Biologia, Bratislava, 61/Suppl. 18: S147—S166, 2006
S147
Littoral benthic macroinvertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland) Iľja Krno1, Ferdinand Šporka2, Joanna Galas3, Ladislav Hamerlík2, Zuzana Zaťovičová2 & Peter Bitušík4 1
Department of Ecology, Comenius University, Faculty of Natural Sciences, Mlynská dolina B2, SK-84215 Bratislava, Slovakia; e-mail:
[email protected] 2 Department of Hydrobiology, Institute of Zoology, Slovak Academy of Sciences, Dúbravska cesta 9, SK-84506 Bratislava, Slovakia; e-mail:
[email protected] 3 Institute of Nature Conservation, Polish Academy of Sciences, av. Mickiewicza 33, PL-31120 Krakow, Poland 4 Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, SK-96053 Zvolen, Slovakia; e-mail:
[email protected]
Abstract: Littoral benthic macroinvertebrates of 45 mountain lakes in the Tatra Mountains were sampled using a semiquantitative method in September 2000. A total of 32,852 specimens were identified to 93 taxa belonging to 14 higher taxonomic groups. Multivariate statistics (CCA, RDA) and nine biotic metrics (AQEM/STAR) were used to explain relationships between macroinvertebrate assemblages and environmental variables. Up to 57% of the ecological position of littoral macroinvertebrate assemblages were explained by variance of environmental variables divided into chemical, trophic, physical, catchment and location. Five types of Tatra lakes were recognized using CCA: A – strongly acidified lakes (small catchment, low pH, high concentration of TP, DOC, highest amount of POM in littoral); B – alpine acidified lakes (low amount of POM, low values of biotic metrics); C – alpine non-acidified lakes (high value of diversity index, predominance of Diptera); D – subalpine acidified lakes (high values of biotic metrics: number of families, proportion of crenal and rhithral taxa/total taxa); E – subalpine non-acidified lakes (high values of biotic metrics: number of families, number of genera, BMWP score, number of taxa and abundance of EPT taxa). RDA was used to design five levels of macroinvertebrate taxa acidification tolerance. The Tatra Acidification Index (TAI) was established to assess the acidification status of the lakes in the Tatra Mts. Key words: Macroinvertebrates, littoral, lake typology, acidification, the Tatra Mountains, Slovakia, Poland.
Introduction Investigations of benthic fauna dwelling in the Tatra lakes have a relatively long tradition. Data on the distribution and ecology of benthic invertebrates have been collected since the beginning of the 19th century (Vejdovský, 1884; Daday, 1896, 1897; Kowalewski, 1914; Minkiewicz, 1914; Zavřel, 1935a, b, 1937a, b; Zavřel & Pagast, 1935; Hrabě, 1939a, b, 1942; Mayer, 1939; Gowin & Zavřel, 1944; Černosvitov, 1930; Obr, 1955; Ertlová, 1964, 1987; Šporka, 1992b; Krno, 1988a, b; Kodada, 1990; Kasprzak, & Šporka, 1991; Chvojka, 1992; Kownacki et al., 1997, 2000). Benthic macroinvertebrate assemblages of the littoral and profundal of the lakes started to be intensively studied from the 1960s, initially in connection with eutrophication (Juriš et al., 1965), and later with acidification processes (Krno et al., 1985, 1986; Krno, 1991a, b;
Šporka, 1992a; Vranovský et al., 1994; Bitušík, 1996). The research continues to the present (Zaťovičová, 2002, 2003; Bitušík et al., 2003, 2006; Tátosová & Stuchlík, 2003; Bitušík, 2004; Hamerlík, 2004; Bulánková & Zaťovičová, 2006; Hamerlík et al., 2006). Benthic invertebrates have been used as a useful tool for the assessment of eutrophication and possible damage due to acidification of fresh-water ecosystems (Raddum & Fjellheim, 2002). Remote mountain lakes are generally considered to be excellent indicators of environmental changes, including effects of acid deposition, toxic pollutants and climatic change. Long-time limnological study of the Tatra lakes was one of the reasons to incorporate these ecosystems into groups of European lakes that were studied intensively in the framework of the multidisciplinary and multinational EU projects AL:PE 2, MOLAR and EMERGE (for review see Štefková & Šporka, 2001).
S148 The aims of the present study were (i) to summarize all available data on littoral benthic macroinvertebrates and water chemistry from 45 sub-alpine and alpine Tatra lakes collected in 2000; (ii) to model interactions between littoral macroinvertebrates and environmental variables. Study area and sampling sites The investigated lakes are situated on both sides of the Slovak-Polish border in the Tatra Mountains (Mts). Forty five lakes are located above tree line between 1,579 and 2,157 m above sea level. Bedrock is predominantly composed of non-calcareous rocks (granitoids, gneiss, and mica schist). The development of soils and vegetation depends strongly on altitude. Land cover of the alpine zone is composed mostly of moraine or rocks, soils are mostly undeveloped, and vegetation is dominated by alpine meadows (dry tundra). The catchments of subalpine lakes have generally larger amounts of soil, they are overgrown with meadows and dwarf pine, and the proportion of bare rocks and moraine is lower. The impact of tourism on the quality of water of the investigated lakes is negligible. Grazing and other land-use activities have been prohibited since the early 1950s. Some lakes are inhabited by populations of non-native fish species (Salmo trutta L., 1758) and Cottus poecilopus Heckel, 1837). The list of the examined lakes with their basic parameters is given in Appendix 1. More detailed morphological, hydrological, soil and water characteristics are given in Kopáček et al. (2004) and Gregor & Pacl (2005). Material and methods Field sampling Altogether, 33 Slovak and 12 Polish mountain lakes were sampled in the second half of September 2000. At each sampling site, kick samples (1 m deep) of littoral zoobenthos were collected using a hand net (frame 25 ⊆ 25 cm, mesh size 300 µm) (FROST et al., 1971) disturbing the substrate for 5 min. The sampling consisted of short kick series from different substrate types to obtain comparable data. Collected material was mixed, placed into plastic bottles and preserved with 4% formalin. Organisms were hand-sorted under a stereoscopic microscope, identified to the lowest possible taxonomic level and counted. Data analyses Statistical analyses were performed according to methodical procedures published in the EU-EMERGE Project (2003). For statistical analyses selected environmental variables from Emerge databases (measured in the Tatra Mts) were used. 1. Proximal variables: 1.1 Chemical variables: pH, conductivity, calcium (Ca), chloride (Cl), sulphate (SO4 ), magnesium (Mg), potassium (K), sodium (Na), alkalinity (Alk), nitrate (NO3 ), ammonium (NH4 );
I. Krno et al. 1.2 Trophic variables: total dissolved organic carbon (TDOC), phosphorus (P), total organic nitrogen (TON), total phosphorus (TP), silica (Si), NO3 /NH4 (NO3 to NH4 ratio), bacterial abundance (Bac), chlorophyll a (Chl), presence/absence of fish (Fish); 1.3 Physical variables: lake area (L area), maximum lake depth (Depth), % of gravel in littoral substrate (Gravel), % of sand in littoral substrate (Sand), % of organic matter in littoral substrate (Organic), presence of inflow (In), presence of outflow (Out), residence time (Res), water temperature (Temp), ice-cover duration (IceCov). 2. Catchment variables: catchment area (C area), % bare ground (Bare), % moorland/peat/shrub (Moor), % meadow/rural (MedRur), % woodland-dwarf pine (Wood), maximum altitude in the catchment (MaxAlt). 3. Location variables: altitude (Alt). Canonical correspondence analysis (CCA – the unimodal model of ecosystem study) was performed to assess the relationship between littoral fauna (Appendix 2) and environmental variables. Chemical, trophic, physical, catchment and location variables were analyzed separately. Potentially important factors controlling littoral fauna were selected from each group of environmental variables by forward selection associated with Monte Carlo permutation tests (999 permutations; P = 0.05). Probability levels in the forward selection were adjusted using the Bonferroni correction. Variation partitioning procedure (LEPŠ & ŠMILAUER, 2000) was applied to distinguish independence and relative importance of each group of environmental variables to littoral benthic communities (EU-EMERGE Project, 2003). Redundancy analysis (RDA – the linear model of acidification study) (TER BRAAK & ŠMILAUER, 1998) was performed to test the influence of acidification on littoral macroinvertebrate communities. Significance of chemical variables connected with acidification (pH, alkalinity, conductivity, Ca, Mg, Na and sulphates) was tested by forward selection. Probability levels in the forward selection were adjusted using the Bonferroni correction (EU-EMERGE Project, 2003). Metric values of macroinvertebrates were calculated with the software ASTERICS (AQEM/STAR Ecological River Classification System). Nine metrics, best representing the differences among lake types, were selected from all calculated ones: Number of Families (NFAM), Number of Genera (NGEN), Diversity Index (Shannon) (DIS), Biological Monitoring Working Party (BMWP – ARMITAGE et al., 1983), Proportion of Ephemeroptera, Plecoptera and Trichoptera taxa (% EPT taxa), Proportion of crenal and metarhithral taxa/littoral taxa (% crenal + rhithral/littoral taxa), Number of EPT taxa (EPT taxa), Proportion of Diptera taxa (% DIP), and Average Score Per Taxon (ASPT). To test significant differences among metrics of lake types defined through CCA, one-way analysis of variance (ANOVA) was performed. The SigmaStat 3.1 computer package was used for this analysis and results with P < 0.05 were considered significant. Prior to ANOVA, % EPT taxa and % DIP were ln(x + 1) − ln(y + 1) transformed, where x = the number of individual taxa and y = the number of total taxa (see KERANS et al., 1992). Box and whisker plots of environmental parameters and biological metrics were applied to visualize the distribution of values of predefined lake types.
Macroinvertebrates of mountain lakes in the Tatra Mts
S149
Table 1. Forward selection using chemical, trophic, physical (all proximal data), catchment data, local data; total inertia 3.486. Proximal Chemical Variable pH NO− 3 Mg+2 − Cl Ca+2 Total explained Sum of al eigenvalues Sum of all canonical eigenvalues
Catchment
Trophic
Physical
% extra fit Variable
% extra fit Variable
8.0 5.2 4.4 3.4 2.8 23.8 1.365 0.830
TP TDOC Fish
7.6 3.8 3.4
% extra fit Variable
Temperat. Depth Ice cover Outlet
14.8 0.953 0.513
Results Faunistics A total of 32,852 specimens of benthic macroinvertebrates from 45 mountain lakes were identified to 93 taxa belonging to 14 higher taxonomic groups: Hydrozoa, Turbellaria, Nematoda, Mollusca, Oligochaeta, Hydracarina, Amphipoda, Ephemeroptera, Plecoptera, Heteroptera, Megaloptera, Coleoptera, Trichoptera and Diptera (Appendix 2). Diptera with 41 taxa (35 of them were chironomids), followed by Oligochaeta (17 taxa) and Coleoptera (10 taxa) amounted to 79% of the total taxonomic richness. Eight taxonomic groups were represented only by one taxon. Oligochaeta and Chironomidae held also a dominating share with 15,746 and 12,373 individuals (48% and 38% of the total number of animals). Abundance of the other benthic groups ranged from 3 (Heteroptera) to 2,708 (Turbellaria) specimens. Diptera were recorded from all the sampling sites. Oligochaeta were the second most frequent group with presence at 96% of sites followed by Plecoptera (73%), Trichoptera (69%), and Turbellaria (56%). On the contrary, Hydrozoa, Mollusca, Amphipoda and Heteroptera were found only at 1–2 sites. Twenty five taxa (27%) occurred only in the littoral of one lake, and 43 taxa (46%) were collected from three sites at most. Only 7 taxa can be considered as frequent (found in more than 50% of the sites). Three of them represent the temporal benthic fauna: Heterotrissocladius marcidus (found in 78% of all sites), Micropsectra spp. (73%), Corynoneura spp. (62%), and four taxa belong to the permanent fauna: Nais variabilis (69%), Crenobia alpina (56%), Cernosvitoviella atrata (56%) and Stylodrilus heringianus (53%). The most frequent non-chironomid insects were represented by Capnia vidua (42%), Nemurella pictetii (33%), Ameletus inopinatus (31%), Allogamus spp. (31%) and Agabus bipustulatus (29%). Among the 45 investigated lakes, Vyšné Temnosmrečinské pleso with 28 taxa, Czarny Staw Polski (27
7.8 4.5 3.6 3.1
19.0 0.94 0.661
Max Alt Bare
Location
% extra fit Variable % extra fit 8.0 3.0
11.0 0.464 0.382
Altitude
6.1
6.1 0.231 0.211
taxa), Nižné Temnosmrečinské pleso (25), Vyšné Žabie bielovodské pleso (24), and Czarny Staw pod Rysami (20) can be characterized as the most diverse sites. The lowest numbers of taxa were recorded in the lakes Vyšné sivé pleso (3), Okrúhle pleso (5) and Zadni Staw G˛asienicowy (6). The mean number of taxa in the littoral of the investigated Tatra lakes was 15. A comparison of the lakes shows that benthic fauna was far from uniform with respect to abundance. While the samples of some lakes in the Slovak part of the Tatra Mts gave 2,177 to 5,583 specimens per 5 minutes of sampling (e.g., Litvorové pleso, Vyšné Terianske pleso, Malé Žabie javorové pleso), the highest abundance in lakes in the Polish part of the mountain range reached only 732 to 866 specimens (e.g., Czarny Staw pod Rysami, Czarny Staw Polski, Wy˙zni Mnichowy Stawek IX) (Appendix 2). Very low abundances were recorded in Žabie javorové pleso (22 specimens), Dlugi Staw G˛asienicowy (28) and Vyšné sivé pleso (31). The mean abundance of macrozoobenthos in the littoral of the Tatra lakes was 730 specimens per sample. The most frequent taxa reached the highest abundance: the mean abundance of Nais variabilis was 205 individuals per sample, Cernosvitoviella atrata 106, Heterotrissocladius marcidus 76, Corynoneura spp. 61 and Crenobia alpina 60 specimens per sample. Relationship between macroinvertebrates and environmental variables in the lakes A CCA with forward selection for separately tested groups of environmental variables suggests that pH (from the group of chemical variables), Temp (physical variable group), TP (trophic variable group), max Alt (catchment variable group), and altitude (location variable group) best explain the variance in distribution of macroinvertebrate taxa (Tab. 1). Fifteen environmental variables were considered to be statistically significant. From tested groups (Tab. 2), the group of chemical variables explained the highest
S150
I. Krno et al.
Fig. 1. Position of remote Tatra lakes in the area of the first two CCA canonical axes characterized by 9 environmental variables. Classification of the groups of lakes: A – strongly acidified lakes; B – alpine acidified lakes; C – subalpine acidified lakes; D – alpine non-acidified lakes; E – subalpine non-acidified lakes. Lakes are numbered as follows: 1 – Štvrté Roháčske pleso; 3 – Nižné Jamnícke pleso; 4 – Vyšné Račkove pleso; 6 – Veľké Bystré pleso; 7 – Zielony Staw G˛asienicowy; 8 – Zelené krivánske pleso; 9 – Dlugi Staw G˛asienicowy; 10 – Zadni Staw G˛asienicowy; 11 – Nižné Terianske pleso; 12 – Zadni Staw Polski; 13 – Czarny Staw G˛asienicowy; 14 – Vyšné Terianske pleso; 15 – Zmarzly Staw G˛asienicowy; 17 – Vyšné Wahlenbergovo pleso; 18 – Czarny Staw Polski; 19 – Nižné Temnosmrečinské pleso; 20 – Okrúhle pleso; 21 – Capie pleso; 22 – Vyšné Temnosmrečinské pleso; 23 – Wielki Staw Polski; 26 – Malé Hincovo pleso; 27 – Veľké Hincovo pleso; 29 – Czarny Staw pod Rysami; 30 – Veľké Žabie pleso; 31 – Dračie pleso; 32 – Vyšné Žabie bielovodské pleso; 36 – Litvorové pleso; 37 – Batizovské pleso; 39 – Zelené javorové pleso; 41 – Malé Žabie javorové pleso; 42 – Pusté pleso; 43 – Vyšné zbojnícke pleso; 44 – Prostredné zbojnícke pleso; 45 – Ľadové pleso; 47 – Starolesnianske pleso; 49 – Žabie javorové pleso; 51 – Prostredné sivé pleso; 54 – Veľké spišské pleso; 56 – Prostredné spišské pleso; 101 – Wy˙zni Siwy Stawek; 102 – Dwoisty Staw Wschodni; 105 – Vyšné Furkotské pleso; 106 – Wy˙zni Mnichowy Stawek IX; 107 – Vyšné Satanie pliesko; 109 – Slavkovské pleso; 110 – Čierne pleso. Abbreviations of environmental variables: IceCover – lasting of the ice cover; TP – total phosphorus; TDOC – total dissolved organic carbon; Temp – temperature; Fish – occurrence of fish; L area – lake area; Outlet – occurrence of lake outlet; pH – pH. Table 2. Variance partitioning of proximal, catchment and location data. Component
% variation explained
Chemical Trophical Physical Catchment Location Proximal & Catchment & Location
15.4% 6.7% 10.4% 4.0% 1.9% 19.3%
Total explained
57.70%
proportion of the variability of biological data (15.4%), followed by the group of physical variables (10.4%). A total of 58% of biological data variation was explained by all environmental variables together without separating into groups, while pH was the most important
factor, explaining 8.1% followed by Temp. 7.3% and TP 5.0% (Tab. 3). TDOC, Ca, presence of outlet, ice cover duration, occurrence of fish and lake area were also significant. Figures 1 and 2 graphically demonstrate the distribution of taxa and lakes along the main environmental gradients in the CCA ordination diagram. The environmental variables which are best related to first four axes of variability are indicated in Table 4. Chemical and trophic variables were found to be best correlated with the first axis, physical ones with the second axis. The only factor best correlated with axis 4 is the occurrence of fish. To assign the key taxa whose distribution patterns were most influenced by environmental variables, the data on individual taxa were analyzed by CCA (Tab. 5). Only taxa with more than 15% of variation explained are shown in the table. Macroinvertebrate taxa distribution was most strongly related to altitude (water temperature, ice-cover duration) (Fig. 3). The chirono-
Macroinvertebrates of mountain lakes in the Tatra Mts 1.5
S151
Smi spp
Cha cry
Pro spp End spp
Pse niv
All spp Leu ros
Cer atr Het pte
Chi spp
Tub tub Hap gor Cre alp Aga bip Hyd spp Cap vid Mic spp Cor spp Arc com Het mar Sty her Ame ino -0.5 Apa Cog spp fim Dru tri Tvet bav Nai var Cri iso Zav spp Mic spp Mes arm Diu bic Ort nae Ped riv Cer tat Nem pic Euk spp Lum var Pro oli Tub ign Pse gso Leu nig
Zalu tat Tan spp Lim coe
Sia lut
2
Nem cin Pse psi
-1 Fig. 2. Results of the CCA analysis of invertebrate taxa. Occurrence in: • – strongly acidified lakes; – alpine lakes; – alpine non-acidified lakes; ◦ – subalpine non-acidified lakes; – subalpine acidified lakes; – euryecious. Table 3. CCA using forward selection – Minimum adequate model. Variables selected pH Temp TP DTOC Ca Outlet Ice cover Fish L. area Total explained Sum of all eigenvalues Sum of all canonical eigenvalues
Table 4. Inter-set correlations of environmental variables with axes.
% extra fit
Variable
AX1
AX2
AX3
AX4
8.1 7.3 5.0 3.4 3.0 3.0 2.9 2.9 2.8
pH Ca Fish TP DTOC L area Outlet Ice Cover Temp.
−0.719 −0.623 −0.07 0.715 0.746 −0.27 −0.2 −0.16 0.617
−0.372 −0.367 −0.392 0.21 0.004 −0.426 −0.345 0.758 −0.575
0.199 0.333 −0.05 0.34 0.18 −0.12 0.11 0.21 −0.18
0.07 0.048 0.47 0.12 0.02 −0.29 −0.17 −0.09 −0.08
38.4 3.486 1.337
mid Heterotrissocladius marcidus is a good example of eurytopic Tatra species occurring in all types of Tatra lakes (Fig. 3A). On the contrary, stenotopic species such as Pseudodiamesa nivosa occurred just in alpine lakes (Fig. 3B), while the stonefly larvae Diura bicaudata is a typical species inhabiting subalpine lakes in the Tatra Mts. Lake typology The results of CCA are visualized in Fig. 1 which presents the plot of the lakes along gradients of environ-
mental variables. Significant differences among metrics of particular lake groups justify the recognition of five types of Tatra lakes. Group A: Strongly acidified lakes. Lakes of this group can be characterized by small lake basin, low pH, high concentrations of total phosphorus (TP), and highest % of organic matter of littoral substrate (Organic) (Fig. 4). The occurrence of Sialis lutaria, Limnephilus coenosus, Zalutschia tatrica and the high proportion of Diptera in macroinvertebrate assemblages (Fig. 6D) were indicative for these lakes. Group B: Alpine acidified lakes. The lake group is characterized by the smallest proportion of particulate
S152
I. Krno et al. 1.5
1.5
B
A Heterotrissocladius marcidus
Pseudodiamesa nivosa
2.0 -0.5
1.5 -1.0
2. -1.0
-1.0
1.0
C Diura bicaudata
-1.0
1.0
-
-1.0
Fig. 3. Distribution of dominant species in the samples. Results of CCA analyses. A – Heterotrissocladius marcidus, B – Pseudodiamesa nivosa, C – Diura bicaudata.
Table 5. Key species – % explained following variance partitioning (proximal, catchment and location data). Taxa Lim coe Zalu tat Diu bic End spp Cha cry Pro spp Tan spp Nem cin Nem pic Ort nae Hyd spp Cer tat Het mar Sia lut Cer spp
% Expl 82.19 81.49 62.06 57.25 57.25 57.25 57.09 56.09 55.77 55.65 53.77 52.91 51.31 50.5 48.49
Taxa Cri iso Tub ign Mic spp Spi fer Cha spp Par spp All spp Nai var Pse gps Dru tri Cor gsc Cre alp Pro oli Syn sem Sty her
% Expl 45.82 44.48 40.92 40.76 40.59 39.61 38.22 37.19 36.89 35.97 35.59 34.63 34.58 32.21 32.2
Taxa Zav spp Lum var Leu nig Cog spp Dic spp Ame ino Pse niv Tub tub Pse gso Apa fim Ple con Cog sph Hap gor Smi spp Tvet bav
% Expl 31.84 30.12 29.63 29.52 29.07 28.93 28.54 28.45 28.29 28.02 27.75 25.89 25.1 25.03 24.59
Taxa Cap vid Cog gla Aga bip Mac spp Sti mon Pse bra Leu ros Chi spp Euk spp Ped riv Het pte Arc com
% Expl 23.52 23.15 23.08 23.04 22.88 22.15 21.91 20.81 20.23 18.49 17.72 16.83
Key: For taxon code see Appendix 2.
organic matter in littoral (Fig. 4), and low values of some biotic metrics (number of genera, diversity index, and % EPT taxa) (Fig. 5). Presence of alpine taxa Leuctra rosinae, Allogamus spp. and Pseudodiamesa nivosa is characteristic for this lake type.
Group C: Subalpine acidified lakes. Low diversity index and a dominating share of Diptera in the assemblages are indicative for this lake group (Figs 5, 6). Characteristic species were identified as follows: Cernosvitoviella tatrica, Tubifex ignotus and Nemurella pictetii.
Macroinvertebrates of mountain lakes in the Tatra Mts
S153
A Median 25%-75% Non-Outlier Min-Max Outliers Extremes
500.00
50.00
B
7.2
6.8
pH
C_ area
6.4
5.00
6.0
5.6
0.50 5.2
4.8
0.05 B
A
C
D
B
A
E
D
E
16
40
C
D
30
12
20
TP
Organic
C
10
8
4
0
0 A
B
C
D
E
A
B
C
D
E
Fig. 4. Box & Whisker-plots of abiotic factors of different lake categories. Lake categories A–E are the same as in Fig. 1. A – C area (catchment area, km2 ): A < B,C,D,E, P < 0.001; B – pH: D,E > A,B,C, A < B,C, P < 0.001; C – Organic (% of organic matter of littoral substrate): B < A,C, C > D, P < 0.05; D – TP (total phosphorus): A > B,C,D,E, P < 0.001. Table 6. Summary of a RDA of the Tatra lakes littoral data (pH, conductivity and macroinvertebrate data). Axes Eigenvalues Species-environment correlations Cumulative percentage variance of species data of species-environment relation
1
2
3
4
0.096 0.816
0.036 0.684
0.145 0.000
0.102 0.000
9.6 72.8
Sum of all unconstrained eigenvalues Sum of all canonical eigenvalues
Group D: Alpine non-acidified lakes. Lakes of this group are mostly located in the Polish part of the Tatra Mts. High values of some biotic metrics (number of families, proportion of crenal and metarhithral taxa/littoral taxa – Figs 5, 6) were found. Characteristic species
13.2 100
27.6 0.0
37.8 0.0 1.000 0.132
include Haplotaxis gordioides and Arcynopteryx compacta, plus the alpine taxa mentioned in group B. Group E: Subalpine non-acidified lakes. Some biotic metrics of invertebrate assemblages (number of families, number of genera, BMWP, EPT taxa and %
S154
I. Krno et al.
24 12
A
B 20
9 NGEN
NFAM
16
6
12
8
3
4 0 A
B
C
D
E
A
B
C
D
E
B
C
D
E
60 2.4
C
D 50
2.0 40 BMWP
DIS
1.6
1.2
30
20
0.8
10
0.4
0.0
0 A
B
C
D
E
A
Fig. 5. Box & Whisker-plots showing the variability of biotic indices of different lake categories. Lake categories A-E are the same as in Fig. 1. A – NFAM (Number of Families): D,E > B,C, P < 0.01; B – NGEN (Number of Genera): B < D,E, E > A,B,C,D, P < 0.05; C – DIS (Diversity Index – Shannon): B < C,D,E,A, P < 0.01, D – BMWP (Biological Monitoring Working Party): B < D,E, C < D,E, P < 0.05.
EPT taxa) were found to have high values. Diura bicaudata, Pedicia rivosa, Eukiefferiella spp., Micropsectra spp. and Zavrelimyia spp. were indicative taxa for this lake group. Relationship between invertebrate taxa and acidification status of the lakes Among all the variables connected with lake acidification status, that were tested using RDA, only pH and conductivity were statistically significant (Tab. 6). The distribution of taxa related to both environmental variables is shown in Fig. 7. In general, the taxa on the right side are acidophilic (e.g., Zalutschia tatrica and Limnephilus coenosus), while left-hand taxa (e.g., Diura bicaudata, Electrogena lateralis, Ameletus inopinatus) can be considered to be acidophobic. The space demar-
cated by the outlying positions of taxa was divided into five segments, and acidification indices (0.0, 0.25, 0.5, 0.75, 1.0) were allocated to taxa situated in separate segments (Tab. 7). Indicator taxa with the same tolerance to acidity have the same acidification index. Based on this analysis, the Tatra Acidification Index (TAI) was established to assess the acidification status of the lakes in the Tatra Mts. A close relationship between pH of the investigated lakes and their TAI based upon littoral macroinvertebrate assemblages was discovered (Fig. 8). Discussion The first macroinvertebrate investigations in the Tatra lakes (Hrabě, 1939a, b, 1942) already pointed out
Macroinvertebrates of mountain lakes in the Tatra Mts
S155
40
50.00
% crenal+rhithral/littoral taxa
% EPT taxa
30
A 20
10
5.00
B 0.50
0.05
0 A
B
C
D
E
A
B
C
D
E
100 8
75
C
% DIP
EPT taxa
6
4
D 50
2 25
0 0 A
B
C
D
E
A
B
C
D
E
Fig. 6. Box & Whisker-plots showing the variability of biotic scores of different lake categories. Lake categories A-E are the same as in Fig. 1. A – % EPT taxa (proportion of Ephemeroptera, Plecoptera and Trichoptera taxa): E > B,C,D, P < 0.05; B – % crenal + rhithral/littoral taxa (proportion of crenal and metarhithral taxa/littoral taxa): A < B,C,D,E, P < 0.05; C – EPT taxa (number of EPT taxa): E > A,B,C, P < 0.05; D – % Diptera (proportion of Diptera taxa): A,C > B,D,E, P < 0.05.
the dominance of Chironomidae and Oligochaeta with respect to number of taxa and abundance. Results of these studies have been supported by all later research, including the present study. Krno et al. (1986) found Chironomidae and Oligochaeta to be predominant mainly in oligotrophic lakes above tree-line, and Pseudodiamesa branickii, Heterotrissocladius marcidus (Chironomidae), family Enchytraeidae, Nais variabilis, Stylodrilus heringianus, Tubifex tubifex (Oligochaeta), Crenobia alpina (Turbellaria) were considered to be characteristic taxa of them. H. marcidus, N. variabilis, Cernosvitoviella atrata (Enchytraeidae), S. heringianus and C. alpina were also among the most frequent and abundant species
in the present study. The share of chironomids and oligochaetes in the macroinvertebrate assemblages in the 1980s (43% and 45-22%, respectively) (Krno, 1988a) is comparable with the recent results (48% and 38%, respectively). Our current results related to the status of Chironomidae in the littoral of Tatra lakes correspond well to previous studies (Ertlová, 1987; Hamerlík, 2004). Similarly, our Oligochaeta data (17 taxa) correspond very well to the results of Šporka (1992a) who identified 18 taxa in the littoral of West Tatra lakes, with the same assemblage structure. It is worth mentioning that 93 taxa were recorded by sampling from one sampling date only. By comparison, Krno et al. (1986) identified 109 macroinverte-
I. Krno et al. 1.0
S156
Cond a b
c
Cor spp Cri iso Euk ggr Spi fer Dru tri Pse psi Cer atr Lum var Nip tat Syn sem Diu bic Pro oli Cog gla Tub ign Ort nae Chi spp Tan spp Tan lug Cha spp Ele lat Tve bav Hyd spp Par spp Pac spp Pse bra Mac spp Aga bip Ame ino Ped riv Hap gor Nem pic Cha cry Zav spp Pro spp End spp Nai var Mes arm Het mar Apa fim Sia lut Cri per Cer tat Cor spp Cri gsy Het pte Nem cin Pse gso Smi spp Tub tub Cap vid Cog sph Cre alp Tri spp Sti mon Mic spp Sty her Leu ros Ple con Arc com Fri spp Euk spp Leu nig Dic spp
pH
-0.4
All spp
d
Lim coe
Zal tat
Cog spp Pse niv
-1.5
1.0
Fig. 7. Results of the RDA analysis of invertebrate taxa. Perpendicular virtual lines between macroinvertebrate taxa and pH gradient indicate the approximate ranking of the weighted averages of macroinvertebrates with respect to pH in the Tatra lakes. Species (for species codes see Appendix 2) are divided into 4 classes (e.g.: 1 – Dru tri; 0.75 – Spi fer; 0.5 – Cor spp; 0.25 – Sia lut; 0 – Zal tat., based on their relationship to acidification – Tatra Acidification Index, see Fig. 8.). Abbreviations of environmental variables: pH – pH; Cond – conductivity.
0.7
Ai
0.6
0.5
0.4
4.8
5.1
5.4
5.7
6.0
6.3
6.6
6.9
7.2
pH Fig. 8. Regression between pH of the water of particular lakes and mean Tatra Acidification Index (TAI) calculated, based on the littoral invertebrate communities (TAI = −1.26 + 0.23pH, N = 45, F = 124, P < 0.001).
brate taxa after 5 years of investigation in nearly the same number of Tatra lakes. This means that one semiquantitative sampling taken at a good time can cover around 85% of the total taxa richness. However, differences can be seen regarding the number of identified taxa belonging to the temporal (with exception of Chironomidae) and permanent fauna, respectively. For example, Krno (1991a) determined 65 insect taxa in a study spanning 7 years, while
during this study 35 taxa were identified; however, the older study was additionally supported by collecting of adults. Krno (1991a) found Nemurella pictetii and species of the genus Chaetopteryx to be the characteristic taxa for various types of Tatra lakes. Agabus bipustulatus, Ameletus inopinatus, Capnia vidua and Acrophylax spp. were considered as indicative taxa of alpine and/or sub-alpine Tatra lakes. Our present study revealed the same taxa, supplemented by Allogamus lar-
Macroinvertebrates of mountain lakes in the Tatra Mts
S157
Table 7. Key species – % explained following variance partitioning (pH and conductivity data). Taxa Zalu tat Lim coe Chi spp Sia lut End spp Cha cry Pro spp Cer tat Cer spp Cor gsc Tan spp Cog spp Hyd spp Pse gps Pse niv All spp Cog gla Ort nae Dic spp Tvet bav Het pte Leu ros Nem cin Euk spp Het mar Pse gso
% Expl
TAI
Taxa
65.17 43.34 26.51 24.61 18.30 18.30 18.30 29.10 25.47 19.73 12.65 11.32 11.17 7.45 6.65 5.64 4.40 4.15 3.94 3.94 2.38 2.37 1.89 1.04 0.73 0.65
0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Tub tub Aga bip Nem pic Nai var Cri iso Mic spp Cre alp Pro oli Mac spp Hap gor Spi fer Cap vid Sty her Par spp Apa fim Cha spp Arc com Zav spp Cog sph Pis cas Diu bic Ame ino Dru tri Nip spp Ele lat
% Expl
TAI
0.50 0.45 0.10 24.88 16.76 16.69 12.00 11.52 10.89 10.33 10.22 9.81 9.16 9.14 6.98 5.96 3.43 3.42 3.32 2.20 17.81 13.02 12.46 12.80 15.10
0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1
Key: TAI – Tatra Acidification Index; for taxon codes see Appendix 2.
vae, to be the most frequent in the littoral of the investigated lakes. Hamerlík et al. (2006) found a higher number (110) of macroinvertebrate taxa in inlets and outlets of the Tatra lakes as a consequence of more diverse conditions in the lotic habitats compared with the littoral zone. However, the structure of macroinvertebrate assemblages of both biotopes is very similar with respect to taxonomic composition, number of taxa and their abundance in the dominant taxonomic groups. Diptera, Oligochaeta, Plecoptera, and Turbellaria were the most frequent groups in both biotopes. Trichoptera, Chironomidae and Oligochaeta predominated also in the littorals. Compared with the outlets, a higher number of frequent taxa (found in more than 50% of samples) was collected in the littoral. In addition to four taxa common for both biotopes (Heterotrissocladius marcidus, Micropsectra spp., Nais variabilis and Crenobia alpina), also Corynoneura spp., Cernosvitoviella atrata and Stylodrilus heringianus were frequent in the littoral. The same taxa were found to be the most abundant both in the littorals and the outlets, only abundance of Ameletus inopinatus was recorded higher in the outlets. The presented results support the biological significance of temperature and pH as environmental factors. Lake surface water temperature often follows air temperature which is strongly correlated with altitudinal gradient. Šporka et al. (2006) found a linear relationship between surface water temperature and duration of ice cover on altitude in the Tatra lakes. Lotter et
al. (1997) pointed out that major changes in the investigated biota of lakes in the Alps are not related to catchment-related characteristics but to major climate gradient connected with altitude. The effects of decreasing water temperature with an increase of altitude on the Tatra macroinvertebrate fauna were observed by authors in the past (e.g., Hrabě, 1939b, 1942; Ertlová, 1987; Krno, 1991a). Atmospheric acidification of the Tatra lakes progressed since the early 20th century and peaked in the 1980s (Kopáček et al., 2000). The sensitivity of the lakes to acidification and stage in the acidification process are determined by the sum of base cations, especially Ca and Mg. Fott et al. (1994) recognized three main categories of Tatra lakes according their acid-base status in the 1980s, and described characteristics of the zooplankton communities in each category. Another classification emphasized changes in chemistry and taxa composition of benthic macroinvertebrates in the Tatra lakes with different degrees of acidification (Krno et al., 1985, 1986). Low pH in the acid sensitive, strongly acidified Tatra lakes can apparently override the effects of other environmental factors. Bitušík et al. (2006) found that chironomid assemblages tend to be species poor and uniform (“azonal”), and considered the chironomid Zalutschia tatrica to be a reliable indicator of acid conditions in the Tatra lakes (see also Kownacka & Kownacki, 1965). Taxonomic composition has allowed the group of strongly acidified Tatra lakes to be easily distinguished from the others (Bitušík et al. 2003, 2006).
S158 Galas et al. (2004) recognized three groups (types) of mountain lakes in the Polish part of the Tatra Mts that correspond with groups A, C and E in this paper. The strongly acidified small lake Wy˙zni Mnichowy Stawek IX (alkalinity 0.0 µeq L−1 ) was included in the A group in our classification scheme and its dominant species Zalutschia tatrica (Chironomidae) is a glacial tundra relict (Kownacka & Kownacki, 1965). The second group consisted of lakes with different acidification status (alkalinity from 13–40 µeq L−1 ) located mostly in G˛asienicowa Hala valley (Zadni Staw Polski, Zadni Staw G˛asienicowy, Czarny Staw G˛asienicowy and especially Zmarzly Staw G˛asienicowy, Dlugi Staw G˛asienicowy, Dwoisty Staw Wschodni), compose group C. Most of lakes from the third group (Czarny Staw Polski, Wielky Staw Polski, Czarny Staw pod Rysami, Wy˙zni Siwy Stawek) with alkalinity above 40 µeq L−1 were incorporated into group E (nonacidified sub-alpine lakes). The presence of the acid sensitive species Crenobia alpina (Turbellaria) and Diura bicaudata (Plecoptera) (Raddum & Fjellheim, 2002) in the littoral support the non-acidified status of these lakes. In the past, a number of investigations were carried out to evaluate the acidification of aquatic biotopes using macroinvertebrates. Invertebrates have been used as ‘early-warning’ organisms to detect possible negative effects due to acidification on freshwater ecosystems, and a model based on invertebrate tolerances to different levels of acidification has been developed (Raddum et al., 1988; Fjellheim & Raddum, 1990). Later, Larsen et al. (1996) quantified the relationship between invertebrates and pH using multivariate statistics. Braukmann (2001) has developed a similar system for monitoring of acidification in running water. The majority of studies evaluating the relationship between acidification of aquatic biotopes and macroinvertebrate response have been done in running waters in various regions of Europe (Suttcliffe & Carrick, 1973; Allard & Moreau, 1986; Krno et al., 1995; Scheibová & Helešic, 1999; Braukmann, 2001), where the response (susceptibility) of benthic organisms to acidification status differs from the situation in stagnant waters. For instance, taxa included by Braukmann (2001) in the first acidity class do not occur in the Tatra lakes of the alpine zone; his group roughly corresponds to our taxa with acidification index 1 or 0.75, and his last group 4 corresponds roughly to our groups with acidification index 0.25 or 0. Greater conformity was found between our results and results obtained from lake ecosystems (Raddum, 1980; Raddum et al., 1988; Krno, 1991a; Fjellheim et al., 2000). A comparison of historical data on the distribution of benthic macroinvertebrates in the littoral of the Tatra lakes (Krno, 1991a) with the present results indicates the return of some acid-sensitive taxa to previously acidified lakes. Some extent of biological recovery as a response to chemical recovery from acidifica-
I. Krno et al. tion (Kopáček et al., 2003, 2006) has been recorded in Vyšné Wahlenbergovo pleso, Capie pleso and Batizovské pleso. Acknowledgements We acknowledge the field assistance provided by colleagues and students of the Slovak Academy of Sciences, Comenius University, Technical University of Zvolen and Charles University, Prague, especially M. NOVIKMEC. We also express our thanks to T. DERKA for assistance in fieldwork and identification of Ephemeroptera, and E. BULANKOVÁ for identification of other Diptera. The offering of physical and chemical data by E. STUCHLÍK and J. KOPÁČEK is greatly acknowledged. We also thank P. SIMON and M. KERNAN for coordinating the EMERGE Project and the biological section of the EMERGE Project, respectively. We thank D. HARDEKOPF for proof reading. We are also grateful to the technical stuff for sorting the material. This study was supported by the Environment Projects of European Commission EMERGE (EVK1-CT-1999-00032) and by the Scientific Grant Agency VEGA, project No. 1/1291/04. References ALLARD, M. & MOREAU, G. 1986. Influence of acidification and aluminium on density and biomass of lotic benthic invertebrates. Water Air Soil Poll. 30: 673–679. ARMITAGE, P.D, MOSS, D., WRIGHT, J.F. & FURSE, M.T. 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-waters sites. Water Research 17: 333–347. AQEM consortium. 2002. Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0. February 2002. BITUŠÍK, P. 1996. Biologické hodnotenie vybraných plies v Západných Tatrách na základe mediálnych spoločenstiev pakomárov (Diptera: Chironomidae), pp. 175–180. In: MIDRIAK, R. (ed.) Biosferické rezervácie na Slovensku, Proc. Conf., Zvolen. BITUŠÍK, P. 2004. Chironomids (Diptera, Chironomidae) of the mountain lakes in the Tatra Mts. (Slovakia). A review, pp. 25–33. In: BITUŠÍK, P. (ed.) Dipterologica Bohemoslovaca, Acta Fac. Ecol., Zvolen 12, Suppl. 1. BITUŠÍK, P., KOLOŠTA, P., HUBKOVÁ, M. & NÉMETHOVÁ, D. 2003. Typológia tatranských jazier na základe zoskupení pakomárov (Diptera: Chironomidae). Acta Fac. Ecol., Zvolen 10, Suppl. 1: 197–200. BITUŠÍK, P., SVITOK, M., KOLOŠTA, P. & HUBKOVÁ, M. 2006. Classification of the Tatra Mountain lakes (Slovakia) using chironomids (Diptera, Chironomidae). Biologia, Bratislava 61, Suppl. 18: S191–S201. BRAUKMANN, U. 2001. Stream acidification in South Germany – chemical and biological assessment methods and trends. Aquat. Ecol. 38: 207–232. BULÁNKOVÁ, E. & ZAŤOVIČOVÁ, Z. 2006. Preimaginal stages of Diptera (excluding Chironomidae and Simuliidae) of mountain lakes, their inlets and outlets in the Tatra Mountains (Slovakia). Biologia, Bratislava 61, Suppl. 18: S185–S190. ČERNOSVITOV, L. 1930. Příspěvky k poznání fauny tatranských Oligochaetů. Věst. Král. Čes. Spol. Nauk, Tr. 2: 1–8. DADAY, E. 1896. Adatok a Tátrai tavak mikrofaunájának ismeretéhez. Mathematikai és Természettudományi Értesít˝ o 14: 116–137. age zur Kenntnis der Microfauna der DADAY, E. 1897. Beitr¨ Tatra-Seen. Természetrajzi F¨ uzetek 20: 149–196.
Macroinvertebrates of mountain lakes in the Tatra Mts
S159
EU-EMERGE PROJECT. 2003. European Mountain lake Ecosystems: Regionalisation, diagnostic & socio-economic evaluation (Contract EVK1-CT-1999-00032 Final Report, April 2003), University College, London, 123 pp. ERTLOVÁ, E. 1964. Príspevok k poznaniu zoobentosu Popradského plesa. Biológia, Bratislava 19: 666–674. ERTLOVÁ, E. 1987. Chironomids (Chironomidae, Diptera) of the littoral of the selected lakes in the High Tatras. Acta Fac. Rerum Nat. Univ. Comen., Zool. 29: 53–65. FJELLHEIM, A., BOGGERO, A., HALVORSEN, G.A., NOCENTINI, A.M., RIEDERVALL, M., RADDUM, G.G. & SCHNELL, O.A. 2000. Distribution of benthic invertebrates in relation to environmental factors. Verh. Int. Verein. Limnol. 27: 484–488. FJELLHEIM, A. & RADUM, G.G. 1990. Acid precipitation: Biological monitoring of streams and lakes. The Science of the Total Environment 97: 57–66. FOTT, J., PRAŽÁKOVÁ, M., STUCHLÍK, E. & STUCHLÍKOVÁ, Z. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47. FROST, S., HUNI, A. & KERSHAW, W.E. 1971. Evaluation of a kicking technique for sampling stream bottom fauna. Can. J. Zool. 49: 167–173. GALAS, J. 2004. Invertebrate communities of High mountain ´ lakes (Polish Tatra Mts.). Teka Kom. Ochr. Srod. Pzryr. 1: 57–63. GOWIN, F. & ZAVŘEL, J. 1944. Nový Procladius z Vysokých Tater. Procladius tatrensis Gow. n. sp. Entomol. Listy 7: 87– 90. GREGOR, V. & PACL, J. 2005. Hydrology of the Tatra mountain lakes. Acta Hydrologica Slovaca 6: 161–187. HAMERLÍK, L. 2004. Chironomids (Diptera: Chironomidae) of the littoral zone of some lakes in the Tatra Mts (Slovakia). Acta Fac. Ecol., Zvolen 12, Suppl. 1: 49–56. HAMERLÍK, L., ŠPORKA, F. & ZAŤOVIČOVÁ, Z. 2006. Macroinvertebrates of inlets and outlets of the Tatra Mountain lakes (Slovakia). Biologia, Bratislava 61, Suppl. 18: S167–S179. HRABĚ, S. 1939a. Vodní Oligochaeta z Vysokých Tater. Věst. Česk. Zool. Spol. v Praze 6–7: 209–236. HRABĚ, S. 1939b. Bentická zvířena tatranských jezer. Sborník Klubu Přírodověd. v Brně 22: 1–13. HRABĚ, S. 1942. O bentické zvířeně jezer ve Vysokých Tatrách. Physiographica Slovaca, Acta Eruditae Societatis Slovacae, Bratislava 8: 124–177. CHVOJKA, P. 1992. Chrostíci (Trichoptera, Insecta) Tatranského Národního Parku. Zborník TANAP 32: 165–195. JURIŠ, Š., ERTL, M., ERTLOVÁ, E. & VRANOVSKÝ M. 1965. Niektoré poznatky z hydrobiologického výskumu Popradského plesa [Some remarks resulting from the hydrobiological research of the mountain lake Popradské pleso in the High Tatras]. Sborník TANAP 8: 33–44. KASPRZAK, K. & ŠPORKA, F. 1991. Pisidium casertanum (Poli) (Sphaeriidae, Bivalvia) v tatranských jazerách. Zborník TANAP 31: 183–190. KERANS, B.L., KARR, J.R. & AHLSTEDT, S.A. 1992. Aquatic invertebrate assemblages: spatial and temporal differences among sampling protocols. J. North Amer. Benthol. Soc. 11: 377–390. KODADA, J. 1990. K poznaniu spoločenstiev vodných chrobákov (Coleoptera aquicola) troch vybraných plies Vysokých Tatier. Entomol. Probl. 20: 95–104. KOPÁČEK, J., COSBY, B.J., MAJER, V., STUCHLÍK, E. & VESELÝ, J. 2003. Modelling Reversibility of Central European Mountain Lakes from Acidification: Part II – The Tatra Mountains. Hydrol. Earth Syst. Sci. 7: 510–524. KOPÁČEK, J., HARDEKOPF, D., MAJER, V., PŠENÁKOVÁ, P., STUCHLÍK, E. & VESELÝ, J. 2004. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156. KOPÁČEK, J., STUCHLÍK, E. & HARDEKOPF, D. 2006. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia, Bratislava 61, Suppl. 18: S21–S33.
KOPÁČEK, J., STUCHLÍK, E., STRAŠKRABOVÁ,V. & PŠENÁKOVÁ, P. 2000. Factors governing nutrient status of mountain lakes in the Tatra mountains. Freshwater Biol. 43: 369–383. KOWALEWSKI, M. 1914. Materialy do fauny polskich skaposzczetow wodnych (Oligochaeta aquatica). Cz˛e´s´ c II. Spraw. Kom. Fizjogr. Akad. Umiej˛et., Krakow 48: 107–113. KOWNACKA, M. & KOWNACKI, A. 1965. Fresh water invertebrates of Stawku Mnichowe pools in the Tatra Mountains. Limnological investigations in the Tatra Mountains and Dunajec river basin, PAN, Wydz. Nauk. Rol. i Le´s. Kom. Zagosp. Ziem Górskich 11: 81–90. KOWNACKI, A., DUMNICKA, E., GALAS, J., KAWECKA, B. & WOJTAN, K. 1997. Ecological characteristics of a high mountain lake-outlet stream (Tatra Mts, Poland). Arch. Hydrobiol. 139: 113–128. KOWNACKI, A., GALAS, J., DUMNICKA, E. & MIELEWCZYK, S. 2000. Invertebrate communities in permanent and temporary high mountain lakes (Tatra Mts.). Ann. Limnol. 36: 181–188. KRNO, I. 1988a. Makrozoobentos litorálu Tatranských jazier. Zborník TANAP 28: 235–250. KRNO, I. 1988b. Podenky (Ephemeroptera) a pošvatky (Plecoptera) vybraných jazier TANAP-u, ich prítokov a odtokov. Zborník TANAP 28: 217–234. KRNO, I. 1991a. Macrozoobenthos of the Tatra lakes littoral (the High Tatras) and its affection by acidification. Biológia, Bratislava 46: 495–506. KRNO, I. 1991b. Makrozoobentos litorálu jazier Západných Tatier a ich odtokov. Zborník TANAP 31: 217–227. KRNO, I., ERTLOVÁ, E., TOMAJKA, J. & ŠPORKA, F 1985. Klasifikácia vybraných tatranských plies na základe významnejších abiotických a biotických faktorov, pp. 220–224. In: Zborník prednášok zo VII. konferencie Československej Limnologickej Spoločnosti, Nitra. KRNO, I., ERTLOVÁ, E., TOMAJKA, J. & ŠPORKA, F. 1986. Nové poznatky o typológii tatranských jazier. Správy Slov. Zool. Spol. 12: 130–135. KRNO, I., TOMAJKA, J., TIRJAKOVÁ, E., BULÁNKOVÁ, E., HALGOŠ, J. & KOŠEL, V. 1995. Vplyv kyslých zrážok na faunu pramenísk pohoria Vtáčnik. Rosalia 10: 21–34. LARSEN, J., BIRKS, H.J.B., RADDUM, G.G. & FJELLHEIM, A. 1996. Quantitative relationships of invertebrates to pH in Norwegian river Systems. Hydrobiologia 328: 57–74. LEPŠ, J. & ŠMILAUER, P. 2000. Mnohorozměrná analýza ekologických dat. Biologická fakulta, Jihočeské univerzity v Českých Budějovicích, České Budějovice, 102 pp. LOTTER, A.F., BIRKS, H.J.B., HOFMANN, W. & MARCHETTO, A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps.1. Climate. J. Paleolimnol. 18: 395–420. MAYER, K. 1939. Trichopteren der Hohen Tatra. Věst. Česk. Zool. Spol. v Praze 6–7: 304–317. MINKIEWICZ, S. 1914. Pryzegl˛ad fauny jezior tatrza´ nskich. Spraw. Kom. Fizjogr. Akad. Umiej˛et., Krakow 48: 114–137. OBR, S. 1955. Příspěvek k studiu fauny jezer a bystřin v Liptovských holých. Acta. Soc. Zool. Bohemoslov. 19: 9–26. RADDUM, G.R. 1980. Comparison of benthic invertebrates in lakes with different acidity, pp. 330–331. In: DRABLOS, D. & TOLLAN, A. (eds) Ecological impact of acid precipitation, SNSF – Project. RADDUM, G.R. & FJELLHEIM, A. 2002. Species composition of freshwater invertebrates in relation to chemical and physical factors in high mountains in Southwestern Norway. Water, Air, Soil Poll.: Focus 2: 311–328. RADDUM, G.R., FJELLHEIM, A. & HESTHAGEN, T. 1988. Monitoring of acidification by the use of aquatic organisms. Verh. Int. Verein. Limnol. 23: 2291–2297. SCHEIBOVÁ, D. & HELEŠIC, J. 1999. Hydrobiological assessment of stream acidification in the Czech-Moravian highland, Czech Republic. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun. 25: 13–22.
S160 SUTTCLIFFE, D.W. & CARRICK, T.R. 1973. Studies on mountain streams in the English Lake District. Freshwater Biol. 3: 437– 462. ŠPORKA, F. 1992a. Makrozoobentos mediálu jazier Západných Tatier. Zborník TANAP 32: 129–138. ŠPORKA, F. 1992b. Máloštetinavce (Oligochaeta) jazier v Západných Tatrách. Zborník TANAP 32: 139–148. ŠPORKA, F., LIVINGSTONE, D.M., STUCHLÍK, E., TUREK, J. & GALAS, J. 2006. Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia, Bratislava 61, Suppl. 18: S77–S90. ŠTEFKOVÁ, E. & ŠPORKA, F. 2001. Long-term ecological research of high mountain lakes in the High Tatras (Slovakia). Ekológia, Bratislava 20, Suppl. 2: 101–106. TÁTOSOVÁ, J. & STUCHLÍK, E. 2003. Chironomidae (Diptera) profundálu vysokohorských jezer (Vysoké Tatry, Slovensko) v různém stupni acidifikace. Acta Fac. Ecol., Zvolen 10, Suppl. 1: 193–196. TER BRAAK, C.J.F. & ŠMILAUER, P. 1998. CANOCO release 4. Reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination. Microcomputer Power, Ithaca, 353 pp.
I. Krno et al. VEJDOVSKÝ, F. 1884. System und Morphologie der Oligochaeten. Praha, 166 pp., 16 plates. VRANOVSKÝ, M., KRNO, I., ŠPORKA, F. & TOMAJKA, J. 1994. The effect of anthropogenic acidification on the hydrofauna of the lakes of the West Tatra Mountains (Slovakia). Hydrobiologia 274: 163–170. ZAŤOVIČOVÁ, Z., 2002. Spoločenstvá makrozoobentosu litorálu vybraných gradientových jazier Vysokých Tatier (predbežné výsledky). Správy Slov. Zool. Spol. 20/21: 117–124. ZAŤOVIČOVÁ, Z. 2003. Rozdiely v štruktúre bentických spoločenstiev gradientových jazier vo Vysokých Tatrách. Acta Fac. Ecol., Zvolen 10, Suppl. 1: 189–192. ZAVŘEL, J. 1935a. Chironomidenfauna der Hohen Tatra. Verh. Int. Verein. Theor. Angew. Limnol. 7: 439–448. ZAVŘEL, J. 1935b. Příspěvek k faune bystřin a jezer ve Vysokých Tatrách. Sbor. Klubu Přírodověd. v Brně 17: 8–12. ZAVŘEL, J. 1937a. Eine neue Trissocladiusart. Spisy Přírodověd. Fak. Masaryk Univ. 239: 3–12. ZAVŘEL, J. 1937b. Orthocladiinae aus der Hohen Tatra. Rev. Ges. Hydrobiol. Hydrograph. 35: 483–496. ZAVŘEL, J. & PAGAST, F. 1935. Dva nové druhy Orthocladiin z Vysokých Tater. Čas. Čs. Spol. Entomol. 32: 156–160. Received March 13 2006 Accepted May 9, 2006
Štvrté Roháčske pleso Nižné Jamnícke pleso Vyšné Račkove pleso Veľké Bystré pleso Zelené krivánske pleso Dlugi Staw G˛asienicowy Zadni Staw G˛asienicowy Nižné Terianske pleso Zadni Staw Polski Czarny Staw G˛asienicowy Vyšné Terianske pleso Zmarzly Staw G˛asienicowy Vyšné Wahlenbergovo pleso Czarny Staw Polski Nižné Temnosmrečinské pleso Okrúhle pleso Capie pleso Vyšné Temnosmrečinské pleso Wielki Staw Polski Malé Hincovo pleso Veľké Hincovo pleso Czarny Staw pod Rysami Veľké Žabie pleso Dračie pleso Vyšné Žabie bielovodské pleso Litvorové pleso Batizovské pleso Zelené javorové pleso Malé Žabie javorové pleso Pusté pleso Vyšné zbojnícke pleso Prostredné zbojnícke pleso Ľadové pleso vo Veľkej Studenej doline Starolesnianske pleso Žabie javorové pleso Prostredné sivé pleso Veľké spišské pleso Prostredné spišské pleso Wyžni Siwy Stawek Dwoisty Staw Wschodni Vyšné Furkotské pleso Wyžni Mnichowy Stawek. IX Vyšné Satanie pliesko Slavkovské pleso Čierne pleso
1719.2 1732 1696.8 1878.9 2012.5 1784 1852 1940.4 1890 1620 2124 1787 2157 1722 1677 2105 2075.3 1724.8 1655 1921.3 1944.8 1580 1921 2019.5 1699.1 1860 1884.2 1815 1704.2 2056 1961.8 1959.6 2057 1988 1878.3 2013 2013 2010 1716 1657 1698 1870 1894 1676 1579.1
1.5 1.1 0.7 0.9 4.3 1.6 0.5 4.9 6.5 17.8 0.5 0.3 5.0 12.7 10.5 0.7 2.4 5.0 34.1 2.2 18.2 20.5 2.3 1.7 8.1 1.7 2.8 0.8 0.3 1.2 0.7 0.6 1.7 0.7 0.8 0.9 2.4 1.8 0.0 1.4 0.5 0.1 0.6 0.1 0.3
8.2 8.2 12.3 12.5 29.5 10.6 8.0 47.3 31.6 51.0 4.3 3.7 20.6 50.4 38.1 10.2 17.5 20.0 79.3 6.4 54.0 76.4 7.0 16.0 24.8 19.1 10.5 9.1 3.1 6.6 8.3 5.3 18.0 4.2 15.3 4.8 10.1 4.7 1.8 9.2 2.4 2.3 3.5 2.5 4.0
– + + – – + + + + + + + – + + – + + + – – + + – – + + – – – + + – – + + – + – – + – – – –
– + + – – + + + + + – + – + + – – + + – + + – – + + + – + + + + – + + + + + – – + + + – +
Altitude Lake area Depth I O (m a.s.l.) (ha) (m) (+/–) (+/–) 189 189 187 199 209 192 197 203 199 182 215 192 217 189 185 214 212 189 185 202 204 180 202 207 187 198 199 194 187 211 206 206 212 206 199 209 209 209 185 201 187 168 199 223 209
40.8 233.9 219.2 308.3 77.8 22.4 36.9 89.0 33.0 41.5 -6.8 12.9 29.2 68.6 235.7 23.4 28.7 261.9 73.4 264.7 105.6 137.3 45.1 126.0 55.4 109.1 33.0 56.4 76.8 129.6 100.9 92.0 65.2 1.8 131.4 8.6 23.1 16.2 265.9 8.4 50.5 -11.0 –10.6 –2.7 169.3
14.6 33.5 29.1 37.4 16.8 13.7 16.0 17.4 12.4 15.5 11.4 14.0 10.5 14.1 30.4 9.6 11.5 33.2 15.7 40.2 20.4 25.3 13.8 22.3 14.6 20.9 13.7 11.1 16.6 21.3 20.4 19.4 12.6 8.2 26.1 10.5 11.1 10.6 34.8 11.9 15.5 15.4 13.6 10.2 30.4
0.44 0.43 0.13 1.00 0.27 0.22 0.23 0.26 0.45 0.51 0.55 0.14 0.15 0.95 0.35 0.27 0.22 0.20 0.41 0.58 0.42 0.26 0.15 0.05 0.43 0.14 0.10 0.36 0.35 0.28 0.27 0.31 0.33 1.37 0.10 0.33 0.06 0.14 3.33 0.23 0.32 0.74 1.18 5.15 0.35
6.45 7.19 7.17 7.28 6.70 6.16 6.38 6.73 6.30 6.38 5.01 5.99 6.26 6.62 7.21 6.13 6.31 7.19 6.68 7.26 6.85 7.00 6.49 6.92 6.58 6.86 6.33 6.56 6.70 6.88 6.85 6.76 6.62 5.34 6.99 5.76 6.18 5.97 7.18 5.76 6.54 4.83 4.87 5.03 7.01
413 297 226 317 389 534 688 466 411 579 546 760 416 298 294 451 454 392 323 339 400 475 688 470 413 505 573 252 501 421 482 407 276 211 655 569 430 435 179 435 449 702 357 282 545
3.4 2.9 2.3 0.8 2.7 1.4 1.3 1.6 1.2 3.2 3.2 1.2 2.2 2.2 1.6 2.7 2.0 1.8 1.1 2.9 1.7 1.0 2.3 0.7 1.6 1.2 1.7 4.6 2.0 2.5 2.2 1.5 2.1 7.5 1.8 1.5 1.4 1.8 3.1 2.7 5.8 4.4 5.3 15.0 3.3
– + + + – – – – – + – – – + – – – – + – + – – – – – – – – – – – – – – – – – – – – – – – –
Duration of ice cover Alk Cond TDOC pH TN TP Fish (days) (µeq L−1 ) (µS cm−1 20 ◦C) (mg C L−1 ) (µgN L−1 ) (µg L−1 ) (+/–)
Key: altitude. depth – according to GREGOR & PACL (2005); I. O. fish. chemical attributes – according to EMERGE database; No. – lake number; I – inlet; O – outlet; Alk – alkalinity; Cond – conductivity; TDOC – total or dissolved organic carbon; TN – total nitrogen; TP – total phosphorus; +/– – presence/absence.
1 3 4 6 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 26 27 29 30 31 32 36 37 39 41 42 43 44 45 47 49 51 54 56 101 102 105 106 107 109 110
No. Lake name
Appendix 1. List of the studied lakes with their basic characteristics.
Macroinvertebrates of mountain lakes in the Tatra Mts S161
Hydrozoa Hydra sp. Turbellaria Crenobia alpina (Dana, 1766) Nematoda indet. Mollusca Pisidium casertanum (Poli, 1791) Oligochaeta Cernosvitoviella atrata (Bretscher, 1903) Cernosvitoviella tatrensis Kowalewski, 1916 Cognettia glandulosa (Michaelsen, 1888) Cognettia sphagnetorum (Vejdovský, 1877) Cognettia spp. Enchytraeidae indet. Fridericia spp. Haplotaxis gordioides (Hartmann, 1821) Lumbriculus variegatus (O. F. M¨ uller, 1774) Mesenchytraeus armatus (Levinsen, 1884) Nais variabilis Piguet, 1906 Spirosperma ferox Eisen, 1879 Stylodrilus heringianus Claparčde, 1862 Trichodrilus tatrensis Hrabě, 1937 Trichodrilus spp. Tubifex ignotus (Štolc, 1886) Tubifex tubifex (O. F. M¨ uller, 1774) Hydracarina indet. Amphipoda Niphargus sp. Ephemeroptera Ameletus inopinatus Eaton, 1887 Electrogena lateralis (Curtis, 1834) Plecoptera Archynopteryx compacta (McLachlan, 1872) Capnia vidua Klapálek, 1904 Diura bicaudata (L., 1758) Leuctra nigra (Olivier, 1811) Leuctra rosinae Kempny, 1900 Nemoura cinerea (Retzius,1783) Nemurella picteti Klapálek, 1900 Heteroptera indet. Megaloptera Sialis lutaria (L., 1758) Coleoptera Agabus bipustulatus (L., 1767) Agabus guttatus (Paykull, 1798) Agabus melanarius Aubé, 1836
Taxon/Lake number
–
– – – – – – – – – 60 – 6 1 – –
Ame ino Ele lat
Arc com Cap vid Diu bic Leu nig Leu ros Nem cin Nem pic Het pte
Sia lut
Aga bip
Tri spp Tub ign Tub tub
Fri spp Hap gor Lum var Mes arm Nai var Spi fer Sty her
– – 3 9 – – – – – 5 26 3 – – 24 – 2
– – – 6 – – – – – 6 8 39 – – 5 – 2
Cer atr Cer tat Cog gla Cog sph Cog spp
– – –
–
– – – – – – – –
– –
–
–
Pis cas
– 1
–
3
– 4
–
1
Cre alp
Taxon code
– – –
–
– – – – – – – –
– –
–
– – – 22 – – – 1 – – 182 – 7 – 1 – – -
–
– -
–
4
– – –
–
– – – – – – –
– –
–
16 – – – – 5 – – – – 129 – 25 – – – – -
–
– 60
–
6
– – –
–
1 3 – – – – – –
– –
–
3 – – – – – – – – – – – 11 – – – 4 -
–
4 –
–
8
– – –
–
– – – – – – 3 –
– –
–
2 – 2 2 4 – – – – – – – – – – – – -
–
2 –
–
9
– – –
–
– – – – – – – –
– –
–
– – – – – – – – – – – – – – – -
–
20 –
–
10
– – –
–
– – 1 – – – – –
1 –
–
– – – 16 – – 1 – – 141 – 23 – – – 3 3
–
55 2
–
11
– – –
–
– 2 – – – – – –
– –
–
1 1 – – 1 – – – – – 8 – – – – – –
–
– -
–
12
– – –
–
– – – – – 6 27 –
– –
–
2 8 – – – – – – – – 260 – 18 – – – – –
–
– -
–
13
– – –
–
– – – – – – – –
– –
–
3329 – – – – – – – – – – – – – – 1 –
–
– 10
–
14
– – –
–
– 1 – – – – 4 –
– –
–
5 – – – – – – – – – 32 – 3 – – 1 – –
–
3 –
–
15
– – –
–
– 9 – – – – – –
– –
–
30 – – – – – – – – – – – 43 – – – – –
–
61 1
–
17
– – –
2
– 12 22 8 – 16 24 –
1 –
–
10 4 1 2 – – – 131 – 17 – – 34 – -
–
1 –
–
18
2 – –
–
– 3 25 – – 8 80 –
1 –
–
– – – 1 – – – 50 45 19 – – – – – – 22
4
3 –
17
19
Appendix 2. The list of macroinvertebrate taxa registered in the littoral zone of Tatra lakes, with their abundances (ind. 5 min−1 ).
– – –
–
– – – – – – – –
– –
–
1025 – – 1 – – – – – – – – – – – – – -
–
27
–
20
– – –
–
3 – – – – – – –
– –
–
100 – – 44 – – – – – – – – – – – – – -
–
1 –
–
21
5 – –
–
– – 20 – – – 14 –
1 –
–
– – – – – – 1 2 – – 13 – 29 1 – – – 3
–
73 4
–
22
– – –
–
12 2 5 – – 10 278 –
2 –
–
– – – 2 – – – – – – 90 – 8 – – – – -
–
42 –
–
23
16 – –
–
– 6 5 – – – – –
– 2
–
6 – – – 1 – – – – – 19 – – – – – – 11
–
8
–
26
– – –
–
3 – – – – – – –
2 –
–
– – – – – – – 5 – – 141 – 35 – – – – 6
–
13 1
–
27
– – –
–
– 21 8 – – – 6 –
– –
–
21 23 – 1 5 – – – – – 552 12 4 – – – – -
–
2 –
–
29
3 – –
–
– 2 – – – – – –
– –
–
9 – – 1 – – – – – 85 – 1 – – – – -
–
8 –
–
30
S162 I. Krno et al.
Agabus sp. Hydroporus ferrugineus Stephens, 1829 Hydroporus memnonius Nicolai, 1822 Hydroporus palustris (L., 1761) Hydroporus spp. Hygrotus impressopunctatus (Schaller, 1783) Nebrioporus depressus (F., 1775) Trichoptera Allogamus spp. Apatania fimbriata (Pictet, 1834) Chaetopteryx sp. Drusus monticola McLachlan, 1876 Drusus trifidus McLachlan, 1868 Limnephilus coenosus Curtis, 1834 Plectrocnemia conspersa (Curtis, 1834) Polycentropodidae indet. Diptera Chironomidae Chaetocladius piger gr. Chaetocladius spp. Chironomus sp. Corynoneura spp. Cricotopus sylvestris gr. Cricotopus (C.) spp. Cricotopus (I.) cf.perniger (Zetterstedt, 1850) Cricotopus (I.) spp. Endochironomus sp. Eukiefferiella gracei gr. Eukiefferiella sp. Heterotrissocladius marcidus (Walker, 1856) Macropelopia cf. nebulosa (Meigen, 1804) Metriocnemus hygropetricus gr. Micropsectra spp. Microtendipes pedellus gr. Orthocladinae indet. Parachaetocladius sp. Paratanytarsus cf. austriacus (Kieffer, 1924) Procladius cf.choreus (Meigen, 1804) Prodiamesa olivacea (Meigen, 1818) Psectrocladius (P.) psilopterus gr. Psectrocladius (P.) sordidellus gr. Pseudodiamesa branickii (Nowicki, 1873) Pseudodiamesa nivosa (Goetghebuer, 1928) Pseudokiefferiella parva (Edwards, 1932) Smittia spp. Stilocladius montanus Rossaro, 1979
Taxon/Lake number
Appendix 2. (continued)
Smi spp Sti mon
Ort nae Pac spp Par aus Pro cho Pro oli Pse psi Pse gso Pse bra Pse niv
Mic spp
Cri per Cri iso End spp Euk ggr Euk spp Het mar Mac neb
Cha spp Chi spp Cor spp
Dru tri Lim coe Ple con
All spp Apa fim
Hyd spp
Taxon code
– – – – – – – –
– – – 10 4 4 2 – – 12 – 12 – – – – – 2 – – 472 – – – – – –
– – – 6 2 2 – – – – – 92 – – 60 30 – – 38 – – – 20 – – – – –
– – – – – – 1
3
2 – – – – – 15 –
– – – – – – –
1
2 – – 18 4 – – – – 10 – 170 6 – 18 – – – 226 – – – – 12 – – – –
– – – – – – – –
– – – – – – –
4
– – – 65 3 – – – – – – 6 – – 3 – – – 34 – – 4 – 1 – – – –
– – – – – – – –
– – – – – – –
6
– – – 56 – – – – – – – 2 – – 8 – – – – – – – – – – – –
– – – – – – – –
– – – – 4 – –
8
– – – 5 – – – – – – – 5 – – 1 – – – – – – – – – – – –
– – – – – – – –
– – – – – – –
9
– – – – – – – – – – – 2 – – 2 – 1 – – – – – – 4 – – – –
– – – – – – – –
– – – – – – –
10
– – – 2 – – – – – – – 96 166 – 44 – – – – – – – – – – – – –
4 – – – 13 – – –
– – – – – – –
11
– – – 81 – 16 – – – – – – – – – 1 – – – – – – – – – – –
– – – – – – – –
– – – – – – –
12
– 10 – 20 – – – 3 – – – – 8 – – – – – – – – – – – – – – –
– 1 – – – – – –
– – – – – – –
13
– – – – – – – – – – – 1 – – – – – – – – – – – – 61 – 3 –
– – – – – – – –
– – – – – – –
14
– – – – – – – – – – 1 166 – – 4 – – – – – – – – – 7 – – –
– – – – – – – –
– – – – – – –
15
– – – – – – – – – – – 206 – – 6 – – – – – – – – – 65 – – –
11 – – 2 – – – –
– – – – – – –
17
– – – 166 – – – 3 – – 2 191 6 – 28 3 50 2 – 24 – 4 – – – – –
– – – – – – – –
– – – – – – –
18
– – – 6 – – 1 – – – – – 1 – 3 – – – – – 95 – – – – – – –
1 – 6 – 1 – – –
– – – – 1 – –
19
– – – – – – – – – – – – – – – – – – – – – – – – 13 – 2 –
– – – – – – – –
– – – – – – –
20
– – – – – – – – – – – 21 – – 59 – – – – – – – – 2 2 – – –
6 – – – – – – –
– – – – – – –
21
– 2 – 160 – – 76 – – 4 – 36 4 – 8 – – – – – 8 – – – – – – –
3 – 2 – 2 – – –
– – – – 4 – –
22
– 2 – 2 – – – – – – – 2 – – 14 – 4 – – – 2 – 2 – – – – –
– 4 – – – – – –
– – – – – – –
23
– 4 – 232 – – 416 – – – – 2 4 – 8 – – – 36 – – – – – – – – –
– – 4 – 14 – – –
– – 2 – 1 1 –
26
– 4 – 65 – – – – – 8 – 4 – – 2 – – – 29 – – – – 54 – – – –
– 2 4 – – – – –
– – – – – – –
27
– – – – – – – 7 – – – 6 – – – – 1 7 – 2 – 2 – – – – –
– 1 – – – – – –
– – – – – – –
29
– 4 – 2 – – – – – – – 22 25 1 – – – – – – – – – – – –
– – 4 – – – – –
– – – – – – –
30
Macroinvertebrates of mountain lakes in the Tatra Mts S163
1
201 – – 3 – – – – 9 – 11 – – 65 – 13
Pis cas
Cer atr Cer tat Cog gla Cog sph Cog spp
–
31
Cre alp
Fri spp Hap gor Lum var Mes arm Nai var Spi fer Sty her
– – – – – –
– – – – – – 52
3
– – – – – –
2 2 – – – – –
4
– – – – – –
– – – – – – –
6
– – – – – –
– 13 – – – – 151
8
– 1 – – – –
– – – 1 – – –
9
– – – – – –
– – – 10 – – –
10
– – – – – –
– – – – – – 11
11
– – – – – –
– – – – – – –
12
– – – – – –
– 2 – 6 2 – –
13
– – – – – –
– – – – 1 – –
14
– – – – – –
– – – 180 – – –
15
– – – – – –
– – – – – – –
17
– – – – – –
– – – 70 – – –
18
– – 2 – – –
– – – – – – 10
19
– – – – – –
– – – – – – –
20
– – – – – –
– – – – – – –
21
– 1 – 1 – –
– – – – 4 – 80
22
– – – – – –
– – – 12 – – –
23
– – – – – –
– – – – – – –
26
– – – – – –
– – – – – – –
27
– 7 – – – –
– – – 44 – – –
29
– – – – – –
– 1 – – – – 5
30
– – – – 28 1 – – – – 90 – 15
–
– 13
–
32
– 1 – – – – – 10 – – 145 – 1
–
1776 6
–
36
1 – – – – – – – – – 1 – –
–
239 –
–
37
5 – – – 10 – 5 – – – – – –
–
– –
–
39
– – – – – – – – – 47 5220 – –
–
7 4
–
41
– – – – 6 – – 16 – – 251 – 26
–
68 29
–
42
– – – – 1 1 – – – – 181 – 3
–
– 3
–
43
3 – – – – 6 – 1 – – 400 – 24
–
10 16
–
44
3 – – – 3 – – 2 – – 4 – –
–
58 4
–
45
6 – – – 100 – – – – – – – –
–
– 6
–
47
– – – – 1 – – – – – – – –
–
5 –
–
49
– – – – – – – – – – – – –
–
– –
–
51
– – – 2 – 1 – – – 1 68 – 17
–
3 4
–
54
– – – – 10 19 – – – – 857 – 186
–
13 98
–
56
47 34 – 1 – – – – – – 29 64 –
–
40 –
–
101
23 2 – – – – – – – – – –
–
– –
–
102
– – – 6 – – – – – – 49 – 2
–
– –
–
105
100 29 2 – – – – – – – – –
–
– –
–
106
2 – – – – – – – – – 4 – –
–
– 1
–
107
31 – – – – – – – 1 – – –
–
– 44
–
109
– – – – – 3 – – 10 – 49 – –
–
– –
–
110
21 18 17 12 12 11 6 17 8 14 7 12 10 27 25 5 9 28 19 21 17 20 15 552 644 685 351 260 28 39 582 111 373 3406 407 434 834 407 1068 238 561 495 798 378 732 173
– – – – – –
– – – – – – 148
Taxon code
Ped riv
Cha cry Dic spp
Tan nae Tvet bav Zalu tat Zav spp
Syn sem Tan lug
Taxon code
Hydrozoa Hydra sp. Turbellaria Crenobia alpina (Dana, 1766) Nematoda indet. Mollusca Pisidium casertanum (Poli, 1791) Oligochaeta Cernosvitoviella atrata (Bretscher, 1903) Cernosvitoviella tatrensis Kowalewski, 1916 Cognettia glandulosa (Michaelsen, 1888) Cognettia sphagnetorum (Vejdovský, 1877) Cognettia spp. Enchytraeidae indet. Fridericia spp. Haplotaxis gordioides (Hartmann, 1821) Lumbriculus variegatus (O. F. M¨ uller, 1774) Mesenchytraeus armatus (Levinsen, 1884) Nais variabilis Piguet, 1906 Spirosperma ferox Eisen, 1879 Stylodrilus heringianus Clapar` ede, 1862
Taxon/Lake number
Appendix 2. (continued)
Total number of taxa Total abundance (ind. 5 min−1 )
Synorthocladius semivirens (Kieffer, 1909) Tanytarsus lugens gr. Tanytarsus spp. Tanytarsini indet. Tvetenia bavarica (Goetghebuer, 1934) Zalutschia tatrica (Pagast, 1935) Zavrelimyia sp. Other Diptera Chaoborus crystallinus (De Geer, 1776) Dicranota spp. Limoniidae indet. Pedicia rivosa (L., 1758) Rhypholophus sp. Tipula (S.)rufina Meigen, 1818
Taxon/Lake number
Appendix 2. (continued)
S164 I. Krno et al.
Trichodrilus tatrensis Hrabě, 1937 Trichodrilus spp. Tubifex ignotus (Štolc, 1886) Tubifex tubifex (O. F. M¨ uller, 1774) Hydracarina indet. Amphipoda Niphargus sp. Ephemeroptera Ameletus inopinatus Eaton, 1887 Electrogena lateralis (Curtis, 1834) Plecoptera Archynopteryx compacta (McLachlan, 1872) Capnia vidua Klapálek, 1904 Diura bicaudata (L., 1758) Leuctra nigra (Olivier, 1811) Leuctra rosinae Kempny, 1900 Nemoura cinerea (Retzius,1783) Nemurella picteti Klapálek, 1900 Heteroptera indet. Megaloptera Sialis lutaria (L., 1758) Coleoptera Agabus bipustulatus (L., 1767) Agabus guttatus (Paykull, 1798) Agabus melanarius Aubé, 1836 Agabus sp. Hydroporus ferrugineus Stephens, 1829 Hydroporus memnonius Nicolai, 1822 Hydroporus palustris (L., 1761) Hydroporus spp. Hygrotus impressopunctatus (Schaller, 1783) Nebrioporus depressus (F., 1775) Trichoptera Allogamus spp. Apatania fimbriata (Pictet, 1834) Chaetopteryx sp. Drusus monticola McLachlan, 1876 Drusus trifidus McLachlan, 1868 Limnephilus coenosus Curtis, 1834 Plectrocnemia conspersa (Curtis, 1834) Polycentropodidae indet. Diptera Chironomidae Chaetocladius piger gr. Chaetocladius spp. Chironomus sp.
Taxon/Lake number
Appendix 2. (continued)
Cha spp Chi spp
Dru tri Lim coe Ple con
All spp Apa fim
– – –
– – –
1 – – – – – – 1 – – – 2 – – – – 1 20
– – – – – – – – – –
Aga bip
–
– – 8 5 – – 15 –
1 2 – – – – – –
–
Sia lut
Hyd spp
– 3 – – – – – –
Arc com Cap vid Diu bic Leu nig Leu ros Nem cin Nem pic Het pte
3 –
–
– – –
– – – – –
32
– – – – –
31
Ame ino Ele lat
Tri spp Tub ign Tub tub
Taxon code
– – –
4 2 – – 1 – – –
– – – – – – – – – –
–
– 59 – – 3 – – –
17 –
–
– – – – –
36
– – –
4 – – – – – – –
– – – – – – – – – –
–
– 1 – – 1 – – –
– –
–
– – – – 1
37
– – –
– – – – – – – –
– – – – 1 – – – – –
–
1 2 – – – – – –
2 –
–
– – – – –
39
– – –
– – – – – – – –
2 – – – – – – – – –
–
– – 1 – – – 2 2
– –
–
– – – – 1
41
– – –
– 15 – – – – – –
– – – – – – – – – –
–
7 – – – 9 – – –
26 –
–
– – – – 2
42
– – –
– 1 – – – – – –
5 – – – – – – – – –
–
1 1 1 – – – – –
5 –
–
– – – – 4
43
2 – –
2 – – – – – –
– – – – – – – – – –
–
– 3 1 – – – – –
3 –
–
– – – 7 2
44
– – –
– – – – – – – –
– – – – – – – – – –
–
– 3 – – – – – –
– –
–
– 5 – – –
45
– – –
– – – – – 15 – –
7 – – – – – – 5 – –
–
– – – – – – 28 –
– –
–
– – – – –
47
– – –
1 – – – – – – –
– – – – – – – – – –
–
1 3 – – – – – –
3 –
–
– – – – –
49
– – –
1 – – – – – – –
– – – – – – – – – –
–
– – – – – – –
– –
–
– – – – –
51
– – –
9 3 – – – – – –
3 – – – – – – – – –
–
– 2 – – 4 – – –
– –
–
– – – 5 –
54
– – –
10 – – – – – – –
4 – 1 – – – – – – –
–
– – – – – – –
– –
–
– – – 214 –
56
– – –
– – – – – 17 – –
– – – – – – – – –
–
– – – – – – –
– –
–
– – – – –
101
– – –
– – – – – 8 – –
– – – – – – – – –
–
– – – – – – –
– –
–
– – – – –
102
– – –
– – – – – 1 – –
– – – – – – – – –
–
– – – – – – –
– –
–
– – – – –
105
– – –
– – – – – 14 – –
– – – – – – – – –
–
– – – – – 18 –
– –
–
– – 98 – –
106
– – 4
– – – – – 13 – –
1 – – – – – 2 – – –
4
– – – – – 2 –
– –
–
– – – – –
107
– – –
– – – – – 44 – –
3 – – 3 – – 9 – – –
13
– – – – – – 1
– –
–
– – – 1 1
109
– 9 –
– 10 9 – 3 – – –
– 1 – – – – – – – –
–
– 5 – – – 25 –
3 –
8
– – – 20 4
110
Macroinvertebrates of mountain lakes in the Tatra Mts S165
Ped riv
Cha cry Dic spp
Tan nae Tvet bav Zalu tat Zav spp
Smi spp Sti mon Syn sem Tan lug
Ort nae Pac spp Par aus Pro cho Pro oli Pse psi Pse gso Pse bra Pse niv
Mic spp
Cri per Cri iso End spp Euk ggr Euk spp Het mar Mac neb
Cor spp
Taxon code
– 44 – 1 – 1
1 – – 1 – – – – 20 – – 42 – – – 1 – – – 2 – – – – – – – – – – – 31
32
– – – – – –
– – – – – – – – 147 – – 3 – – – – – – – – – 2 – – – – – – – – – –
36
– – – – – –
– – – – – – – – 2 – – 1 – – – – – – – – – 18 – – – – 1 – – – – –
37
– – – – – –
1 – – – – – – – 1 – – 4 – – – 3 – – – – – – – – – – – – – – – –
39
– – – – 1 –
2 – – – – – – – – 4 – – – – – 265 – – – – – – – – – – 25 – – – – –
41
– – – – – –
412 – – – – – – – 692 – 4 40 – – – – – – – – – 16 – – – – – – – – – –
42
44
45
47
– – – – – –
– – – – – –
– – – – – –
– – – – – –
264 16 – – – – – – – – – – 4 – – – – – – – – – – – 4 2 – – – – – – 316 336 – 228 36 26 – – – – – – 52 18 8 – – – – – – – – – – – – – 12 4 – 6 – – – – 4 – – – – – – – – – – – – – – – – – 130 – – – – – – – – – – – – – – – – – – 4 – – – – – 12 – – – – – – – – – – – 48 – – – –
43
– – – – –
– – – – – – – – – – – 1 – – – – – – – – – 7 – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – 15 15 – – – – – – – – –
49 51
– 54 – – – –
– – – – – – – – 59 – – 14 – – – – – – – – – 5 – – – – – – – – – –
54
– 24 – – – –
226 – – – – – – – 86 – – 132 – – – – – – – – – 1 – – – – – – – – – –
56
– – – – – –
– – – – – –
– 90 – – – – – – 5 153 – – – – – – – 90 8 – – – 12 1 – – 70 2 24 – – – – – – – – – – 4 – – – – – – – – – – – – 115 – – – 153 17 – – – 1 – 22
11 95
– 2 – – – –
– – – – – – – – – 9 – 1 – – – 13 – 10 – – – 1 – – 1 – – – – – – – – – – – – –
17 – – – – –
100 – – – – 320 – – 4 – – – – – – – 296 – – – – – – – – – – 140 – – 100 –
109
– – – – – –
4 – – 4 – – – – 188 – – 64 – – – – – 24 – – – – – – – 4 16 – – – – –
110
11 13 18 21 866 641 1128 463
– – – – – –
405 308 – – – – – – – – – – – – – – 94 56 – – – – – – – – 5 – – – – – – – – – – – – – – – – – – – – – – – – – – – 32 1 – – – 100 212 – –
101 102 105 106 107
12 24 15 11 11 14 16 20 21 10 11 8 3 17 15 14 12 386 347 2177 270 35 5583 1619 899 886 220 461 22 31 254 1881 619 413
– – – – – –
– – – – – – – – 60 2 – 16 – – – – – – – – – – – – – – – – – – – –
31
Key: For explanation of lake numbers see Appendix 1; Taxa codes – abbreviations of taxa names used in the analyses, composed of the first three letters of genera and species names.
Total number of taxa Total abundance (ind. 5 min−1 )
Corynoneura spp. Cricotopus sylvestris gr. Cricotopus (C.) spp. Cricotopus (I.) cf.perniger (Zetterstedt, 1850) Cricotopus (I.) spp. Endochironomus sp. Eukiefferiella gracei gr. Eukiefferiella sp. Heterotrissocladius marcidus (Walker, 1856) Macropelopia cf. nebulosa (Meigen, 1804) Metriocnemus hygropetricus gr. Micropsectra spp. Microtendipes pedellus gr. Orthocladinae indet. Parachaetocladius sp. Paratanytarsus cf. austriacus (Kieffer, 1924) Procladius cf.choreus (Meigen, 1804) Prodiamesa olivacea (Meigen, 1818) Psectrocladius (P.) psilopterus gr. Psectrocladius (P.) sordidellus gr. Pseudodiamesa branickii (Nowicki, 1873) Pseudodiamesa nivosa (Goetghebuer, 1928) Pseudokiefferiella parva (Edwards, 1932) Smittia spp. Stilocladius montanus Rossaro, 1979 Synorthocladius semivirens (Kieffer, 1909) Tanytarsus lugens gr. Tanytarsus spp. Tanytarsini indet. Tvetenia bavarica (Goetghebuer, 1934) Zalutschia tatrica (Pagast, 1935) Zavrelimyia sp. Other Diptera Chaoborus crystallinus (De Geer, 1776) Dicranota spp. Limoniidae indet. Pedicia rivosa (L., 1758) Rhypholophus sp. Tipula (S.)rufina Meigen, 1818
Taxon/Lake number
Appendix 2. (continued)
S166 I. Krno et al.