Lecture 11 – Quantum Confinement

155 downloads 4164 Views 357KB Size Report
Surface EM wave. ▫. Surface polaritons. ▫. Size dependence. ▫. Case studies (2 /9 – 2/16): ▫. Quantum wells, wires, and dots. ▫. Nanophotonics in microscopy.
Lecture 11 – Quantum Confinement

EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Schedule for the rest of the semester „

Introduction to light-matter interaction (1/26): „ „

„ „ „

Basic excitations and measurement of ε(r). (1/31) Structure dependence of ε(r) overview (2/2) Surface effects (2/7): „ „ „

„

Surface EM wave Surface polaritons Size dependence

Case studies (2/9 – 2/16): „ „ „

„

How to determine ε(r)? The relationship to basic excitations.

Quantum wells, wires, and dots Nanophotonics in microscopy Nanophotonics in plasmonics

Dispersion engineering (2/21 – 3/7): „ „

Material dispersion Waveguide dispersion (photonic crystals)

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

2

Quantum confinement review g(E) = Density of states

3D g(E)

2D g(E)

Eg

wire

sheet

bulk

E

1D g(E)

Eg

dot

E

0D g(E)

Eg

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

E

Eg

E 3

Quantum wells and double heterostructures

N

P

Recombination of electron and hole pairs generate radiation. EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

4

Quantum well lasers

~3λ

>100λ Gain

ν

ν Free Spectral Range

ν EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

ν 5

DFB v.s. DBR structures

Distributed Feedback DFB

Distributed Bragg Reflector DBR

w

n1 n2 n3

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

Λ

6

Cross section of DFB Lasers

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

7

Semiconductor superlattice

Ref: Prasad, chapter 4, figures 10 and 11. EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

8

Intersubband transition „

Intersubband transition can be used to generate or detect mid-infrared radiation (~ 10 µm).

Ref: H. Page et al., Appl. Phys. Lett., 78 (2001) 3529. EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

9

Quantum confined Stark effect (QCSE)

Ref: J. S. Weiner et al., Appl. Phys. Lett., 47 (1985) 1148. EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

10

2D plasmons realization

Ref: S. J. Allen et al., Phys. Rev. Lett., 38 (1977) 980. EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

11

Increase of quantum confinement in indirect semiconductors „

Confinement of electrons and holes in a small volume increase the possibly allowed ∆k and therefore enhances the emission efficiency of an indirect semiconductor, e.g. silicon.

Ref: W. D. Kirkey et al., MRS Symp. 789 (2004) N15.30.1.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

12

Quantum dot lasers „ „

„ „

Reduction of threshold current Reduction of temperature dependence Æ uncooled operation Increase in differential gain Better high-speed Smaller linewidth enhancement factor performance Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40 (1982) 939.

M. Asada et al, J. Quantum Elec., 22 (1986) 1915. EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

13

α – linewidth enhancement factor „

Change of carrier density (e.g. due to amplitude modulation) Æ change in absorption/gain Æ change in refractive index (via Kramers-Kronig relation)

∂ Re ε / ∂N α≡ ∂ Im ε / ∂N

Ref: J. Oksanen and J. Tulkki, J. Appl. Phys., 94 (2003) 1983.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

14

Quantum optics in semiconductor QD’s „

Rabi oscillation:

Ref: T. H. Stievater et al., Phys. Rev. Lett., 87 (2001) 133603.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

15

Quantum dot biosensors FRET = fluorescence energy transfer

Ref: C. Y. Zhang et al., Nature Mat., 4 (2005) 826.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

16

Nonlinear optical properties in semiconductors „ „ „ „ „

Plasmon screening Exciton signature reduction Exciton ionization Bandfilling Æ blue shift Bandgap renormalization Æ red shift Thermal nonlinearities Æ red shift for most of materials

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku

17