Brief history of automatic control (I). ⢠1868 First article of control 'on governor's' âby Maxwell. ⢠1877 Routh
Lecture – Basic Control Systems 1.1 Brief History 1.2 Steps to study a control system 1.2 Steps to study a control system 1.3 Classification of Systems 1 4 System classification 1.4 System classification 1.5 System response
Modern control systems
1
Brief history of automatic control (I) • • • • • • • • • • •
1868 First article of control ‘on governor’s’ –by Maxwell 1877 Routh stability criterien 1892 Liapunov stability condition 1895 Hurwitz stability condition 1932 Nyquist 1945 Bode 1947 Nichols 1947 Nichols 1948 Root locus 1949 Wiener optimal control research 1949 Wiener optimal control research 1955 Kalman filter and controlbility observability analysis 1956 Artificial Intelligence Modern control systems
2
Brief history of automatic control (II) Brief history of automatic control (II) 1957 Bellman optimal and adaptive control 1962 Pontryagin optimal control 1965 Fuzzy set 1972 Vidyasagar multi‐variable optimal control and 9 2 id li i bl i l l d Robust control 1981 Doyle Robust control theory • 1981 Doyle Robust control theory • 1990 Neuro‐Fuzzy • • • •
Modern control systems
3
Three eras of control Three eras of control • Classical control : 1950 before – Transfer function based methods • Time‐domain design & analysis • Frequency Frequency‐domain domain design & analysis design & analysis
• Modern control : 1950~1960 – State‐space‐based methods p • Optimal control • Adaptive control
• Post modern control : 1980 after P d l 1980 f – H∞ control – Robust control (uncertain system) Robust control (uncertain system) Modern control systems
4
Control system analysis and design y y g • Step1: Modeling – By physical laws – By identification methods
• Step2: Analysis – Stability, controllability and observability
• Step3: Control law design – Classical, modern and post‐modern control Classical modern and post modern control
• Step4: Analysis Step5: Simulation • Step5: Simulation – Matlab, Fortran, simulink etc….
• Step6: Implement p p Modern control systems
5
Si l & t Signals & systems Output signals
Input signals Time system
Modern control systems
6
Signal Classification Signal Classification •• Continuous signal Continuous signal
• Discrete signal
Modern control systems
7
System classification y • Finite‐dimensional system (lumped‐parameters system described by differential equations)
– Linear systems and nonlinear systems – Continuous time and discrete time systems – Time‐invariant and time varying systems
• Infinite‐dimensional system (distributed parameters system described by partial differential equations) t d ib d b ti l diff ti l ti )
– Power transmission line – Antennas – Heat conduction – Optical fiber etc…. Optical fiber etc…. Modern control systems
8
Some examples of linear system p y • Electrical circuits with constant values of circuit passive elements passive elements • Linear OPA circuits • Mechanical system with constant values of k,m,b M h i l t ith t t l fk b etc • Heartbeat dynamic Heartbeat dynamic • Eye movement • Commercial aircraft C i l i ft
Modern control systems
9
Linear system y A system is said to be linear in terms of the system input x(t) and the system output y(t) if it satisfies the following two properties of superposition and homogeneity. homogeneity
Superposition:
y1 (t )
x1 (t )
x1 (t ) + x2 (t )
y2 (t )
x2 (t ) y1 (t ) + y2 (t )
Homogeneity:
x1 (t )
y1 (t ) Modern control systems
ax1 (t )
ay1 ((tt ) 10
Example
x((t )
let
y (t ) = x(t ) x(t − 1)
y (t )
x(t ) = x1 (t )
y1 (t ) = x1 (t ) x1 (t − 1) let
x(t ) = ax1 (t )
y (t ) = ax1 (t )ax1 (t − 1) = a 2 x1 (t ) x1 (t − 1) = a 2 y1 (t )
y (t ) ≠ ay1 (t )
Non linear system
Modern control systems
11
example The system y is g governed by y a linear ordinary y differential equation q ((ODE))
y ′′(t ) + 2 y ′(t ) + y (t ) = x′(t ) + 3 x (t ) x(t )
Linear time invariant system
y (t )
y1′′(t ) + 2 y1′ (t ) + y1 (t ) = x1′ (t ) + 3 x1 (t ) y2′′ (t ) + 2 y 2′ (t ) + y 2 (t ) = x2′ (t ) + 3 x2 (t ) [ ax1 (t ) + bx2 (t )]′ + 3[ ax1 (t ) + bx2 (t )] = ax1′ (t ) + bx2′ (t ) + a3 x1 (t ) + b3 x2 (t ) = a[ x1′ (t ) + 3 x1 (t )] + b[ x2′ (t ) + 3 x2 (t )] = a[ y1′′(t ) + 2 y1′ (t ) + y1 (t )] + b[ y2′′ (t ) + 2 y 2′ (t ) + y2 (t )] = [ ay1 (t ) + by 2 (t )]′′ + 2[ ay1 (t ) + by 2 (t )]′ + [ ay1 (t ) + by 2 (t )]
Modern control systems
linearity
12
Properties of linear system :
(1)
(2)
Modern control systems
13
Time invariance A system is said to be time invariant if a time delay or time advance of the input signal leads to an identical time shift in the output signal.
x(t )
y ((t ) Time invariant system
y (t − t0 )
x(t − t0 )
t0
t0 Modern control systems
14
Example 1.18
x(t ) y (t ) = R(t )
x(t )
y (t )
x1 (t ) y1 (t ) = R(t ) x2 (t ) = x1 (t − t0 ) x2 (t ) x1 (t − t0 ) ⇒ y2 (t ) = = R(t ) R(t ) x1 (t − t0 ) but y1 (t ) = R(t − t0 ) y1 (t − t0 ) ≠ y2 (t ),
ffor t0 ≠ 0 Time varying system
Modern control systems
15
LTI System y representations p Continuous-time LTI system 1. O 1 Order-N d NO Ordinary di Diff Differential ti l equation ti 2. Transfer function (Laplace transform) 3. State equation (Finite order-1 differential equations) )
Discrete-time LTI system 1. Ordinary Difference equation 2. Transfer function (Z transform) 3. State equation (Finite order-1 difference equations)
Modern control systems
16
Continuous-time LTI system
d 2 y (t ) dy (t ) LC + RC + y (t ) = u (t ) 2 dt dt Order-2 ordinary differential equation constants
LCs 2Y ( s ) + RCsY ( s ) + Y ( s ) = U ( s ) Y (s) 1 = U ( s ) LCs 2 + RCs + 1
U (s )
Linear system y Æ initial rest
Transfer function
1 LCs 2 + RCs + 1
Modern control systems
Y (s )
17
let
x1 (t ) = y (t ) dy (t ) x2 (t ) = dt
x1 (t ) = x2 (t ) R 1 x2 (t ) = − x2 (t ) − x1 (t ) + u (t ) L LC
⎡ x1 (t ) ⎤ ⎡ 0 ⎢ x (t )⎥ = ⎢− 1 ⎣ 2 ⎦ ⎣ LC
u (t )
x (t )
1 ⎤ ⎡ x1 (t ) ⎤ ⎡0⎤ + ⎢ ⎥u (t ) ⎥ R ⎥⎢ − L ⎦ ⎣ x2 (t )⎦ ⎣1⎦
x(t )
∫ A
Modern control systems
18
System response: Output signals due to inputs and ICs. 1. The point of view of Mathematic: Homogenous solution y h (t ) + Homogenous solution
Particular solution Particular solution y p ((t )
2. The point of view of Engineer: Natural response y n (t )
+
Forced response y f (t )
3. The point of view of control engineer:
y zi (t ) Zero‐input Zero input response response Transient response
+
Zero‐state Zero state response response y zs ((t ) Steady state response
Modern control systems
19
Example: solve the following O.D.E
d 2 y (t ) dy (t ) − 2t + 4 + 3 y ( t ) = e , t ≥ 0, 2 dt dt (1) Particular solution: (1) Particular solution:
d 2 y p (t ) dt 2
y (0) = 1,
dy (0) =1 dt
A[ y p (t )] = u (t ) +4
dy p (t ) dt
+ 3 y p (t ) = e − 2t
y p (t ) = αe −2t
let then
y ' p (t ) = −2αe −2t
y′p′ (t ) = 4αe −2t
4αe −2t + 4(−2)αe −2t + 3αe −2t = e −2t ⇒ α = −1
we have
y p (t ) = −e −2t
Modern control systems
20
A[ yh (t )] = 0
(2) Homogenous solution:
yh′′ (t ) + 4 yh′ (t ) + 3 yh (t ) = 0
yh (t ) = Ae − t + Be −3t y (t ) = y p (t ) + yh (t )
have to satisfy I.C.
y (0) = 1⇒
y (0) = 1 ,
dy (0) =1 dt
y h ( 0) + y p ( 0) = 1
dy (0) d = 1⇒ dt
yh′ (0) + y′p (0) = 1
5 − t 1 − 3t yh (t ) = e − e 2 2 Modern control systems
21
(3) zero‐input response: consider the original differential equation with no input.
y ′zi′ (t ) + 4 y ′zi (t ) + 3 y zi (t ) = 0,
t≥0
y zi (0) = 1,
y ′zi (0) = 1
y zi (t ) = K 1e − t + K 2 e −3t , t ≥ 0 y zi (0) = K 1 + K 2 y ′zi (0) = − K 1 − 3K 2
K1 = 2 K 2 = −1
y zi (t ) = 2e − t − e −3t , t ≥ 0 zero‐input response
Modern control systems
22
(4) zero‐state response: consider the original differential equation but set all I.C.=0.
y ′zs′ (t ) + 4 y ′zs (t ) + 3 y zs (t ) = e −2t ,
t≥0
y zi (0) = 0 ,
y ′zi (0) = 0
y zs (t ) = C1e − t + C 2 e −3t − e −2t
y zs (0) = C1 + C 2 − 1 = 0 y ′zs (0) = −C1 − 3C 2 + 2 = 0
1 2 1 C2 = 2 C1 =
1 − t 1 − 3t y zs (t ) = e + e − e − 2t 2 2 zero‐state response Modern control systems
23
(5) Laplace Method:
d 2 y (t ) d (t ) dy − 2t + 4 + 3 ( ) = , t ≥ 0, y t e 2 dt dt
y (0) = 1,
dy (0) d =1 dt
1 s Y ( s ) − sy (0) − y ′(0) + 4 sY ( s ) − 4 y (0) + 3Y ( s ) = s+2 2
1 1 5 s+5+ − −1 s + 2 2 + = + 2 Y (s) = 2 s + 3 s + 2 s +1 s + 4s + 3 − 1 − 3t 5 −t − 2t y (t ) = A [Y ( s )] = e −e + e 2 2 −1
Modern control systems
24
Complex response
Zero state response
y zs (t ) =
1 − t 1 − 3t e + e − e −2t 2 2
Forced response (Particular solution)
− 1 − 3t 5 e − e − 2 t + e −t 2 2
Zero input response
y zi (t ) = 2e − t − e −3t , t ≥ 0 Natural response (Homogeneous solution)
y p (t ) = −e −2t Steady state response Steady state response
y (t ) =
yh (t ) =
5 − t 1 − 3t e − e 2 2
Transient response Transient response
− 1 − 3t 5 −t − 2t y (t ) = e −e + e 2 2 Modern control systems
25