  the  same  way  [23,  27].    These  constraints  remain  useful  in   spite  of  considerable  sensor  errors  in  estimating  robot  position  and  orientation.    In   fact,  estimates  of  error  can  be  used  to  determine  how  loosely  to  apply  geometric   contraints  [21,  23,  25].    Another  way  to  constrain  the  matching  search  is  to  match   reduced  resolution  sensor  data  first  then  gradually  increase  the  resolution  as   potential  matches  and  the  accompanying  search  space  are  decreased  [19,  27].   The  order  of  evaluation  of  the  constraints  can  greatly  affect  the  accuracy  and  speed   of  a  matching  [25,  26].    The  simplest  and  fastest  running  constraints  should  be   executed  first.    This  approach  organizes  the  processing  so  that  the  least  processing   is  done  on  the  largest  data  set.    Only  after  the  size  of  the  data  set  has  been  decreased   as  much  as  possible  should  more  computationally  expensive  constraints  be  applied.     Usually  the  simplest  constraints  are  those  that  use  the  least  information  [26].    If   successful  the  constraint  process  should  have  reduced  the  data  set  to  where  it   contains  only  the  most  ambiguous  matches.    This  process  would  have  then  prepared   the  data  set  to  be  examined  by  the  extremely  powerful  but  very  slow  search  process.   If  the  search  space  has  been  reduced  by  the  constraints  enough  then  the  search   process  can  be  a  simple  linear  search.    If  the  matches  are  inexact  least  squares  [27]   or  chi  square  [23]  fitting  can  be  employed  to  produce  a  single  consistent  estimate.     Another  approach  to  matching  is  to  assume  a  trial  transformation  between  sensor   map  and  known  map  and  computing  the  degree  of  match.    If  the  match  is  poor  then   a  new  transform  is  proposed  until  a  match  is  found.    This  technique  works  best  if   applied  to  maps  organized  into  a  hierarchy  of  reduced  resolutions  [19].    In  another   technique,  the  possible  feature  matches  are  organized  into  either  trees  [25]  or   graphs  [26]  representing  the  correspondence  between  sensor  and  map  data.    The   nodes  and  links  in  these  structures  must  be  pruned  first  using  constraints  then  they   can  be  searched  using  well-­‐known  tree  or  graph  search  algorithms.    Still  other   authors  have  even  considered  the  problem  of  matching  perceptions  to  existing  maps   using  backward  reasoning  techniques  [18]  and  graph  matching  techniques  [32].   Feature  matching  has  proven  to  be  surprisingly  accurate.    Experiments  with  indoor   7

robots  have  produced  absolute  position  errors  of  less  than  0.2  m  and  orientation   errors  of  less  than  three  degrees  [19,  25].    Early  simulations  of  feature  matching  on   Earth  and  planetary  data  indicated  an  average  absolute  position  error  of   approximately  250  m  and  an  average  orientation  error  of  less  than  one  degree  [23].     Not  surprisingly,  the  accuracy  of  the  position  estimates  improved  with  increased   number  of  sensed  features.    The  researchers  felt  that  this  performance  could  be   improved  by  an  order  of  magnitude  by  improving  the  accuracy  of  the  feature   position  measurements  [23].  

POSITION  LOCATION  FUSION   A  recurring  theme  found  throughout  this  paper  is  that  no  one  source  of  position   information  is  sufficient  for  a  mobile  robot  whether  for  indoor  or  outdoor   environments.    Several  investigators  have  suggested  using  multiple  sensor  sources   for  position  location  [22,  23,  27].    Multiple  sensor  sources  can  crosscheck  each  other   (e.g.,  odometry  correlated  with  an  infrared  beacon  navigation  system).    In  addition,   high  cost  sensors  can  be  used  for  multiple  purposes  thereby  getting  more  for  the   money  [22].   HILARE  uses  three  separate  modules  for  position  location  to  overcome  the   limitations  of  any  single  system.    Absolute  position  can  be  obtained  by  triangulating   from  infrared  beacons  placed  strategically  in  the  environment.    However,  the   beacons  are  not  always  available  so  HILARE  dead  reckons  using  optical  shaft   encoders  on  the  drive  wheels  between  beacon  sightings.    In  addition,  HILARE  can   deduce  its  position  by  matching  range  information  from  either  its  laser  or  its   ultrasonic  range  sensors  to  room  maps  [22].    The  odometry  measurements  of   position  are  used  for  instantaneous  path  control  with  corrections  and  updates  from   the  other  sources.    All  sources  of  position  information  communicate  that  data  in   absolute  coordinates  to  make  the  merging  of  position  estimates  from  independent   sources  easier  [28].    Position  estimates  can  be  combined  by  choosing  the  best   estimate  from  the  most  accurate  sensor  and  by  weighted  averaging  of  consistent   measurements  from  the  same  sensor  while  taking  into  account  the  associated   uncertainties  [28].   While  merging  position  estimates  from  different  sensor  sources  seems  like  a  good   idea  the  mechanism  to  support  this  exchange  is  not  so  obvious  in  the  distributed   computing  environment  of  a  modern  mobile  robot.    Several  modules  could  consume   absolute  position  information  and  the  best  position  estimate  should  be  the  value   used  by  all.    Consumers  should  just  be  confident  that  the  position  estimate  that  they   use  is  the  best  available  and  the  source  of  the  estimate  should  be  invisible.    Creating   this  ideal  situation  presents  a  significant  problem  that  is  closely  related  to  as  yet   unresolved  distributed  data  base  issues.    However,  one  approach  for  merging  the   information  from  multiple  sensor  sources  has  been  demonstrated  [33].   Conceptually,  this  approach  is  similar  to  blackboard  systems  implemented  for   various  expert  systems  with  distributed  knowledge  sources  on  mainframe   computing  environments.    The  sources  of  intersecting  information  write  their  value   for  a  particular  property  onto  the  blackboard  together  with  a  common  measure  of   8

the  confidence  of  the  value's  correctness  when  they  see  that  their  value  has  a  higher   confidence  than  the  value  that  existed  previously  on  the  blackboard.    In  this  way,  all   evaluation  of  confidences  is  done  closest  to  the  sensor  source  and  only  the  best   value  for  a  property  exists  on  the  blackboard  at  any  one  time.    This  blackboard   system  is  actually  distributed  over  several  processors  that  are  loosely  coupled   through  a  local  area  network.    Each  processor  has  a  copy  of  the  blackboard  that  is   kept  consistent  with  the  other  blackboard  copies  by  intelligent  communications   interface  systems  [33].    This  concept  provides  a  conceptually  convenient  and  proven   mechanism  by  which  to  integrate  multiple  estimates  of  the  position  of  a  mobile   robot.  

FUTURE  WORK   Knowledge-­‐based  techniques  have  been  applied  to  several  different  aspects  of  the   position  location  problem.    However,  in  spite  of  this  help  and  the  capability  of   modern  electronic  navigation  systems,  the  most  sophisticated  of  mobile  robots  of   today  and  for  many  years  to  come  have  only  a  small  fraction  of  the  navigational   capability  of  a  Boy  Scout  tenderfoot.    Knowledge-­‐based  techniques  will  continue  to   advance  in  theory  and  implementation  and  will  continue  to  expand  the  capabilities   of  mobile  robots.   Map  matching  techniques  should  be  improved  to  use  a  wider  selection  of   navigational  cues  to  increase  their  robustness  and  versatility.    In  addition,  the   robot's  sensors  could  be  used  to  collect  much  more  navigational  information  from   the  surrounding  environment.    For  instance,  direction  can  be  inferred  from  such   cues  as  the  orientation  of  drifting  dust  or  snow,  the  direction  in  which  clouds  first   appear,  the  side  of  trees  where  leaves  have  fallen,  the  direction  tree  branches  are   permanently  swayed,  the  direction  the  preponderance  of  flowers  in  a  field  are  facing   and  the  side  of  a  solitary  tree  on  which  the  moss  grows  thickest  [34].    These  cues   and  more  are  used  by  experienced  human  orienteers  and,  like  other  forms  of   expertise,  should  be  incorporated  into  mobile  robots  requiring  this  level  of   navigational  capability.    Knowledge-­‐based  techniques  make  it  possible  to   accomplish  this  very  difficult  task.  

REFERENCES   [1]   G.E.  Beck,  ed.,  Navigation  Systems:  A  Survey  of  Modern  Electronic  Aids,  Van   Nostrand  Reinhold,  London,  UK,  1971.   [2]   R.R.  Hobbs,  Marine  Navigation  2:  Celestial  and  Electronic,  Naval  Institute  Press,   Annapolis,  MD,  1981.   [3]   S.  Riter  &  J.  McCoy,  “Automatic  Vehicle  Location  –  An  Overview,”  IEEE  Trans.   on  Vehicular  Technology,  VT-­‐26  (1),  February  1977,  pp7-­‐11.   [4]   R.  Berry,  “Sensors  for  Mobile  Robots,”  Proc.  3rd  Conf.  on  Robot  Vision  and   Sensory  Controls,  Cambridge,  MA,  November  1983,  pp584-­‐588.   [5]   N.J.  Nilsson,  “A  Mobile  Automaton:  An  Application  of  Artificial  Intelligence   Techniques,”  Proc.  Int.  Joint  Conf.  on  Artificial  Intelligence,  Washington,  DC,   9

May  1969,  pp509-­‐520.   [6]   M.H.  Smith  et  al.,  “The  System  Design  of  JASON,  A  Computer  Controlled  Mobile   Robot,”  Proc.  Int.  Conf.  on  Cybernetics  &  Society,  IEEE,  New  York,  NY,   September  1975,  pp72-­‐75.   [7]   A.M.  Thompson,  “The  Navigation  System  of  the  JPL  Robot,”  Proc.  of  5th  Int.  Joint   Conf.  on  Artificial  Intelligence,  Cambridge,  MA,  August  1977,  pp749-­‐757.   [8]   G.  Giralt,  R.  Sobek  &  R.  Chatila,  “A  Multi-­‐Level  Planning  and  Navigation  System   for  a  Mobile  Robot:  A  First  Approach  to  HILARE,”  Proc.  6th  Int.  Joint  Conf.  on   Artificial  Intelligence,  Tokyo,  Japan,  August  1979,  pp335-­‐337.   [9]   H.P.  Moravec,  “Rover  Visual  Obstacle  Avoidance,”  Proc.  7th  Int.  Joint  Conf.  on   Artificial  Intelligence,  Univ.  of  British  Columbia,  Vancouver,  BC,  Canada,  August   1981,  pp785-­‐790.   [10]   H.M.  Chen  &  C.N.  Shen,  “Surface  Navigation  System  and  Error  Analysis  for   Martian  Rover,”  Proc.  4th  Hawaii  Conf.  on  Systems  Science,  Honolulu,  HI,   January  1971,  pp661-­‐663.   [11]   R.A.  Lewis,  “Roving  Vehicle  Navigation  Subsystem  Feasibility  Study,”  Proc.  3rd   Hawaii  Conf.  on  Systems  Science,  Honolulu,  HI,  January  1970,  pp316-­‐319.   [12]   S.  Tsugawa,  T.  Hirose  &  T.  Yatabe,  “An  Intelligent  Vehicle  with  Obstacle   Detection  and  Navigation  Functions,”  Proc.  IEEE  Conf.  on  Industrial  Electronics,   Controls,  and  Instrumentation,  Tokyo,  Japan,  October  1984,  pp303-­‐308.   [13]   E.B.  Cynkin  et  al.,  “Robotic  Vehicle  Terrain-­‐Navigation  Subsystem:  Conceptual   Design  Phase,”  Unmanned  Systems,  2  (4),  Spring  1984,  pp12-­‐19.   [14]   C.  Thorpe,  L.  Matthies  &  H.  Moravec,  “Experiments  &  Thoughts  on  Visual   Navigation,”  Proc.  Conf.  on  Robotics  &  Automation,  85CH2152-­‐7,  IEEE,  New   York,  NY,  March  1985,  pp830-­‐835.   [15]   S.Y.  Harmon,  “USMC  Ground  Surveillance  Robot  (GSR):  A  Testbed  for   Autonomous  Vehicle  Research,”  Proc.  4th  Univ.  of  Alabama,  Huntsville  Conf.  on   Robotics,  Huntsville,  AL,  April  1984,  np.   [16]   M.  Julliere,  L.  Marce  &  H.  Place,  “A  Guidance  System  for  a  Mobile  Robot",  Proc.   13th  Int.  Symp.  on  Industrial  Robots,  Chicago,  IL,  April  1983,  p13:58-­‐68.   [17]   G.  Bauzil,  M.  Briot  &  R.  Ribes,  “A  Navigation  Subsystem  Using  Ultrasonic   Sensors  for  the  Mobile  Robot  HILARE,”  Proc.  1st  Conf  on  Robot  Vision  and   Sensory  Controls,  Stratford/Avon,  UK,  April  1981,  pp47-­‐58.   [18]   R.A.  Brooks,  “Visual  Map  Making  for  a  Mobile  Robot,”  Proc.  Conf.  on  Robotics  &   Automation,  85CH2152-­‐7,  IEEE,  New  York,  NY,  March  1985,  pp824-­‐829.   [19]   H.P.  Moravec  &  A.  Elfes,  “High  Resolution  Maps  from  Wide  Angle  Sonar,”  Proc.   Conf.  on  Robotics  &  Automation,  85CH2152-­‐7,  IEEE,  New  York,  NY,  March   1985,  p116-­‐121.   [20]   F.P.  Andresen  et  al.,  “Visual  Algorithms  for  Autonomous  Navigation,”  Proc.  Conf.  

10

on  Robotics  &  Automation,  85CH2152-­‐7,  IEEE,  New  York,  NY,  March  1985,   pp856-­‐861.   [21]   J.L.  Crowley,  “Dynamic  World  Modeling  for  an  Intelligent  Mobile  Robot,”  IEEE  J.   of  Robotics  and  Automation,  RA-­‐1  (1),  March  1985,  pp31-­‐41.   [22]   G.  Giralt,  R.  Chatila  &  M.  Vaisset,  “An  Integrated  Navigation  and  Motion  Control   System  for  Autonomous  Multisensory  Mobile  Robots,”  Proc.  1st  Int.  Conf.  on   Robotics  Research,  Bretton  Woods,  NH,  August/September  1983,  np.   [23]   R.C.A.  Lewis,  “A  Computerized  Landmark  Navigator,”  Proc.  4th  Hawaii  Conf.  on   Systems  Science,  Honolulu,  HI,  January  1971,  pp649-­‐651.   [24]   R.E.  Janosko  &  C.N.  Shen,  “Consecutive  Tracking  of  Landmarks  by  an  Active   Satellite  and  then  by  a  Martian  Roving  Vehicle,”  Proc.  3rd  Hawaii  Conf.  on   Systems  Science,  Honolulu,  HI,  January  1970,  pp324-­‐327.   [25]   D.  Miller,  “Two  Dimensional  Mobile  Robot  Positioning  Using  Onboard  Sonar,”   Proc.  IEEE  1984  Pecora  IX  Symp.,  Sioux  Falls,  SD,  October  1984,  pp362-­‐369.   [26]   C.  Thorpe,  “Underwater  Landmark  Identification,”  Proc.  2nd  ASME  Computer   Engineering  Conf.,  San  Diego,  CA,  August  1982,  pp1-­‐6.   [27]   C.J.  Zhao  et  al.,  “Location  of  a  Vehicle  with  a  Laser  Range  Finder,”  Proc.  3rd   Conf.  on  Robot  Vision  and  Sensory  Controls,  Cambridge,  MA,  November  1983,   pp82-­‐87.   [28]   R.  Chatila  &  J.P.  Laumond,  “Position  Referencing  and  Consistent  World   Modeling  for  Mobile  Robots,”  Proc.  Conf.  on  Robotics  &  Automation,   85CH2152-­‐7,  IEEE,  New  York,  NY,  March  1985,  pp138-­‐145.   [29]   D.  Keirsey  et  al.,  “Autonomous  Vehicle  Control  Using  AI  Techniques,”  Proc.  7th   Int.  Computer  Software  &  Applications  Conf.,  83CH1940-­‐6,  IEEE,  New  York,  NY,   November  1983,  p173.   [30]   D.T.  Kuan  et  al.,  “Automatic  Path  Planning  for  a  Mobile  Robot  Using  a  Mixed   Representation  of  Free  Space,”  Proc.  1st  Conf.  on  Artificial  Intelligence   Applications,  84CH2107-­‐1,  IEEE,  New  York,  NY,  December  1984,  pp70-­‐74.   [31]   S.Y.  Harmon,  “Comments  on  Automated  Route  Planning  in  Unknown  Natural   Terrain,”  Proc.  Int.  Conf.  on  Robotics,  84CH2008-­‐1,  IEEE,  New  York,  NY,  March   1984,  p571.   [32]   J.P.  Laumond,  “Model  Structuring  and  Concept  Recognition:  Two  Aspects  of   Learning  for  a  Mobile  Robot,”  Proc.  8th  Int.  Joint  Conf.  on  Artificial  Intelligence,   Karlsruhe,  FRG,  8-­‐12  August  1983,  pp839-­‐841.   [33]   S.Y.  Harmon  et  al.,  “Coordination  of  Intelligent  Subsystems  in  Complex  Robots,”   Proc.  1st  Conf.  on  Artificial  Intelligence  Applications,  84CH2107-­‐1,  IEEE,  New   York,  NY,  December  1984,  p64.   [34]   C.  Ormond,  Complete  Book  of  Outdoor  Lore,  Harper  &  Row,  New  York,  NY,   1964.  

11

Suggest Documents