Lab Experiments for Determining the Mechanical Behavior of Shales ...

2 downloads 0 Views 7MB Size Report
Feb 14, 2014 - in Opalinus Clay and Similar Claystones». Frederic L. PELLET. University of ... Eric Boidy, Géraldine Fabre, Attila Hajdu, Mohamad Keshavarz.
February14th ,2014,Zürich

Symposium«RockMechanicsandRockEngineeringofGeologicalRepositories inOpalinus ClayandSimilarClaystones»

LabExperimentsforDeterminingtheMechanical BehaviorofShales andClaystones FredericL.PELLET University ofLyon,Department ofCivilandEnvironmentalEngineering,Villeurbanne, France frederic.pellet@cfmrͲroches.org

Outlines

• Introduction and Objectives • Petrophysics of Shales and Claystones • Tests for Mechanical Behavior Characterization • MicroͲStructural Analysis of Cracking in Shale • Concluding Remarks

2

Acknowledgement • Institut deRadioprotectionetdeSûreté Nucléaire (IRSN) • Agence Nationale pourleStockage etlaGestiondesDéchets Radioactifs (ANDRA) • FrenchRailwaysCompany(SNCF) • PhDStudents: EricBoidy,GéraldineFabre,AttilaHajdu,Mohamad Keshavarz

3

IntroductionandObjectives Why:

Predictionofthemechanicalbehaviour ofunderground radioactivewasterepositories

What:

AssessmentoftheextensionoftheExcavationDamageZone(EDZ) accountingfortimedependency

EDZ

MontͲTerryLab

ExtensionoftheEDZ300yearsafterthe 4 excavation(fromnumericalmodelling

IntroductionandObjectives DamageParameter,D

How:

ConstitutivemodelaccountingfortimeͲ dependentdamage (ratedependentmodel) 10years 1year 100years 300years İ vp

w: wıij

N

º S ı eq 3 1 ª « » 2 1  D « 1  D K p 1M » ı eq ¬ ¼

where: istheviscoplastic potential,K,NandMare theviscoplastic parameters oftherock,Veq isthevon Mises stressandS isthestressdeviator.

Parametersidentification andcalibration??? Pellet, F.L. et al. A viscoplastic constitutive model including anisotropic damage for the timeͲdependent mechanical behaviour of rock, Int. J. Numer. Anal. Meth. Geomech. (2005)

5

Petrophysics SpecificitiesofShales andClaystones

6

Petrophysics SpecificitiesofShales andClaystones •

Highcontentofclayparticles: വ

Kaolinite,Chlorite,Illite,Smectite (swellingͲshrinkage)

• MicrotonanoͲporosity: വ

Hugesurfaceeffectsstrongmolecularbond (doublelayertheory)



Almostnofreewater (extremelylowhydraulic conductivity#10Ͳ20m2 )

magnified

Pitfallstoavoid: വ

HͲMcouplingwithBiot theory(few Hertzian contacts)



Littlesuctionbecauseofcavitation

10 to 20 ȝm

7

Petrophysics SpecificitiesofShales andClaystones •

PetroͲFabric:



Heterogeneities (polycrystal)



Crystallattice:strongatomicbond(coͲ valent,ionic…),dislocation



Anisotropy bothintermsofstrengthand deformabilityproperties(transverseisotropy)

Pitfalltoavoid :

BureArgillite

Carbonate

Quartz

Mica

Discrete Element Method:notsuitable 8

TestsforMechanicalBehaviorCharacterization

9

Rocksunder Study:Mineral ContentandPhysical Properties Rock Formations

Geological Periods

Others minerals

Quartz

Carbonates

(SiO2)

(CaCO3)

%

%

(Feldspars, micas, pyrite)

Clay





Particles Kaolinite Chlorite





Illite

Smectite

Interlayers Illite/ Smectite

BureArgillite

CallovoͲ Oxfordian

20Ͳ30

20Ͳ33

5

40Ͳ45

10

20

40

Ͳ

30

Tournemire Shale

Toarcian

19

15

11

55

28

3

16

Ͳ

8

Montd’Or Claystone

Jurassic

10

65

Ͳ

25

30

15

40

15

Ͳ





Density 3

Porosity

Water content

Saturation degree

%

%

UCS MPa

Average Moduli

Sonicvelocity PwaveMax

GPa

m.sͲ1

(PͲwave velocity)

Anisotropy

kN/m 

%

BureArgillite

23.7

15.5

5.9

87%

27Ͳ29

5Ͳ6

3820

10%

Tournemire Shale

24.0

8.9

3.4

95%

35Ͳ38

21Ͳ27

4225

30%

Montd’Or Claystone

25.3

6.4

1.6

63%

50Ͳ80

18Ͳ25

4300

16%



Fabre, G., Pellet, F., Creep and timeͲdependent damage in argillaceous rocks, Int. J. Rock Mech. Mining Sci,. (2006) 10

MechanicalTestsforRocksBehaviorCharacterization DeterminetheoveralltimeͲdependentmechanicalpropertiesatthe scaleofarockspecimen



– Compressiontestswithdifferentratesofloadings – Creepcompressiontests – Relaxationtests

H =80mm I=40mm

11

Intrumentation forTransverseIsotropic Specimens Specimendeformation(straintensor): T=0°

n

n t

t

t

t

t

t

s

s

s

H

T =90°

n

§ H ss ¨ ¨0 ¨0 ©

0

H ss 0

Transversal:parallel totheplane

0 · ¸ 0 ¸ H nn ¸¹ s ,t ,n Axial

H

§ H ss ¨ ¨0 ¨0 ©

0

H tt 0

0 · ¸ 0 ¸ H nn ¸¹ s ,t ,n

Transversal:perpenͲ dicular totheplane

Distorsion

H

Hvol

§ H ss ¨ ¨0 ¨0 ©

0

H tt H nt

0 · ¸ H tn ¸ H nn ¸¹ s ,t ,n

H ss  Htt  H nn

N.Gatelier,F.Pellet,B.Loret(2002),Mechanicaldamageofananisotropicrockundercyclictriaxialtests,Int.J.RockMech.Min.Sc.

TimeͲdependentbehaviorofrocks Theeffect oftherateofloading incompressiontests H1

H

V

Hs Creep

H !! H

HR

o

H VR

o

Tunnelconstruction with support

H

HR

Time

V1

o

H  H

Vs

Creep failure Damage (creep failure) (damage)

VR Relaxation Vs

Hs Time

Monotonic CompressionTestonBureArgillite InfluenceoftheStructrural Anisotropy (loading rate:10Ͳ6.sͲ1) Late volumetric dilation

AxialStress[MPa ]

30 25

Hvol

Htt

n

Hnn

Hss

T v3

20

s

t

15

v2 10

Orientations,T Orientation 0° : 0° 45° 45° 90° 90°

5 0 -5000

-3000

-1000

1000

3000 5000 7000 MicroͲstrains (Pm/m)

9000

G.Fabre,F.Pellet(2006),Creepandtimedependentdamageinargillaceousrocks,Int.J.ofRockMech.andMini.Sci.

14

Monotonic CompressionTestonBureArgillite Influenceoftherateofloading (T=0°) 10Ͳ4sͲ1

30

AxialStress[MPa ]

25

Hvol

Hss

Hnn

20 15 10

Loading Rates: 10Ͳ4 sͲ1 10Ͳ6 sͲ1 10Ͳ8sͲ1

2minutes

5

222hours (9days)

0 -4000

-2000

0

2000

4000

6000

8000

10000 10Ͳ6sͲ1

MicroͲStrains (Pm/m)

LongDuration Creep TestsinCompression BureArgillite (T T=0°) q=25.8MPa #0.9UCS(27Ͳ29MPa) 30.0

16000

q

14000

25.0

12000

Hnn

10000

MicroͲStrain[Pm/m]

6000

Dilationtrend

4000

Hvol

15.0

2000 10.0

0 -2000

Hss

-4000 -6000

5.0

-8000

0.0 0

16

50

100

150

200

Time[days]

250

300

350

Stress[MPa]

20.0

8000

15

MonotonicCompressionTestandRelaxationStageon Bure argillite 40

V 1 [MPa] Axial Stress, AxialStress,s 1V1[MPa] Contrainte, [MPa]

36 36

Relaxationstage

ReͲLoading

Axialstressvstime

32

32 28 28

28 26

20 20

n

24

Loading

Relaxation

16 16

Ec2 = 5230 MPa

12 12

Ec1 = 3620 MPa

Contrainte V1 [Mpa]

24 24

88

s

22

t

20 18 16 14 12 10 8

Ed = 5175 MPa

44

6

Unloading

4 0

5

00

10

15

20

25

Temps [jours]

Time[days]

0,00E+0 2,50E--33 5,00E--3 3 7,50E--3 3 1,00E--2 2 1,25E--2 2 1,50E--2 2 1,75E--2 2

H1 Déformation, Strains [Pm/m] 17

MultiͲStageCreep TestsinCompressionon TournemireShale

Pwave velocity [m.sͲ1] MicroͲstrain[P P m] PWave[m/s]

6000

30

Hnn

4400 4000

20

2000

10

43000

0

Htt

Ͳ2000

UCS=35Ͳ38MPa;T=90°

40

q

Ͳ10

Hvol

4200 Ͳ4000

Stress,q[MPa]

8000 4500

Ͳ20

Hss

Ͳ6000

Ͳ30

4100 Ͳ8000

Ͳ40 0

50

100

150

200

250

Time[day] Time[day]

F.Pellet,G.Fabre(2007),DamageevaluationwithPͲwavevelocitymeasurementsduringuniaxial compressiontestson argillaceousrocks,Int.J.Geomechanics,(ASCE)

18

Oligocyclic Creep TestonMontd’OrClaystone 6 Loading Stages:from 30to55MPa: Unloading downto 20MPa 4000

200

Hnn

3500

175 150

Hvol

2500

125 100

2000

q

1500

75

1000

50

500

25

Hss

0

0 Ͳ25

Ͳ500

Ͳ50

Ͳ1000 0 19

Stress[MPa]

MicroͲstrain[μm/m]

3000

50

100

150

200

250

300

350

Time[days]

MicroͲStructuralAnalysisofCrackinginShale

20

MicroͲStructuralAnalysisofTimeͲDependentCracking inBure Argillite 10Ͳ8sͲ1

10Ͳ4sͲ1

5000ʅm

10mm

10mm F.L.Pellet(2013),MicroͲstructuralanalysisoftimeͲdependentcrackinginshale,Env.Geotechnics

21

SEMPhotographs MacroͲcrackin clay matrix and debonding of quartzand carbonategrain TransͲgranular microͲcrackina carbonategrain 100Pm

Shearing of pyritegrain

500P Pm

5Pm

50Pm

MicroͲcrackinclay matrix with reͲ orientation oftheclay platelet along microͲ shear planes 22

ConcludingRemarks •

Petrophysics consequences: – Shales andclaystones areheterogeneous polyͲcrystallinerocks,havingahigh contentofclaywithmicroͲpores. – AtamesoͲscale,theyareanisotropic (transverseisotropic)andexhibita markedtimeͲdependent behaviour.



MechanicalTests : – Creeptestswithrelaxationtestsandstrainratecontrolledcompressiontests arenecessarytodeterminetheparametersofany ratedependentmodels – Priortesting,physicalpropertiesneedtobeaccuratelydetermined(including sonicvelocities)



MicroͲStructuralAnalysisofCrackinginShale – Microcrackingpatternsdependontherateofloading(energydissipation) – MicrocrackingpatternsarealsodrivenbytherockpetroͲfabric. SEManalysis onthinsectionarerequiredevenifothersmeanscouldalsoprovidegood insights(XRayTomography) 23

FinalRemarks • Keepinmind! വ Lab testsresultsobtainedonspecimensgiveyouanorderofmagnitude (upperbound)ofthemechanicalpropertiesoftherockmass(scaleeffect, discontinuities,otherheterogeneities) വ In situ tests (including geophysics) and monitoring of the underground opening help to better constrain the mechanical properties of the rock mass for the numerical analysis (inverse analysis, uncertainties assessment)

24

February14th ,2014,Zürich

Symposium«RockMechanicsandRockEngineeringofGeologicalRepositories inOpalinus ClayandSimilarClaystones»

Thankyouforyourattention!

frederic.pellet@cfmrͲroches.org

Simplified FlowChart fortheDesignof Project Lab Tests

InSituTests

ConstitutiveParameters Identification

Design

Numerical modelling

Realization

Monitoring InverseAnalysis: Scale effect;Heterogeneities… 26

ShearStrengthofClayRockDiscontinuities BCR3D:ServoͲControlledDirectShearEquipment BureArgillite Specimen

Z

X

Y

Vn V n

VVnn

Stressand displacementservoͲ Us UU controlledinthe3 ss directions,Fluid injection:Control PressureVolume Conventional shear box:rotation

UU s/2/2 U /2

s/2 U UssU/2 /2

ss

BCR3Dshear box:norotation

27

Shear testondryandsaturateddiscontinuities ConstantNormalLoad (CNL),shearingrateof0.05mm/s Normaldisplacement Ͳ shear displacement

ShearstressͲ sheardisplacement 8

0.0 Vn =16MPa

Dry

4

ShearStress[MPa]

Vn =2MPa

Vn =10MPa

Normaldisplacement[mm]

6

Vn =5MPa Vn =2MPa

2 0 Ͳ2 Ͳ4

Ͳ2

Ͳ1

0

4

Saturated

2

Vn =2MPa

1

2

3

4

5

6

7

Ͳ0.4 Vn =10MPa Vn =16MPa

Ͳ0.6

Ͳ0.8

Ͳ1

0

Vn =16MPa

Sheardisplacement[mm]

1 Vn

2

3

4

5

6

7

8

Vn =5MPa Sheardisplacement[mm] =2MPa

Ͳ0.5

Vn =10MPa

Vn =5MPa

0.0 Ͳ2

8

Normaldisplacement[mm]

Shearstress[MPa]

Vn =5MPa

Ͳ1.0

Ͳ6 6

Ͳ0.2

0 Ͳ2 Ͳ4 Ͳ6

Vn =10MPa

Ͳ1.0 Vn =16MPa

Ͳ1.5 Ͳ2.0 Ͳ2.5 Ͳ3.0

Ͳ8 Ͳ1

0

1

2

3

4

Sheardisplacement[mm]

5

6

7

8

Ͳ2

Ͳ1

0

1

2

3

4

Sheardisplacement[mm]

5

6

7 28

8

Photosofthe discontinuitiesafter testing

Drydiscontinuity

Saturated discontinuity

Left:lowerpart

Right:upperpart

29

Normalstressversusmaximumshearstress

Drydiscontinuities

Saturateddiscontinuities

8

8 Mohr-Coulomb TD-CNL-03

Maximumshearstress[MPa]

Maximumshearstress [MPa]

7

TD-CNL-04

6

TD-CV-06 TD-CV-02

5

TD-CV-17 TD-CV-05

4 3 2

Cohesion = 0.41 MPa Friction angle = 22°

1

Mohr-Coulomb

7

TW-CNL-07 TW-CV-21

6

TW-CV-23

5 4 3 2 Cohesion = 0.32 MPa Friction angle = 12 °

1

0

0

0

2

4

6

8

10

Normalstress[MPa]

12

14

16

18

0

2

4

6

8

10

12

14

16

Normalstress[MPa]

F.L.Pellet,M.Keshavarz,M.Boulon(2013),Influenceofhumidityconditionsonshearstrengthofclayrockdiscontinuities, EngineeringGeology.

30

18