Lipid-based formulations

0 downloads 0 Views 2MB Size Report
Mar 9, 2018 - impact of lipolysis on colloid formation and drug solubilization. Dr HDR Vincent ... Zeta potential. Optical microscopy & cryo-TEM. Tran, T. et al.
WG 3 – First F2F meeting, Leuven, March 9th, 2018

Lipid-based formulations – impact of lipolysis on colloid formation and drug solubilization Dr HDR Vincent Jannin, UNGAP all WG meeting, March 2018

LIPID-BASED FORMULATIONS

Type

Composition

Comments

I

Lipids

Not self-emulsifying, digestion required

II

Lipids + water-insoluble surfactants

Self-emulsifying, high lipid

III

Lipids + surfactants + co-solvents

Self-emulsifying, lower lipid

IV

Water-soluble surfactants + co-solvents Formation of micelles

Koziolek, M. et al. 2018. Pharm Res https://doi.org/10.1007/s11095-017-2289-x

3

IN VITRO DISPERSION – COLLOIDS FORMATION

Coacervation at 25°C

No coacervation at 25°C

Polarized Light Microscopy & XRPD Jannin, V. Bruley, C. 2007.

Coacervation at 37°C

Optical microscopy & cryo-TEM

Williams, H. et al. 2013. Pharm. Res. 30(12) 3059–3076

Tran, T. et al. 2016. Int. J. Pharm. 502. 151-160.

No coacervation at 37°C

Visual aspect & Stability Zeta potential

Dynamic Light Scattering & Taylor Dispersion Analysis

4

Chamieh, J. et al. 2016. Int. J. Pharm. 513. 262-269

GASTROINTESTINAL TRACT Lipids

Bile (sels biliaires, cholestérol)

Pancreatic juice (HPL, HPLRP2, CEH)

Lipolysis of esterbased excipients eg. Polyoxylglycerides

Preduodenal lipase : Gastric lipase (HGL)

Lipolysis in the small intestine

Absorption of lipolysis Bakala N’Goma, J.C. et al. 2012. Therapeutic Delivery, 3(1) 105-124. byproducts Fernandez, S. et al. 2007. Biochim. Biophys. Acta. 1771. 633-640 Fernandez, S. et al. 2008. Biochim. Biophys. Acta. 1781. 367-375.

5

COMBINED IN VITRO DISPERSION & DIGESTION: pH-STAT • Lipolysis medium, pH 6.5 (fasted duodenal): Tris-maleate CaCl2, 2H2O NaCl NaTDC Phosphatidylcholine Milli-Q water

2 mM 1.4 mM 150 mM 3 mM 0.75 mM qs

• LFCS Consortium protocol:

Enzyme

Formulation

-10

-

5 Dispersion

0

5

1 g formulation in 36 mL lipolysis medium Stirring at 450 rpm Addition of 4 mL of pancreatin solution pH regulation with NaOH 0.2 or 0.6M

15

30

60

Digestion Williams, H. et al. 2012. J. Pharm. Sci. 101. 3360-3380 Williams, H. et al. 2012. Mol. Pharm. 9. 3286-3300

6

VARIATIONS: 2-PHASE LIPOLYSIS 1 vessel, diluting

2 vessels, pumping

Fernandez, S. et al. 2009. Pharm. Res. 26. 1901-1910

Tran, T. et al. 2017. PhD thesis. Copenhagen University

Cinnarizine dissolved in the aqueous phase (%)

120

rDGL | pancreatin

100

80

60

40

No enzyme Active enzymes

20

0 0

10

20

30

40

50

60

70

80

90

Time (min)

Rhizopus oryzae

Pancreatin

7

INFLUENCE OF DIGESTION ON COLLOIDAL STRUCTURE Synchrotron SAXS

Taylor Dispersion Analysis

Vithani, K. et al. 2017. AAPS Journal 19(3) 754-764

Chamieh, J. et al. 2018. Int. J. Pharm. 537(1-2) 94-101

Cryo-TEM Tran, T. et al. 2017. Eur. J. Pham. Sci. 108 62-70

8

INFLUENCE OF DIGESTION ON DRUG ABSORPTION

Dissolution/Permeation system (PL membrane)

Ajine Bibi, H. et al. 2017. Eur. J. Pharm. Biopharm. 117, 300-307.

In situ intestinal perfusion Crum, M.F. et al. 2016. Pharm. Res. 33, 970–982.

Dissolution/Permeation system (Rat intestinal tissue/Ussing Chamber) Kristin, F. et al. 2017. Eur. J. Pharm. Sci. 101, 211-219.

Dissolution/Permeation system (Caco-2) 9 Kataoka, M. et al. 2013. Eur. J. Pharm. Biopharm. 85(3B), 1317-1324.

UNMET NEEDS FOR LIPID-BASED FORMULATIONS

• IVIVC or at least good rank order for many drugs (lack of published data) • Compendial methods to assay the performance of lipid-based formulations • Computational and PBPK modelling

10