Linear Algebra: A Modern Introduction, 3rd Edition - Appendix C ...

5 downloads 39474 Views 185KB Size Report
1. Exercises C. In Exercises 1–14, evaluate the given expression and write your answer in the form . 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. In Exercises 15–18,  ...
Exercises C.qxd

1/1/70

9:41 AM

Page 1

Exercises C In Exercises 1–14, evaluate the given expression and write your answer in the form a  bi. 1. 13  2i2  15  6i2 2. 11  i2  12  3i2 3. 15  2i2 13  i2

4. 1 12  i 2 2

5. 7  4i 1 7. 1i

6. 3i11  2i2 2 8. 3  4i

9.

4i 1  3i

10.

13  i 1  13i

11. i 3

12. i 2012

13. 1100

14. 12118

In Exercises 15–18, find the absolute value of the given complex number. 15. 4  3i 16. 1  i 17. 1  212i

18. 32  2i

In Exercises 19–22, write the given complex number in polar form using its principal argument. 19. 2  2i 20. 5i 21. 13  i

22. 3  4i

In Exercises 23–26, find the polar form of zw , z>w , and 1>z by first putting z and w in polar form. 23. z  1  i, w  13  i 24. z  1  13i , w  213  2i

25. z  4  4i, w  2i 26. z  31 13  i2, w  1  i In Exercises 27–30, find the indicated power using De Moivre’s Theorem. 27. 11  i2 8 28. 1 12  12i 2 10 29. 11  13i2 5

30. 12132i2 3

In Exercises 31–34, find the indicated roots and sketch them in the complex plane. 31. The eighth roots of 1 32. The sixth roots of 64 33. The cube roots of i 34. The cube roots of 412  4 1 2i In Exercises 35–38, write the given number in the form a  bi . 35. eip>2

36. 2eip>3

37. e1ip 38. e 11ip2>2 39. Prove the following properties of the complex conjugate: (a) z  z (b) z  w  z  w (c) zw  z w (d) If z  0, then 1w>z2  w>z . (e) z is real if and only if z  z . (f) z  z  2Re z and z  z  2i Im z . 1

Exercises C.qxd

2

1/1/70

9:41 AM

Page 2

Appendix C

40. Prove the following properties of absolute value: (a) z  z (b) zw  zw (c) If z  0, then 1>z  1>z. (d) z  0 if and only if z  0. (e) Re z  z (f) z  w   z   w  [Hint: Square the left hand side and expand using the identity z2  zz . Exercises 39(f) and 40(e) are useful.]

41. (a) Derive the double angle formulas cos2u  cos2u  sin2u and sin2u  2sinu cosu by expanding 1cosu  isinu 2 2 and comparing the result with the answer given by De Moivre’s Theorem. (b) Imitate the method of part (a) to derive formulas for cos3u and sin3u. (c) Imitate the method of part (a) to derive formulas for cos4u and sin4u. 42. Prove De Moivre’s Theorem using mathematical induction.

Suggest Documents