Lectures on Full Waveform Inversion - Part 2 Synthetic Data Applications

1 downloads 0 Views 19MB Size Report
Jun 22, 2017 - Full Waveform Inversion. - Part 2 Synthetic Data Applications. 1 Review of the FWT algorithm. 2 Conjugate Gradient and Quasi-Newton l-BFGS.
Lectures on Full Waveform Inversion - Part 2 Synthetic Data Applications Daniel K¨ohn, Denise De Nil, Wolfgang Rabbel

June 22, 2017

Full Waveform Inversion - Part 2 Synthetic Data Applications

1

Review of the FWT algorithm

2

Conjugate Gradient and Quasi-Newton l-BFGS

3

Simple example: A spherical low velocity anomaly

4

The CTS Test Problem

5

The Marmousi-2 model

Review of the FWT algorithm Pure Gradient Method Residual Energy E 250

200

Density ρ ®

150

100

50

P−wave velocity Vp ®

 Gradient method: mn+1 = mn − µn Pn

∂E ∂m

 n

Review of the FWT algorithm

Final gradients The gradients for the Lam´e parameters λ, µ and the density ρ can be written as    X Z ∂ux ∂uy ∂E ∂Ψx ∂Ψy dt =− + + ∂λ(x) ∂x ∂y ∂x ∂y sources    Z X ∂E ∂ux ∂uy ∂Ψx ∂Ψy =− dt + + ∂µ(x) ∂y ∂x ∂y ∂x sources   ∂ux ∂Ψx ∂uy ∂Ψy +2 + ∂x ∂x ∂y ∂y   Z X ∂ 2 uy ∂ 2 ux ∂E = dt Ψx + Ψy ∂ρ(x) sources ∂t2 ∂t2

Conjugate Gradient and Quasi-Newton l-BFGS Gradient method requires 200 iterations Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

I’m not happy with the far too slow convergence speed ...

Conjugate Gradient and Quasi-Newton l-BFGS Gradient method get stuck in narrow valley Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

... and then there could be cases like this.

Conjugate Gradient and Quasi-Newton l-BFGS

Conjugate Gradient Minimization of the quadratic form by using conjugate search directions instead of the gradient (Hestenes and Stiefel, 1952) Extension to nonlinear objective functions (Fletcher and Reeves, 1964; Polak and Riebi`ere, 1969) Details, mathematical proofs [Nocedal and Wright, 1999]

Conjugate Gradient and Quasi-Newton l-BFGS Conjugate Gradient Algorithm 1

  ∂E Calculate the steepest decent direction: ∆xn = − ∂m

2

Compute βn according to

n

Fletcher-Reeves: βnFR = Polak-Riebi` ere: βnPR =

∆xT n ∆xn ∆xT n−1 ∆xn−1

∆xT n (∆xn −∆xn−1 ) ∆xT n−1 ∆xn−1 ∆xT (∆x −∆x

)

Hestenes-Stiefel: βnHS = − sT n (∆xnn −∆xn−1 n−1 ) Dai-Yuan: βnDY = − sT

n−1 ∆xT n ∆xn

n−1 (∆xn −∆xn−1 )

Popular choice βn = max{0, βnPR } which allows an automatic direction reset 3

Update conjugate direction: sn = ∆xn + βn sn−1

4

Estimate step length µn

5

Update material parameters: mn+1 = mn + µn sn

Conjugate Gradient and Quasi-Newton l-BFGS Quasi-Newton l-BFGS Idea: Approximate the product of the inverse Hessian with the gradient by finite-differences.

Quasi-Newton Limited Memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) method.

The L-BFGS Algorithm Quasi-Newton L-BFGS Method (loop 1) The Limited-Memory Broyden-Fletcher-Goldfarb-Shanno method (see also Nocedal & Wright (1999), Brossier (2009)) At iteration step n:   ∂E 1 Compute g = n ∂m n 2

Compute and store sn = mn+1 − mn Compute and store yn = gn+1 − gn

3

q = gn

4

for i = n-1 to n-m do ρi = y T1s i

i

αi = ρi siT q q = q − αi yi end for

The L-BFGS Algorithm

Quasi-Newton L-BFGS Method (loop 2) T y sn−1 n−1 T y yn−1 n−1

1

Compute Hn0 =

2

Compute z = Hn0 q

3

for i = n-m to n-1 do βi = ρi yiT z z = z + si (αi − βi ) end for

4

Hn gn = z

5

Update model mn+1 = mn − µn Hn gn

Conjugate Gradient and Quasi-Newton l-BFGS Gradient method (200 iterations) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

Conjugate Gradient and Quasi-Newton l-BFGS Conjugate Gradient (30 iterations) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

Conjugate Gradient and Quasi-Newton l-BFGS Quasi-Newton l-BFGS (20 iterations) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

Problems related to local non-linear optimization Uni-modal objective function (1 minimum) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

E = (1 − Vp)2 + 100(ρ − Vp 2 )2 (Rosenbrock, 1960)

Problems related to local non-linear optimization Multi-modal objective function (multiple minima) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

E = (Vp 2 + ρ − 11)2 + (Vp + ρ2 − 7)2 (Lichtblau, 1972)

Problems related to local non-linear optimization Multi-modal objective function (multiple minima) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

E = (Vp 2 + ρ − 11)2 + (Vp + ρ2 − 7)2 (Lichtblau, 1972)

Problems related to local non-linear optimization Multi-modal objective function (multiple minima) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

E = (Vp 2 + ρ − 11)2 + (Vp + ρ2 − 7)2 (Lichtblau, 1972)

Problems related to local non-linear optimization Multi-modal objective function (multiple minima) Residual Energy E 250

Density ρ →

200

150

100

50

P−wave velocity Vp →

E = (Vp 2 + ρ − 11)2 + (Vp + ρ2 − 7)2 (Lichtblau, 1972)

Simple example: A spherical low velocity anomaly

Simple example: A spherical low velocity anomaly Pressure wavefield: simple acoustic test problem V [m/s] − True Model

V [m/s] − Starting Model

p

p

2400 50

50

100

100

2300

2100

y [m]

y [m]

2200

150

2000 150 1900

1800 200

200 1700

1600 250

250 20

40

60

80 100 x [m]

120

140

160

20

40

60

80 100 x [m]

120

140

160

Simple acoustic test problem: A spherical low velocity anomaly in a homogeneous full space.

Simple example: A spherical low velocity anomaly Pressure wavefield: simple acoustic test problem

Simple example: A spherical low velocity anomaly Starting model Vp [m/s] − True Model

Vp [m/s] − Start Model

Vp0 = 2000 m/s

Vp = 2000 m/s

50

100

100 Depth [m]

Depth [m]

0

50

Vp = 1700 m/s

150

200

150

200

250

250 50

100 Distance [m]

150

50

100 Distance [m]

150

Simple acoustic test problem: homogenous starting model.

Simple example: A spherical low velocity anomaly Seismic sections: initial model, true model, data residuals True Model uobs y

Initial Data Residuals δ uy = umod −uobs y y 0.04

0.045

0.045

0.045

0.05

0.05

0.05

time [s]

0.04

time [s]

time [s]

Starting Model umod y 0.04

0.055

0.055

0.055

0.06

0.06

0.06

0.065

50

100 trace #

150

0.065

50

100 trace #

150

0.065

50

100 trace #

150

Seismic sections of the y-component for the simple test problem: The starting model (left), the true model (center) and the data residuals (right).

Simple example: A spherical low velocity anomaly Non-linear optimization of P-wave velocity model Minimize objective function by CG for the P-wave velocity vp : n  n+1 n n −1 ∂E vp = vp − µ H ∂vp with gradient ∂E/∂vp, Hessian H and step-length µ Efficient gradient calculation by time-domain adjoint method    X Z ∂E ∂ux ∂uy ∂Ψx ∂Ψy = −2ρvp dt + + , ∂vp ∂x ∂y ∂x ∂y sources with the forward wavefield u and adjoint wavefield Ψ, respectively.

Simple example: A spherical low velocity anomaly

Forward, adjoint and correlated wavefields (gradient) for shot 45

Simple example: A spherical low velocity anomaly The effect of the preconditioning operator P Gradient − δ λ

−11

x 10 1

Gradient − δ λ (rescale)

−15

x 10

Precond. Gradient − δ λ

−12

x 10 10

−1 0

50

9

−2

8

−3

−1

7

100

−4

y [m]

6 −2

−5

150

5

−6

4

−7

3

−8

2

−9

1

−3 200 −4

250

0

−5 50

100 x [m]

150

50

100 x [m]

150

50

100 x [m]

150

The effect of the preconditioning operator P. The Gradient δλ0 before (left) and after the application of the preconditioning operator (right). Artifacts due to low ray-coverage are more prominent in the rescaled image of the unpreconditioned gradient (center).

Simple example: A spherical low velocity anomaly P-wave velocity model FWT result Vp [m/s] − Iteration No. 155

Vp [m/s] − Iteration No. 10

Vp [m/s] − True Model

2400 50

50

50

100

100

100

2300

2100

y [m]

y [m]

y [m]

2200

2000

150

150

150

200

200

200

1900 1800 1700 1600

250

250 50

100 x [m]

150

250 50

100 x [m]

150

50

100 x [m]

150

Inversion results for the P-wave velocity model of the spherical low velocity anomaly after 10 (left) and 155 FWT iterations (center) compared with the true model (right).

Simple example: A spherical low velocity anomaly Seismic sections: FWT result, true model, data residuals True Model uobs

Final Data Residuals δ u = umod−uobs

y

y

0.04

0.045

0.045

0.045

0.05

0.05

0.05

time [s]

0.04

time [s]

time [s]

Final Model (Iteration 155) umod y 0.04

0.055

0.055

0.055

0.06

0.06

0.06

0.065

50

100 trace #

150

0.065

50

100 trace #

150

0.065

50

100 trace #

y

y

150

Seismic sections (y-component) for the inversion result (left), the true model (center) and the data residuals (right).

The CTS Test Problem

The Cross-Triangle-Square (CTS) model The CTS model by D. De Nil and D. K¨ ohn P−wave velocity [m/s] 2500 500

y [m]

1000 1500

2000

2000 2500 3000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1500

S−wave velocity [m/s] 1400 500 1300 y [m]

1000 1200 1500 1100

2000

1000

2500 3000

900 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Density ρ [kg/m3] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

[K¨ohn et al., 2012]

2000

3000

4000

5000

6000

7000

8000

9000

10000

The Cross-Triangle-Square (CTS) model

CTS model: acquisition geometry Acquistion Geometry 100 sources

400 receiver

200

400

y [m]

600

800

1000

1200

1400 1000

2000

3000

4000

5000 x [m]

6000

7000

8000

9000

10000

The Cross-Triangle-Square (CTS) model

CTS model: starting model P−wave velocity [m/s] 2500 500

y [m]

1000 1500

2000

2000 2500 3000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1500

S−wave velocity [m/s] 1400 500 1300 y [m]

1000 1200 1500 1100

2000

1000

2500 3000

900 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Density ρ [kg/m3] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

The Cross-Triangle-Square (CTS) model Influence of frequency filtering P−wave velocity (result) [m/s] 2400

y [m]

500 1000

2200

1500

2000

2000

1800

2500 1600 3000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S−wave velocity (result) [m/s] 1400 500 1300 y [m]

1000 1200 1500 1100

2000

1000

2500 3000

900 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3

Density ρ (result) [kg/m ] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

No frequency filter

2000

3000

4000

5000

6000

7000

8000

9000

10000

The Cross-Triangle-Square (CTS) model Influence of frequency filtering P−wave velocity (result) [m/s] 2400

y [m]

500 1000

2200

1500

2000

2000

1800

2500 1600 3000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S−wave velocity (result) [m/s] 1400 500 1300 y [m]

1000 1200 1500 1100

2000

1000

2500 3000

900 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3

Density ρ (result) [kg/m ] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

2000

3000

4000

5000

Low pass frequency filters: 5.0-10.0 Hz

6000

7000

8000

9000

10000

The Cross-Triangle-Square (CTS) model Influence of frequency filtering P−wave velocity (result) [m/s] 2400

y [m]

500 1000

2200

1500

2000

2000

1800

2500 1600 3000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S−wave velocity (result) [m/s] 1400 500 1300 y [m]

1000 1200 1500 1100

2000

1000

2500 3000

900 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3

Density ρ (result) [kg/m ] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

2000

3000

4000

5000

6000

Low pass frequency filters: 2.0-5.0-10.0 Hz

7000

8000

9000

10000

The Cross-Triangle-Square (CTS) model Influence of the model parametrization Lame parameter λ (result) [Pa]

9

x 10 8

500

7

y [m]

1000 6 1500 5

2000

4

2500 3000

3 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Lame parameter µ (result) [Pa]

9

x 10 4

500

3.5

y [m]

1000 3 1500 2.5

2000

2

2500 3000

1.5 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3

Density ρ (result) [kg/m ] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Lam´e parameters, low pass frequency filters: 2.0-5.0-10.0 Hz

The Cross-Triangle-Square (CTS) model Influence of the model parametrization P−wave impedance (result) [kg/s m2]

6

x 10 5

500 4.5

y [m]

1000 1500

4 2000 2500 3000

3.5 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

y [m]

S−wave impedance (result) [kg/s m2]

6

x 10

500

2.8

1000

2.6

1500

2.4

2000

2.2

2500 3000

2 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3

Density ρ (result) [kg/m ] 2200 500

2150

y [m]

1000 2100 1500 2050 2000 2000 2500 3000

1950 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Seismic impedances, low pass frequency filters: 2.0-5.0-10.0 Hz

The Marmousi-2 model

The Marmousi-2 model

[Martin et al., 2006] NX = 500 gridpoints × NY = 174 gridpoints → 87000 gridpoints × 3 parameter classes (Vp, Vs, density) → 261000 model parameters

The Marmousi-2 model

Seismic modelling and inversion codes are benchmarked on 1 node of the NEC cluster at Kiel university: 2 Intel Xeon E5-2670 CPUs (16 cores, clock speed 2.6 GHz) 128 GB DDR4 RAM

Marmousi-2 benchmarks (forward problem) First-arrival travel time map

0.0 Depth [km]

RAJZEL Eikonal FD Run-time (1 core): 0.05 s

0.5 1.0 1.5 2.0 2.5 3.0 0.0

2.0

4.0 6.0 Distance [km]

8.0

10.0

8.0

10.0

Pressure wavefield (time = 1.922 s)

0.0

DENISE time-domain FD Run-time (16 cores): 2.1 s

Depth [km]

0.5 1.0 1.5 2.0 2.5 3.0 0.0

0.0

4.0 6.0 Distance [km]

10 Hz monochromatic pressure wavefield

0.5 Depth [km]

GERMAINE frequency-domain FD Run-time (1 core): 1.3 s

2.0

1.0 1.5 2.0 2.5 3.0 0.0

2.0

4.0 6.0 Distance [km]

8.0

10.0

Marmousi-2: acquisition geometry

Depth [km]

0.5 1 1.5 2 2.5 3 1

2

3

4 5 6 Distance [km]

7

8

9

10

100 airgun sources, 40 m below the free-surface Source wavelet: low-pass filtered spike (fmax = 15 Hz) OBC with 400 multi-component receivers (x,y-component)

The Marmousi-2 model Propagation of the Pressure Wavefield Pressure wavefield (time = 1.351 s)

0.0 0.5

Depth [km]

1.0 1.5 2.0 2.5 3.0 3.5 0.0

1.0

2.0

3.0 Distance [km]

4.0

5.0

Click here for fancy 30 fps wavefield movie

6.0

The Marmousi-2 model Preconditioning Operator Gradient δ Vp (no Preconditioning)

−15

x 10

0.5

5

y [km]

1 0

1.5 2

−5 2.5 3

−10 1

2

3

4

5 x [km]

6

7

8

9

10

Gradient δ V (Preconditioning)

−16

p

x 10 1.5

0.5

1

y [km]

1

0.5

1.5

0

2

−0.5

2.5

−1

3

−1.5 1

2

3

4

5 x [km]

6

7

8

9

10

Marmousi-2 (Vp ), Start Model V [m/s]

P−wave velocity (Traveltime Tomography)

p

Depth [km]

0.5

4500

1 1.5

4000

2 2.5

3500

3 1

2

3

4

5

6

7

8

9

10

P−wave velocity (true model)

3000

2500

Depth [km]

0.5 2000

1 1.5

1500

2 2.5 3

1000 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 (Vp ), Freq. 2 Hz, 50 It. V [m/s]

P−wave velocity (Waveform Tomography)

p

Depth [km]

0.5

4500

1 1.5

4000

2 2.5

3500

3 1

2

3

4

5

6

7

8

9

10

P−wave velocity (true model)

3000

2500

Depth [km]

0.5 2000

1 1.5

1500

2 2.5 3

1000 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 (Vp ), Freq. 2-5 Hz, 75 It. V [m/s]

P−wave velocity (Waveform Tomography)

p

Depth [km]

0.5

4500

1 1.5

4000

2 2.5

3500

3 1

2

3

4

5

6

7

8

9

10

P−wave velocity (true model)

3000

2500

Depth [km]

0.5 2000

1 1.5

1500

2 2.5 3

1000 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 (Vp ), Freq. 2-5-10 Hz, 90 It. V [m/s]

P−wave velocity (Waveform Tomography)

p

Depth [km]

0.5

4500

1 1.5

4000

2 2.5

3500

3 1

2

3

4

5

6

7

8

9

10

P−wave velocity (true model)

3000

2500

Depth [km]

0.5 2000

1 1.5

1500

2 2.5 3

1000 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 (Vp ), Freq. 2-5-10-20 Hz, 70 It. V [m/s]

P−wave velocity (Waveform Tomography)

p

Depth [km]

0.5

4500

1 1.5

4000

2 2.5

3500

3 1

2

3

4

5

6

7

8

9

10

P−wave velocity (true model)

3000

2500

Depth [km]

0.5 2000

1 1.5

1500

2 2.5 3

1000 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 (Vs ), Freq. 2-5-10-20 Hz, 70 It. V [m/s]

S−wave velocity (Waveform Tomography)

s

Depth [km]

0.5

2600

1 2400

1.5 2

2200

2.5 2000

3 1

2

3

4

5

6

7

8

9

10

1800 1600

S−wave velocity (true model) 1400

Depth [km]

0.5 1

1200

1.5

1000

2 800

2.5 3

600 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 (Density ρ), Freq. 2-5-10-20 Hz, 70 It. ρ [kg/m3] 2800

Density (Waveform Tomography)

Depth [km]

0.5 1

2600

1.5 2

2400

2.5 3

2200 1

2

3

4

5

6

7

8

9

10 2000

Density (true model) 1800

Depth [km]

0.5 1

1600

1.5 2

1400

2.5 3 1

2

3

4 5 6 Distance [km]

7

8

9

10

1200

The Marmousi-2 model Seismic section for shot 50 (start model) Seismic Section

1 2

Time [s]

3 4 5 6 7 50

100

150

200 channel #

250

300

350

400

The Marmousi-2 model Seismic section for shot 50 (FWT result) Seismic Section

1 2

Time [s]

3 4 5 6 7 50

100

150

200 channel #

250

300

350

400

The Marmousi-2 model Seismic section for shot 50 (true model) Seismic Section

1 2

Time [s]

3 4 5 6 7 50

100

150

200 channel #

250

300

350

400

The Marmousi-2 model

Evolution of the L2-Norm Evolution of the Residual energy

0

10

Normalized Residual energy

1 Hz 2.5 Hz 5 Hz 10 Hz

−1

10

−2

10

10

20

30

40 50 Iteration step No.

60

70

80

90

The Marmousi-2 model Influence of Hessian approximations So far we used a simple linear scaling with depth as Hessian approximation {Ha1 }−1 =depth

More sophisticated: Integrated forward wavefield + approximation of the receiver Greens function (Plessix & Mulder, 2004)  {Ha2 }−1 =

 R

dt|u(xs

,x,t)|2



asinh

xmax −x r z



 −asinh

xmin −x r z

−1

max = minimum and maximum receiver positions xmin r , xr xs = source position

Marmousi-2 - influence of Hessian: PCG + Ha1 Vs [m/s]

S−wave velocity (Waveform Tomography)

Depth [km]

0.5

2600

1 2400

1.5 2

2200

2.5 2000

3 1

2

3

4

5

6

7

8

9

10

1800 1600

S−wave velocity (true model) 1400

Depth [km]

0.5 1

1200

1.5

1000

2 800

2.5 3

600 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 - influence of Hessian: PCG + Ha2 Vs [m/s]

S−wave velocity (Waveform Tomography)

Depth [km]

0.5

2600

1 2400

1.5 2

2200

2.5 2000

3 1

2

3

4

5

6

7

8

9

10

1800 1600

S−wave velocity (true model) 1400

Depth [km]

0.5 1

1200

1.5

1000

2 800

2.5 3

600 1

2

3

4 5 6 Distance [km]

7

8

9

10

Marmousi-2 - influence of Hessian: l-BFGS + Ha2 Vs [m/s]

S−wave velocity (Waveform Tomography)

Depth [km]

0.5

2600

1 2400

1.5 2

2200

2.5 2000

3 1

2

3

4

5

6

7

8

9

10

1800 1600

S−wave velocity (true model) 1400

Depth [km]

0.5 1

1200

1.5

1000

2 800

2.5 3

600 1

2

3

4 5 6 Distance [km]

7

8

9

10

References

K¨ ohn, D., De Nil, D., Kurzmann, A., Przebindowska, A., and Bohlen, T. (2012). On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International, 191(1):325–345. Martin, G., Wiley, R., and Marfurt, K. (2006). Marmousi2 - An elastic upgrade for Marmousi. The Leading Edge, 25:156–166. Nocedal, J. and Wright, S. (1999). Numerical Optimization. Springer, New York.

Suggest Documents