Lecture 22: Finite element method: Axial vibrations of bars

74 downloads 48 Views 220KB Size Report
Fundamental of Vibration. - 1 -. Lecture 22: Finite element method: Axial vibrations of bars. Reading materials: ... vibration element. Finite element approximation ...
53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

Lecture 22: Finite element method: Axial vibrations of bars Reading materials: Section 9.1

1. Introduction Discretization Assembly and solution

2. Governing equations Axial vibrations of a long slender bar

initial conditions

-1-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

boundary conditions

u(x0, t)=ux0

3. Axial vibration element

Finite element approximation

-2-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

4. Energy kinetic energy due to distributed mass

kinetic energy due to concentrated mass

Total kinetic energy

-3-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

Strain energy

work done by the distributed applied force

work done by the concentrated loads

Total work done

-4-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

5. Equations of motion U=Us-W

6. Assembly and Solution The element equations are derived in the above with local coordinates. Assemble the element equations into the global equations based on the global coordinates. Apply the boundary conditions. Numerically solve the equations of motion.

-5-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

7. Example 1

General element equations

Element 1

⎛ 1.869 0.9345 ⎞⎛ u&&1 ⎞ ⎛ 490000 − 490000 ⎞⎛ u1 ⎞ ⎛ 0 ⎞ ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ & & u 0 . 9345 1 . 869 490000 490000 − ⎝ ⎠⎝ 2 ⎠ ⎝ ⎠⎝ u 2 ⎠ ⎝ 0 ⎠ Element 2

⎛ 1.335 0.6675 ⎞⎛ u&&2 ⎞ ⎛ 350000 − 350000 ⎞⎛ u2 ⎞ ⎛ 0 ⎞ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ + ⎜⎜ & & u − 0 . 6675 1 . 335 350000 350000 ⎠⎝ u3 ⎠ ⎝ 0 ⎠ ⎝ ⎠⎝ 3 ⎠ ⎝

-6-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

Element 3

⎛ 0.801 0.4005⎞⎛ u&&3 ⎞ ⎛ 210000 − 210000⎞⎛ u3 ⎞ ⎛ 0 ⎞ ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ & & u 0 . 4005 0 . 801 − 210000 210000 ⎝ ⎠⎝ 4 ⎠ ⎝ ⎠⎝ u 4 ⎠ ⎝ 0 ⎠ Considering concentrated mass and force on node 4, the element equations for Element 3 could be written as:

⎛ 0.801 0.4005 ⎞⎛ u&&3 ⎞ ⎛ 210000 − 210000 ⎞⎛ u 3 ⎞ ⎛ 0 ⎞ ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ & & ⎝ 0.4005 100.801⎠⎝ u 4 ⎠ ⎝ − 210000 210000 ⎠⎝ u 4 ⎠ ⎝ F (t )⎠ Form of global equations

Assemble of elements Element 1

-7-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

Element 2

Element 3

-8-

53/58:153 Lecture 22 Fundamental of Vibration ______________________________________________________________________________

Global equations of motion

Apply BCs

Note: for nonzero BCs

Solutions Newmark’s method

-9-