Latest News from HERMES - Desy

5 downloads 232 Views 1MB Size Report
hermes. Latest News from HERMES. E.C. Aschenauer. DESY-ZEUTHEN on behalf of the hermes Collaboration. E.C. Aschenauer. DESY PRC October 2002. 1 ...
Latest News from HERMES E.C. Aschenauer DESY-ZEUTHEN

on behalf of the hermes Collaboration

hermes

E.C. Aschenauer

DESY PRC October 2002

1

Polarized Deep Inelastic Scattering

(E,’ p’ ) (E, p)

Important Variables:

e q

γ*

u N

u

lab

=

4EE

x

lab

z

lab

Q2 2mν Eh ν

Q

h

2

h d

π

+

π

= =

0

sin2 ( θ2 )

ν

lab

=

E − E0

y

lab

ν E

=

=

p·q p·k

α2 E 0 Cross Section: = Q2 E Lµν W µν  0 0 0 2 Lµν = 2[kµ kν + kν kµ − k · k − me gµν +ime µναβ S α (k − k 0 )β ]  pµ pν  µν µν 2 2 W = −g F1 x, Q + ν F2 x, Q  1  µνλσ qλ 2 2 + ν (p · qSσ − S · qpσ ) g2 x, Q +i ν Sσ g1 x, Q   1 2 2 (for spin 1) −b1 x, Q rµν + 6 b2 x, Q (sµν + tµν + uµν )   1 1 2 2 + 2 b3 x, Q (sµν − uµν ) + 2 b4 x, Q (sµν − tµν ) d2 σ dΩdE 2

F1 ,F2 / g1 ,g2 =⇒ Unpolarized / Polarized Structure Functions NO: relativistic effects , intrinsic kT , quark masses and correlations hermes

E.C. Aschenauer

DESY PRC October 2002

2

V

+ -T

+

V

Deuterium - Tensor Polarization

T

0

Tensor Polarization: T

E/EHFS

3 Hydrogen

2

HFS MF | 1 > +1 |2> 0

MI MS +1/2 +1/2 -1/2 +1/2

Deuterium

HFS |1> |2> |3>

MF +3/2 +1/2 -1/2

MI +1 0 -1

MS +1/2 +1/2 +1/2

0 -1 |3> |4>

-3

0

2

4

-1 0

|4> |5> |6>

-1/2 -1/2 +1/2 -1/2

6

8 0 B/BCH

2

4

-3/2 -1 -1/2 0 +1/2 +1

6

1 − 3N0

=

N+ +N− −2N0 N+ +N− +N0

=

N± −2N0 N± +N0

State Vector + Vector Tensor ± Tensor 0

1

-2

=

-1/2 -1/2 -1/2

Injected |1 > +|6 > |3 > +|4 > |3 > +|6 > |2 > +|5 >

N+ N− N± N0

V 1 -1 0 0

T 1 1 1 -2

8 B/BCD

Only possible with a gas target hermes

E.C. Aschenauer

DESY PRC October 2002

3

The Tensor Polarized Structure Function b d1 q+

F1 (x) : g1 (x) : b1 (x) :

q-

Proton P 2 + − 1 e (q (x) + q i i i i (x)) 2 P 2 + − 1 e (q (x) − q i i i i (x)) 2

q0

Deuteron P 2 + − 1 0 e (q (x) + q (x) + q i (x)) i i i i 3 P 2 + − 1 e (q (x) − q i i i i (x)) 2 P 2 + − 1 0 e (2q (x) − (q (x) + q i i i i i (x))) 2

In the parton model bd 1 measures the difference in the quark momentum distributions of helicity 1 and 0 targets

hermes

E.C. Aschenauer

DESY PRC October 2002

4

AT (10-2)

Tensor Asymmetry

2

bd 1 enters in the symmetric part of Wµν −→ not sensitive to PB

0

AT -2

=

1 T

·

N+ N− N0 + −2 L0 L+ L− − 0 N+ + N− + N 0 + L L L

T: target polarization < T >= 0.83 ± 0.03 L+/−/0 : dead-time corrected luminosities

-4 10

hermes

=

(σ + +σ − )−2σ 0 σ + +σ − +σ 0

E.C. Aschenauer

-2

10

-1

x

DESY PRC October 2002

5

b2

Results on bd1 0.02

b1 = − 32 · AT · Fd 1

0.015

b1 =

0.01

· b2

with:

0.005

• Fd 1 =

0

Fd 2 = -0.005

• -0.01

1+γ 2 2·x(1+R)

Fn 2 : Fp 2 Fp 2:

1+γ 2 d 2·x(1+R) · F2 Fn p F2 (1 + F2p ) 2

NMC, Nucl. Phys. B371 (1992) 3

ALLM97 (hep-ph 9712415) R: Phys. Lett. B250 (1990) 193

10

• no higher twist effects (b3 , b4 = 0)

1 -1

10 10

hermes

K.Bora & R.L. Jaffe Phys.Rev.D57 (1998) 6906 -4

10

-3

E.C. Aschenauer

10

-2

10

-1

x

DESY PRC October 2002

6

DVCS azimuthal asymmetries ∗ ∗ dσ ∝ |TBH |2 + |TDVCS |2 + (TBH TDVCS + TDVCS TBH )

isolate BH-DVCS interference term: • imaginary part ∝ beam helicity asymmetry: dσ ←+ − dσ →+ ∝ Im (TBH TDVCS ) e

e



sin φ

• real part ∝ beam charge asymmetry: dσe+ − dσe− ∝ Re (TBH TDVCS ) ∝ cos φ ⇒ both asymmetries measured by HERMES

e’ (Detected) e

γ (Detected)

γ∗

(known)

GPD p

X (Not Detected)

y x

(known)

ST SL

P k’

θγ q

z

lepton scattering plane and the γ ∗ γ - plane

k

hermes

φ: azimuthal angle between

φ

E.C. Aschenauer

DESY PRC October 2002

7

DVCS on Nuclear Targets

Nγ / NDIS

x 10

-3

0.45 0.4

HERMES PRELIMINARY

0.35

Neon

0.3

Hydrogen

Proportional to :

Deuterium

0.25

• Charge of the Nucleus • Formfactor of the Nucleus

0.2 0.15 0.1 0.05

Mx < 1.7 GeV

0 -0.4 -0.2

0

0.2 0.4 0.6 0.8

1

1.2 1.4 2

-t (GeV )

hermes

E.C. Aschenauer

DESY PRC October 2002

8

→+

e Ne → e γ X

0.6

+

(Mx< 1.7 GeV)

→+

e d→e γX

0.6

HERMES PRELIMINARY P1 + P2 sin φ + P3 sin 2φ

0.4

0.8

ALU

0.8

ALU

ALU

DVCS SSA on Nuclear Targets (Mx< 1.7 GeV)

+

e p→e γX

P1 + P2 sin φ + P3 sin 2φ

0.2

0.2

0

0

0

-0.2

-0.2

-0.2

-0.4 P1 = 0.00 ± 0.02 (stat) P2 = -0.22 ± 0.03 (stat) P3 = 0.04 ± 0.03 (stat)

-0.6 -0.8 -1

-0.8

-2

-1

0

1

2

3

φ (rad)

P1 + P2 sin φ + P3 sin 2φ

P1 = -0.04 ± 0.02 (stat) P2 = -0.18 ± 0.03 (stat) P3 = 0.00 ± 0.03 (stat)

-0.6

= 0.20 GeV2, = 0.10, = 2.5 GeV2

-1 -3

(refined)

-0.4 P1 = -0.04 ± 0.02 (stat) P2 = -0.15 ± 0.03 (stat) P3 = 0.03 ± 0.03 (stat)

-0.6

= 0.13 GeV2, = 0.09, = 2.2 GeV2

(Mx< 1.7 GeV)

+

HERMES PREL. 2000

0.4

0.2

-0.4

→+

0.6

HERMES PRELIMINARY

0.4

0.8

-0.8

= 0.18 GeV2, = 0.12, = 2.5 GeV2

-1 -3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

φ (rad)

3

φ (rad)

Predictions by A.V. Belitsky et al. (hep-ph/0112108): Deuterium: ALU ∼ −0.13 · sin(Φ) at Q2 = 4GeV2 x = 0.1, t = −0.3GeV2 Hydrogen: ALU ∼ −0.16 · sin(Φ)

First Hint for coherent scattering on the nucleus. hermes

E.C. Aschenauer

DESY PRC October 2002

9

The 3rd Twist-2 Structure function

q

f1 =



g1q =

-



q

h1 =

-



Unpolarized quarks and nucleons

Longitudinally polarized quarks and nucleons

Transversely polarized quarks and nucleons

vector charge: ¯ µ ψ|P S >= < P S|ψγ R1 dxq(x) − q¯(x) 0

axial charge: ¯ µ γ5 ψ|P S >= < P S|ψγ R1 dx∆q(x) + ∆¯ q (x) 0

tensor charge : ¯ µν γ5 ψ|P S >= < P S|ψσ R1 dxδq(x) − δ q¯(x) 0

q(x): spin averaged well known

∆q(x): helicity difference known

δq(x): helicity flip unmeasured

HERMES 1995-2000

HERMES 2002. . .

hermes

E.C. Aschenauer

DESY PRC October 2002

10

Characteristics of Transversity • Non-relativistic quarks: ∆q(x) = δq(x) ⇒ δq probes relativistic nature of quarks • Angular momentum conservation ⇒ Transversity has no gluon component ⇒ different Q2 evolution than ∆q(x) • q and q¯ contribute with opposite sign to δq(x) ⇒ predominantly sensitive to valence quark polarization • Bounds: ⇒ |δq(x)| ≤ q(x) ⇒ Soffer bound: |δq(x)| ≤ 12 [q(x) + ∆q(x)] • Transversity distribution CHIRAL ODD ⇒ No Access In Inclusive DIS

hermes

E.C. Aschenauer

+ X +

DESY PRC October 2002

11

How can one measure Transversity? Need another chiral-odd object! δq(x) accessible in semi-inclusive DIS X ep→ehX = f H→q ⊗ σ eq→eq ⊗ Dq→h σ q

⇓ chiral-odd DF

⇓ chiral-odd FF

Study SSA with a transversely polarized target at HERMES 1. ep↑ −→ e0 πX

⇐ Favorite Process Collins,93, Kotzinian,95, Mulders et al,96

2. ep↑ −→ e0 Λ↑ X 3. ep↑ −→ e0 ππX

hermes

E.C. Aschenauer

Baldracchini,82, Jaffe,96 Jaffe et al,97

DESY PRC October 2002

12

First glimpse on Transversity ?! 0.04

1 N + (φ) − N − (φ) · AU L (φ) = hP i N + (φ) + N − (φ)

P1 * sin φ P1 * sin φ + P2 * sin 2φ



0.02 AUL(φ)

Longitudinal polarized deuteron target

e d → e π+ X

0

-0.02

P1 = 0.012 ± 0.002 P2 = 0.004 ± 0.002

0.04

Q

0

-0.02

1 − y ∼ 0.15

y x ST

P1 = 0.021 ± 0.005 P2 = 0.009 ± 0.005

0.04 →

0.02 AUL(φ)

ST ∝ sin Θγ '

2M x p

0.02 AUL(φ)

ST transverse component of target spin w.r.t. virtual photon:



e d → e π0 X

e d → e π- X

0

-0.02 SL

P1 = 0.006 ± 0.003 P2 = 0.001 ± 0.003

P

θγ q

0.04

φ



z

k

0.02 AUL(φ)

k’

ed→eK X +

0

-0.02

P1 = 0.013 ± 0.006 P2 = -0.005 ± 0.006

longitudinal polarized hydrogen target

π 0 : hep-ex/0104005, π ± : hep-ex/9910062 hermes

E.C. Aschenauer

-0.04



-π/2

0 φ (rad)

π/2

DESY PRC October 2002

π 13

0.08



+

ed→eπ X → + ep→eπ X

0.06

sinφ Moments

UL

Asinφ

0.04 0.02 0 -0.02 -0.04 0.08



0

ed→eπ X → 0 ep→eπ X

0.06

UL

Asinφ

0.04 0.02 0

Original predictions by Collins:

-0.02 -0.04 0.08



-



+

• Proton Target Larger for π + , π 0 than for π − (u-quark dominance ) • Raise with xbj (valence quark dominance) • Grow with p⊥ , peak around 1 GeV

ed→eπ X → ep→eπ X

0.06

UL

Asinφ

0.04 0.02 0 -0.02 -0.04 0.08

ed→eK X

0.06

UL

Asinφ

0.04

H1⊥ ( D1

0.02 0 -0.02

Mc Mh Mc2 +p2⊥

with Mc '1 GeV)

• First SSA for Kaons

-0.04 0

0.1

0.2

x

hermes



E.C. Aschenauer

0.3 0

0.25

0.5

0.75

Pt [GeV/c]

1

0.2

0.3

0.4

0.5

0.6

0.7

z

DESY PRC October 2002

14

Attempt of Interpretation • observe non-vanishing hsin φi-moments • hsin 2φi-moment small (consistent with zero) Attribute asymmetry to Collins fragmentation and Transversity: − ST hsin φi Asin φ ∼ SL hsin φi U L U T U L Longitudinally polarized in experiment (along beam direction) hsin φiU L ∼

1 Q

hsin φiU T ∼

P

hsin 2φiU L ∼ hermes

E.C. Aschenauer

⊥(1),q

2 q e q q (hL (x)H1

P

⊥(1),q

q 2 e xh 1 (x)H1 q q

P

⊥(1),q

2 q eq xh1L

⊥(1),q

(z) − z1 h1L

(z) ⊥(1),q

(x)H1

L/T polarized in theory (along γ ∗ direction) ˜ (x)H(z))

but ST ∼

1 Q

like twist-3

(z) DESY PRC October 2002

15

Data - Theory 0.1



ed→eπX 0.06

π

+

π

-

π

0



ed→eπX

HERMES PRELIMINARY →

+

ed→eK X

0.06

0.2