Localized beams and localized pulses: Generation using the angular

0 downloads 0 Views 1MB Size Report
The Bessel beam can be considered in terms of an angular spectrum of plane waves. Because of ... annular mask as the pupil of a lens, or using a phase mask.
Sheppard CJR (2013) Localized beams and localized pulses: Generation using the angular spectrum, in Non-Diffracting Waves, E. Hernandez-Figueroa, E Recami, M Zamboni-Rached, eds. Wiley-VCH, Berlin, pp. 365-380. ISBN-10: 352741195X, ISBN-13: 978-3527411955

Localized beams and localized pulses: Generation using the angular spectrum

CJR Sheppard Abstract The   Bessel   beam   can   be   considered   in   terms   of   an   angular   spectrum   of   plane waves.   Because   of   linearity   and   superposition,   as   each   plane   wave   component   is a   solution   of   the   Helmholtz   equation   (or   of   Maxwell’s   equations   for   the electromagnetic  case),  Bessel  beams  are  also  rigorous  solutions.  Pulsed  beams can   be   generated   by   coherent   superposition   of   Bessel   beams   over   a   spectral range   with   a   specified   spectral   distribution.   Assumption   of   different relationships  between  the  propagation  angle  and  wavelength  leads  to  different types   of   pulse.   These   can   be   compared   using   the   concept   of   the   three-­‐ dimensional  (generalized)  pupil.    Other  beams,  such  as  Gaussian  beams  and  their nonparaxial  generalizations,  can  be  generated  by  superposition  of  Bessel  beams. Applications  in  microscopy  and  tomography  are  discussed. 1.  Bessel  beams The  Bessel  beam  has  a  long  history,  dating  back  to  Airy  [1]  and  Rayleigh  [2].  Airy calculated   numerically   the   field   in   a   focal   cross   section   of   a   point   object   for   a circular  pupil,  and  describes  how  for  a  narrow  annular  pupil  the  dark  rings  are  of smaller   radius   and   the   side-­‐lobes   stronger   (Fig.   1(a)).   Rayleigh   proposed   a narrow  annulus  as  a  way  to  decrease  the  intensity  in  the  image  of  a  bright  object (the  sun)  while  maintaining  good  spatial  resolution.  He  explicitly  gives  the  image amplitude  as  the  Bessel  function   J 0 ,  and  mentions  the  reduction  in  the  effects  of spherical   aberration.   Neither   Airy   or   Rayleigh   mentioned   defocus   effects,   but Steward  [3]  and  later  Steel  [4],  gave  detailed  discussions  of  the  effects  of  defocus and  aberrations,  and  showed  that  depth  of  focus  increased  as  the  width  of  the annulus  reduced.  Stratton  showed  that  a  propagation  invariant  Bessel  solution  of the  Helmholtz  equation  or  Maxwell’s  equations  holds  for  systems  of  cylindrical symmetry,  such  as  waveguides  [5].  Linfoot  and  Wolf  presented  the  intensity  in the  focal  region  for  an  annular  lens  [6].  Welford  noted  that  the  side-­‐lobes  were too   strong   to   image   extended   objects   [7],   and   this   was   later   demonstrated experimentally  [8]  .

Fig.  1. Meanwhile,   McLeod   described   the   axicon,   a   conical   prism   that   also produces   a   beam   that   is   approximately   propagation   invariant   [9].   Fujiwara showed  that  the  axicon  produces  an  approximation  to  a  Bessel  beam  [10].  Kelly pointed  out  the  similarity  between  axicons  and  annular  masks  (Fig.1(b))  [11]. Dyson  proposed  a  diffractive  axicon,  similar  to  a  zone  plate  but  with  equal  width zones   [12]   (Fig.1(c)).   He   also   showed   that   spiral   zone   plates   can   be   used   to generate  higher  order  Bessel  beams. Bessel  beams,  or  approximations   to  them,  can  thus  be  formed  using  an annular  mask  as  the  pupil  of  a  lens,  or  using  a  phase  mask.  Steel  showed  that  a particular   example   of   a   phase   mask   is   a   lens   with   spherical   aberration,   which produces  approximately  an  axicon  behaviour  over  a  zone  of  the  lens  [13]. In   the   mid-­‐1970s   we   started   development   of   a   confocal   microscope  at Oxford  University.  We  investigated  theoretically  and  experimentally  the  use  of Bessel  beams   in   the  confocal   microscope.   In   a  confocal   microscope,  the   effective point  spread  function  of  the  system  is  equal  to  the  product  of  the  point  spread functions  for  the  illuminating  and  detection  lenses  [14].  Rayleigh  had  pointed  out that  the  maxima  in  the  side-­‐lobes  for  a  thin  annular  pupil  coincide  with  the  zeros of  a  plain  circular  aperture  [2],  so  we  realized  that  a  confocal  microscope  with one   annular   pupil   and   one   circular   pupil   should   give   a   good,   improved resolution,  image  of  an  extended  object  [8,  14-­‐17].  In  order  to  investigate  how the  cross-­‐section  of  a  Bessel  beam  transforms  with  defocus  from  a  Bessel  beam to  an  annulus,  we  considered  the   case  of  a  pupil  that  is  an  annulus  convolved with   a   Gaussian   beam   [18],   which   is   now   known   as   a   Bessel-­‐Gauss(ian)  beam [19].  The  field  was  expanded  in  Laguerre-­‐Gaussian  (LG)  beams,  and  summed  to give   an   analytic   expression   for   the   field   at   any   point   in   space.   A   narrow   annulus was  termed  a  δ  ring.  The  paper  states: “The   radial   distribution   for   a   δ   ring   is   given   by   a   zero-­order   Bessel   function   in   any plane  …  perpendicular  to  the  optic  axis.  That  this  is  so  is  not  surprising  because such  a  wave  is  the  circularly  symmetric  mode  of  free  space.  We  are  acquainted  with modes  of  this  form  in  circular  waveguides,  and  we  can  consider  free  space  as  the

limiting  case  of  a  waveguide  of  very  large  diameter.  Such  an  overmoded  waveguide has   an   infinity   of   circularly   symmetric   modes,   that   is   the   scale   of   the   Bessel functions   may   be   chosen   at   will.   A   wave   with   zero-­order   Bessel-­function   radial distribution  propagates  without  change.” The  propagation  invariance  of  Bessel  beams  is  thus  clearly  stated  in  this  paper. We   also   investigated   the   properties   of   electromagnetic   Bessel   beams, generated  by  illumination  of  a  narrow  annulus  by  a  plane-­‐polarized  wave  [20].  It was  shown  that  as  the  numerical  aperture  of  the  system  increases,  the  relative strength  of  a  longitudinal  field  component  increases,  so  that  by  an  angular  semi-­‐ aperture   α = 60  the  central  spot  has  split  into  two.  For  the  limiting  case α → 180  (which  could  be  achieved  in  practice  using  a  mirror  rather  than  a  lens), the  intensity  varies  as   J 22 ,  and  the  beam  exhibits  a  central  dark  core. In  1987,  the  nondiffracting  (or  diffraction-­‐free)  beam  was  proposed  [21, 22].   Actually,   these   names   are   not   strictly   accurate   and   are   misleading,   as   of course  diffraction  always  occurs,  except  for  an  infinite  plane  wave.  What  actually happens   is   that   dynamical   equilibrium   is   maintained,   so   that   the   diffraction outwards   from   the   central   lobe   is   exactly   cancelled   by   the   inward   diffraction from  the  strong  side-­‐lobes.  According  to  Durnin  [21]: “Only  5%  of  the  total  energy  of  the   J 0  beam  is  initially  contained  within  the  central maximum,   yet   this   is   sufficient   to   create   a   sharply   defined   central   spot   with   an unchanging  200  µm  diameter  over  a  distance  of  approximately  1  m.” This   statement   suggests   an   incorrect   interpretation   of   the   propagation   of   a Bessel  beam.  It  implies  that  the  central  lobe  travels  along  the  axis,  whereas  in fact  the   central  spot  is  continuously  refreshed   from   the   side-­‐lobes.   The  so-­‐called self-­‐healing,  or  self-­‐reconstructing,  property  of  Bessel  beams  stems  directly  from this   mechanism,   as   does   also   the   superluminality   of   Bessel   pulses   described later. We   mentioned   that   Bessel-­‐like   beams  can   be   formed   using   a   phase   mask. Binary  phase  masks  consisting  of  an  array  of  rings  used  as  pupil  filters  can  be designed   to   produce   a   flat   axial   intensity   over   a   limited   range   [23-­‐29].   These have  been  termed  maximally-­‐flat  filters.  In  [29],  for  a  filter  with  5  elements  the axial  intensity  is  very  flat  over  a  range  7.8  times  the  depth  of  focus  of  a  circular pupil.  The  Strehl  ratio  is  0.133,  as  compared  with  0.016  for  an  annular  pupil  of the   same   axial   uniformity.   So   phase   masks   are   an   efficient   approach   for generating  Bessel  beams  over  a  limited  range. 3.  The  Bessel-­Gauss  beam In  [18],  the  amplitude  at  any  point  of  a  paraxial  zero-­‐order  Bessel-­‐Gauss  (BG) beam  was  written  in  the  form,  with  the  exponentials  separated  into  modulus  and phase  components, ⎛ v 2 a 2 cos 2 ζ ⎞ U(v,ζ ) = cosζ J 0 (v cosζ e−iζ )exp ⎜ − ⎟⎠ 2 ⎝ (1) ⎛ sin 2 ζ ⎞ i(kz − ζ ) ⎡ (1 − a 4 v 2 )sin 2ζ ⎤                   × exp ⎢ −i , ⎥ exp ⎜ − 2a 2 ⎟ e 4a 2 ⎝ ⎠ ⎦ ⎣

where  the  normalized  radial  coordinate  v,  the  Gaussian  beam  waist   w0 ,  and  ζ  are defined  by 2ρ 2 λz (2) v = k ρ sin α = , w0 = , tanζ = = ua 2 . 2 w0 a ak sin α π w0 Here,   k = 2π / λ ,   α  is  the  semi-­‐angular  aperture,   ρ  and   z  are  cylindrical coordinates,   and   a   is   a   small   parameter   specifying   the   relative   widths   of   the Gaussian   and   Bessel   function.   v   and   u   are   the   transverse   and   axial   optical coordinates  defined  by  Born  and  Wolf  [30],  and   w0 is  the  waist  of  the  Gaussian. In   this   Chapter,   we   restrict   our   attention   mainly   to   the   case   of   rotationaly symmetric   beams.   The   amplitude   can   also   be   written   in   a   form   with   complex argument  for  the  exponential: ⎛ ⎞ ⎡ v 2 a 4 + i tan ζ ⎤ ikz 1 v (3) U(v,ζ ) = J0 ⎜ exp ⎥e . ⎢− 2 (1 + i tanζ ) ⎝ 1 + i tanζ ⎟⎠ ⎣ 2a (1 + i tanζ ) ⎦ In  terms  of  the  axial  optical  coordinate  u,  we  then  have ⎡ v 2 a 2 − iu ⎤ ikz 1 v ⎞ ⎛ (4) e . U(v,u) = J exp ⎜ ⎟ 0 ⎢− 2 ⎥ (1 + iua 2 ) ⎝ 1 + iua 2 ⎠ ⎣ 2(1 + iua ) ⎦ In  the  near-­‐field,   tanζ  1 ,  and ⎛ v2a2 ⎞ u⎞⎤ ⎡ ⎛ (5) U(v,u) ≈ J 0 ( v ) exp ⎜ − exp ⎢ i ⎜ kz − ⎟ ⎥ , ⎟ 2 ⎠ ⎝ 2⎠ ⎦ ⎣ ⎝ i.e.  it  behaves  as  a  Bessel  beam  multiplied  by  a  Gaussian.  Using  an  asymptotic expression  given  by  Porras  et  al.  [31],  this  can  be  written  for  small  a, u⎞⎤ ⎡ ⎛ (6) U(v,u) ≈ L1/ 4 a ( v 2 a 2 ) exp ( −v 2 a 2 ) exp ⎢ i ⎜ kz − ⎟ ⎥ , 2⎠ ⎦ ⎣ ⎝ which   establishes   the   equivalence   with   the   circularly-­‐symmetric   elegant   LG beam  of  order   1 / 4a 2 [31,  32]. 2

In  the  far-­‐field,   tanζ  1 ,  and ⎡ 1 ⎛v ⎞ ⎤ ⎛ iv 2 ⎞ ikz i ⎧ ⎛ v ⎞ ⎛ v ⎞⎫ (7) U(v,u) = − 2 ⎨ I 0 ⎜ 2 ⎟ exp ⎜ − 2 ⎟ ⎬ exp ⎢ − 2 ⎜ − 1⎟ ⎥ exp ⎜ ⎟ e . ⎝ ua ⎠ ⎭ ua ⎩ ⎝ ua ⎠ ⎝ 2u ⎠ ⎢⎣ 2a ⎝ u ⎠ ⎥⎦ The  Gaussian  is  only  appreciable  when   v ≈ u ,  and  then  the  expression  in  curly brackets   is   approximately   unity.   So   the   amplitude   has   the   form   of   a   ring   with approximately  Gaussian  cross-­‐section.  The  phase  variation  is  the  same  as  for  a conventional   Gaussian   beam.   In   fact   the   amplitude   in   the   far-­‐field   is   the convolution  of  a  Gaussian  beam  with  an  annulus. In   [18]   it   was   shown   that   the   annular   nature   of   the   BG   beam   is   well-­‐ developed  by  a  distance  from  the  waist   tanζ = 1 ,  i.e.  in  the  mid-­‐field  region.  If 2

v cosζ  1 ,  i.e.  if   v 2  (1 + u 2 a 4 ) ,  but  also  the  more  restrictive  condition vua 2  (1 + u 2 a 4 )  is  satisfied,  we  can  use  the  asymptotic  expression  for  the Bessel  function   J 0 , i(1 + iua 2 ) ⎛ v ⎞ ⎛ iv ⎞ J0 ⎜ exp ⎜ ≈ − ,   2⎟ ⎝ 1 + iua ⎠ ⎝ 1 + iua 2 ⎟⎠ 2π v

to  give

(8)

2 ⎧ 2 2 ⎡⎛ v ⎞ ⎤2 ⎫ ⎡ 4⎛ 1 ⎞ ⎤ v + iua ⎪ u a ⎢ ⎜ ⎟ − 1⎥ ⎪ ⎢ ⎜⎝ 4⎟ ⎥ ⎠ −i i ⎞ ua ⎛ ⎣ ⎝ u ⎠ ⎦ ⎪ eikz . ⎥ exp ⎪⎨− U(v,u) ≈ exp ⎜ − exp ⎢ ⎬ 2 4⎟ 2 4 ⎝ 2ua ⎠ ⎢ 2(1 + u a ) ⎥ 2π v(1 + iua ) 2(1 + u 2 a 4 ) ⎪ ⎪ ⎢ ⎥ ⎪⎩ ⎪⎭ ⎣ ⎦ (9) From   this   expression   we   can   see   that   in   the   region   where   the   asymptotic approximation   to   the   Bessel   function   is   valid,   the   modulus   exhibits   a   peak   value around   v ≈ u ,  the  breadth  of  the  peak  increasing  as  we  move  into  the  mid-­‐field region   from   the   far-­‐field   region.   The   phase   is   parabolic,   but   centred   about v = −1 / ua 4 ,  i.e.  it  is  approximately  constant  on  a  parabolic   toroidal  surface.  The transverse  phase  gradient  is

∂Φ(v,ζ ) 1 + vua 4 = . 1 + u 2 a4 ∂v If   v  2 / ua 4 ,  the  parabolic  term  can  be  neglected,  and

(10)

⎧ 2 2 ⎡⎛ v ⎞ ⎤ 2 ⎫ ⎪ u a ⎢⎜ ⎟ − 1⎥ ⎪ i ⎡ i(v − u / 2) ⎤ ⎪ ⎣⎝ u ⎠ ⎦ ⎪ eikz . (11) exp ⎨− U(v,u) ≈ − exp ⎢ ⎬ 2 2 4 ⎥ 2 4 2π v(1 + iua ) 2(1 + u a ) ⎣ (1 + u a ) ⎦ ⎪ ⎪ ⎪⎩ ⎪⎭ The   combined   conditions   2 / ua 4  v  (1 + u 2 a 4 ) / ua 2 show  that  the  phase  is

linear  as  long   as   u  2 / a 2 ,  or   ζ  π / 3 .  So  the  phase  is  linear  in  the  mid-­‐field region,  which  explains  the  similarity  between  a  BG  beam  and  an  axicon.  The  near field   has   been   found   numerically   to   set   in   at   about   u ≈ 1.67a −1.13 ,  in  the  range 0.01 < a < 0.2 .   The   Bessel-­‐Gauss   beam   can   be   generated   using   a   lens   illuminated   by   the dual   of   a   BG   beam,   that   we   have   called   dBG   for   short   [33].   A  dBG   beam   has   a waist   that   is   the   convolution   of   a   Gaussian   with   an   annulus.   Then   if   a  dBG   is placed  with  its  waist  in  the  front-­‐focal  plane  of  a  lens,  a  BG  is  formed  with  its waist   in   the   back   focal   plane.   The   parameter   a   is   conserved   upon   focusing.   Then if  the  value   u f  of   u  corresponding  to  the  focal  length   f  of  the  lens  satisfies  the condition   u f a 2  1 ,  a  BG  beam  is  formed  with  a  depth  of  focus  large  compared with  f.  At  the  lens

(

)

I(v) ≈ J 02 ( v ) exp −2v 2 a 2 ,

(12)

so   the   radius   of   the   lens   must   be   larger   than   about   v ≈ 2 / a in  order  not  to truncate  the  beam  appreciably. 4.  Pulsed  Bessel  beams A   pulsed   Bessel   beam   can   be   generated   by   integrating   Bessel   beams   of   different frequency   over   an   assumed   spectral   distribution.   As   each   component   Bessel beam   is   an   exact   solution   of   the  Helmholtz   equation   (or   Maxwell’s   equations   for the   electromagnetic   case),   the   pulsed   beam   is   also   an   exact   solution.   A monochromatic   Bessel   beam   can   be   considered   as   an   in-­‐phase   sum   of   plane wave  components  incident  in  different  directions  on  the  surface  of  a  cone: ∞

U(r, z,t) =

∫ f (k) J 0

0

(kr sinθ )exp(ikz cosθ )exp(−ikct)dk .

(13)

The  angle  θ  of  the  cone  is  in  general  a  function  of  the  frequency.  Different  choices for   this   functional   relationship   give   different   types   of   pulsed   beam   [34].   Note that  the  wave  number  k   is   positive   semi-­‐definite.   Four   main   types   appear   in   the literature. Type   1.  The  Bessel  beams  all  have  the  same  width,  so   k sinθ = kρ  is  a  constant [35,  36].  This  type  of  pulse  is  produced  by  a  diffractive  axicon.  Then ∞

U( ρ, z,t) = J 0 (kρ ρ ) ∫ f (k) exp(ikz cosθ )exp(−ikct)dk .

(14)

0

or ∞

U( ρ, z,t) = J 0 (kρ ρ ) ∫ f (k) exp ⎡⎢ i ⎣ 0

(

)

k 2 − kρ2 z − kct ⎤⎥ dk . ⎦

(15)

The  Bessel  structure  is  seen  to  be  independent  of  time.  Gaussian  beams  of  this type  have  also  been  investigated  [37]. Type  2.  The  Bessel  beams  have  constant   θ = α ,  so  that   cosθ = cos α = 1 / β .  This corresponds  to  the  X-­‐wave  [38].  The  group  and  phase  velocities  of  X-­‐waves  are axicon,  if  material both   β c .  This  type  of  pulse  is  produced  by  a  refractive   dispersion  can  be  neglected.  Then ∞ ⎛ kρ ⎞ (16) U[ ρ, t ′ = t − z / β c] = ∫ f (k) J 0 ⎜ exp(−ikct ′ )dk , ⎝ Γβ ⎟⎠ 0 where   Γ = 1 / β 2 − 1 .  For  the  extreme  case  when   f (k) = 1  [38], β . U( ρ,t) = 2 2 ρ / Γ − (z − β ct)2

(17)

The   observed   field   is   the   real   part   of   this   expression.   Generalizing   to   the   case when   f (k) = exp[−(k − k0 )z0 ] ,   k > k0 ≥ 0 ,  we  have β exp[ik0 (z − β ct) / β ]exp(−k0 z0 ) . (18) U( ρ,t) = ρ 2 / Γ 2 − [(z + iβ z0 ) − β ct]2 Gaussian  beams  of  this  type  have  also  been  investigated  [39]. Type  3.  The  Bessel  beams  are  related  to  each  other,  so  that  they  travel  in  step  at the  speed  of  light,  a  property  sometimes  called  isodiffracting  [40].  This  type  of pulse  is  a  generalization  of  the  original  focus  wave  mode  (FWM)  [41-­‐43].  Eq.12 can  be  written U( ρ, z, t ′) =



∫ f (k) J

0

(k ρ sinθ )exp ⎡⎣ −ikz (1 − cosθ ) ⎤⎦ exp(−ikct ′)dk , (19)

0

where   the   local   time   t ′ = t − z / c has  been  introduced.  The  Type  3  pulse  requires that   k(1 − cosθ ) = kc ,  a  constant   [44].  Then   exp(−ikc z) can  be  taken  outside  of  the integral  to  give

U( ρ, z, t ′) = exp ( −ikc z )





kc /2

f (k) J 0 (k ρ sin θ )exp(−ikct ′ )dk . (20)

We  have   k sinθ = [kc (2k − kc )]1/2 , k > kc / 2  [45],  which  provides  the  lower  limit  of integration.  In  the  paraxial  approximation,   k sinθ = (2kc k)1/2   [44],  i.e.   2k  kc .  On the  axis, ∞

U(0, z, t ′) = exp ( −ikc z ) ∫ f (k) exp(−ikct ′ )dk ,

(21)

0

so  that  the  temporal  and  spatial  variations  have  been  separated.  Gaussian  beams of   this   type   have   also   been   investigated   [34,   46].   This   type   of   pulse   can   be produced  using  a  combination  of  diffractive  and  refractive  axicons  [47]. It   is   interesting   to   note   that   Durnin   mentions   [21]   that   he   was investigating  pulsed  beams  with  spectral  components  “all  having  the  same  α”,  i.e. X-­‐waves  rather  than  FWM. Type  4.  The  Bessel  beams  travel  in  step  at  a  speed  different  from  the  speed  of light  [48,  49].  These  have  been  termed  generalized  focus  wave  modes  (GFWM). Then   k(1 / β − cos α ) = kc ,  where   β  is  the  ratio  of  the  speed  to  the  speed  of  light, and  Eqs.  17,18  still  hold,  where  now   t ′ = t − z / β c ,  and

⎛ k2 ⎞ 2k k k sinθ = ⎜ − 2 2 + c − kc2 ⎟ β ⎝ γ β ⎠

1/ 2

,

(22)

where   γ = 1 / 1 − β 2 .  For  the  paraxial  case  for   β > 1 ,   k sinθ ≈ k / Γβ ,  i.e.  it reduces  to  the  X-­‐wave  solution  (Type  2)  with   cos α = 1 / β . Durnin  et   al.   [22]   mentioned   that   their   Bessel   beam   solution   is   not   the packet-­‐like  solution  of  Brittingham  [41].  But  actually  the  FWM  is  a  pulsed  Bessel beam,   although   this   is   perhaps   not   obvious   from   the   Gaussian   form   of   the equations   in   Brittingham’s   paper.   The   connection   comes   from   an   integral relationship  of  the  form ∞ 1 (23) Ln ( ρ 2 )exp(− ρ 2 ) = ∫ e− t t n J 0 (2 ρ t )dt , n! 0 where   Ln is  a   Laguerre  polynomial,  which  shows  that  integrating  over  Bessel beams   with   an   appropriate   spectral   distribution   can   results   in   a   LG,   or   Gaussian for  the  case  when   n = 0 .  An  important  observation  is  that  the  strong  side-­‐lobes of   the   Bessel   beam   can   tend   to   cancel   out   upon   integration.   Fig.   2.   shows   the intensity   at   the   centre   of   a   pulse   for   four   different   cases,   FWM   and   X-­‐waves,   and for   similar   incoherent   integration   over   the   corresponding   spectral   distributions. For  the  pulsed  cases,  because  the  Bessel  function  can  go  negative,  cancellation can  occur,  while  for  the  incoherent  summation  only  averaging  of  the  side-­‐lobes occurs.  The  (un-­‐normalized)  spectral  distribution  is  taken  as (24) f (k) = exp(−kz0 )(k − k0 )s , k > k0 , with   s = 1 ,   2k0 = kc  and   k0 z0 = 0.1 ,  which  are  chosen  to  avoid  significant backward   propagating   components,   and   also   negative   values   of   frequency.   For   s large,  the  spectral  distribution  tends  to  a  Gaussian.  For  the  X-­‐waves,  α  is  taken  as 20 .

Fig.  2. Putting   the   spectral   distribution   of   Eq.   24   into   Eq.   21,   we   obtain   for 2k0 ≥ kc , exp(−ikc z) , (25) U(0, z, t ′) ∝ [(z + iz0 ) − ct]s which  represents  an  envelope  moving  in  the  positive  z   direction   at   the   speed   of light,   with   fringes   traveling   in   the   negative   z   direction.   Putting   the   spectral distribution  into  Eq.  20,  and  using  the  integral  in  Eq.  23,  the  amplitude  at  any point  for  the  case  when   2k0 = kc  is ⎛ kc ρ 2 ⎞ Γ(s + 1)exp(−k0 z0 )exp[−i(kc z − k0 ct ′ )] ⎛ kc ρ 2 ⎞ , exp ⎜ − U( ρ, z, t ′) = Ln ⎜ (z0 + ict ′ )s ⎝ z0 + ict ′ ⎟⎠ ⎝ z0 + ict ′ ⎟⎠

(26) i.e.  it  is  equivalent  to  an  elegant  (complex  argument)  LG  pulse  [42,  44,  50,  51].  As it  is  known  that  an  elegant  LG  beam  is  generated  by  sums  of  complex  source-­‐sink multipole   pairs  [51-­‐54],   so   the   FWM   solutions   can   be   generated   by   such   source-­‐ sink   pairs   traveling   along   the   axis   [48].   Note   that   a   source-­‐sink   pairs   are necessary,  rather  than  sources  alone,  to  avoid  nonphysical  singularities  [54,  55]. The  scalar  form  of  the  original  FWM  results  if  we  take  the  parameter  s  as  zero. Then  the  field  can  be  shown  to  be  equivalent  to  that  of  a  simple  complex  source-­‐ sink  pair  traveling  along  the  axis  at  the  speed  of  light. When   looking   into   the   history   of   the   FWM,   many   papers   have   been concerned  with  their  physical  realizability   [56-­‐58].  The  original  FWM  consisted of   forward   and   backward   propagating   components,   which   although   they   are physically  realizable  (e.g.  as  in  4Pi  microscopy  [59,  60]),  can   be   a  problem  for many  applications.  However,  choice  of  an  appropriate  spectral  distribution  can eliminate  the  backward  propagating  components  completely  [48,  61]. An   instructive   approach   to   appreciate   the   different   types   of   pulsed   beam is  using   the   three-­‐dimensional   (3D)  spatial  frequency   spectrum.   Monochromatic waves   can   be   represented   in   k -­‐space,   each   point   on   a   sphere   radius

2π / λ representing  a  plane  wave  traveling  in  a  different  direction.  This  is  called the  generalized  pupil  [62].  The  amplitude  at  any  point  in  space  is  then  given  by  a 3D  Fourier  transform   of  the   3D  spatial  frequency  spectrum.  A  monochromatic Bessel   beam  is  represented  by  a  circle  on   the  k-­‐space   sphere.   This   approach   can be   generalized   to   the   different   cases   of   pulsed   beam.   A   Type   1   pulsed   Bessel beam  has  a  constant   transverse   k  component,  and  so  must  lie  on  the  surface  of  a cylinder,  radius   kρ in   k-­‐space   [63],  as  shown  in  Fig.  3.  A  Type  2  pulsed  Bessel

beam   (X-­‐wave)   has   constant   θ = α ,  and  hence   lies  on  the  surface  of  a  cone  with its   vertex   at   the   origin.   The  k-­‐vector   of   a   Type   3   pulsed   Bessel   beam   (FWM)   lies on  the  surface  of  a  paraboloid  of  revolution  with  its  focus  at  the  origin.  In  general both  forward  and  backward  components  are  thus  allowed,  but  as  the  spectral components  are  independent,  the  spectral  distribution  can  be  chosen  at  will  to avoid   completely   backward   propagating   waves.   Alternatively,   forward propagating  waves  can  be  eliminated  [61].  Bélanger  [42]  showed  that  the  FWM is  a  special  case  of  a  more  general  solution  (our  Type  3  beam)  that  can  be  written as  the  product  of  any  solution  of  the  paraxial  wave  equation  with  a  backward propagating  plane  wave.  This  can  be  shown  very  simply  from  Eq.20,  which  can be  written  in  the  form ∞ ⎛ ikρ2 ct ′ ⎞ ⎡ ik ⎤ U( ρ, z, t ′) = exp ⎢ − c (z + ct) ⎥ ∫ g(kρ ) J 0 (kρ ρ )exp ⎜ − ⎟ kρ dk ρ , (27) ⎣ 2 ⎦0 ⎝ 2kc ⎠ where 2 2 1 ⎛ k ρ + kc ⎞ , (28) g(kρ ) = f kc ⎜⎝ 2kc ⎟⎠ and   the   integral   in   Eq.27   can   be   recognized   as   the   usual   form   for   the   Debye theory   for   paraxial   focusing   [64].   Different   solutions   of   the   paraxial   wave equation  can  be  used  to  generate  pulses  with  different  spectral  distributions.  The spectral  distribution  of  Eq.  23  results  in  elegant  LG  (eLG)  pulses.  Similarly  we can   generate   the   dual   of   the   elegant   LG   (deLG)   [33]   pulses   using   a   spectral distribution   Ln [(k − kc / 2)z0 ]exp(−kz0 ) .  Conventional  LG  pulses  require  a  spectral distribution   Ln [(2k − kc )z0 ]exp(−kz0 ) .  BG  pulses   [65,  66]  need  a  spectral distribution   I 0 [(k − kc / 2)z0 / 2a]exp(−kz0 ) .   Lommel  pulses  arise  from f (k) = exp[−(k − k1 )z0 ] , k2 > k > k1 ,  where   k1 , k2  are  constants   [61].  It  is  known that   solutions   of   the   paraxial   wave   equation   can   be   based   on   any   confluent hypergeometric  function  [33,  67,  68]. In  k-­‐space,   solutions   of  the  paraxial  wave  equation   lie  on  the  surface   of  a paraboloid,  and  the  plane  wave  gives  a  shift  in  the  negative   kz direction.  Different solutions   can   be   generated   by   choice   of   different   spectral   distributions, equivalent  to  different  angular  spectra.  We  find  that  [44] k 4k dk θ θ (29) = − c cot csc 2 = −k −1 . kc dθ 4 2 2 The  spectral  distribution  in  Eq.  23  for   2k0 = kc  is  then 1⎛k ⎞ f (k)dk = − ⎜ c ⎟ 4⎝ 2 ⎠

s +1

cot 2 s

θ θ θ⎞ ⎛ k csc 4 exp ⎜ − c csc2 ⎟ sin θ dθ . ⎝ 2 2 2 2⎠

(28)

For  a  Type  4  pulsed  beam,   kz = k / β − kc / 2 ,  and  the   k-­‐vector  lies  on  the  surface of   a   surface   of   revolution   of   a   conic   section,   a   prolate   spheroid   for   β < 1 (subluminal),   and   one   branch   of   a   hyperboloid   of   two   sheets   for β > 1 (superluminal)  [48].  The   prolate  spheroid  solution  requires  that  there  is  a maximum  as  well  as  a  minimum  value  of  k. For  pulses  of  Type  4  and   β < 1 ,  from  Eq.20,  completing  the  square  in  the argument  of  the  Bessel  function,  and  performing  the  integral  over k 1 (31) p= − ,   2 2 kcγ β β we  have ⎡ ⎛ ct ⎞ ⎤ U( ρ, z, t ′) = kcγ 2 β 2 exp ⎢ikc Γ 2 β 2 ⎜ z − ⎟ ⎥ β ⎠⎦ ⎝ ⎣ (32) 1

(

)

(

)

                      × ∫ f (k) J 0 kcγ β ρ 1 − p 2 exp −ikcγ 2 β 2 ct ′p dp. −1

As  for  Type  3  pulses,  the  amplitude  is  the  product  of  two  terms,  one  of  which  is  a plane  wave,  this  time  traveling  at  a  speed   c / β .  Putting   p = cos χ , U( ρ, z, t ′) = −kcγ 2 β 2 exp ⎡⎣ ikcγ 2 β ( β z − ct ) ⎤⎦ π

(

(33)

)

                     × ∫ f (k) J 0 ( kcγ β ρ sin χ ) exp −ikcγ 2 β 2 ct ′ cos χ sin χ dχ . 0

We  recognize  that  Eq.34  is  of  the  same  form  as  the  scalar  version  of  the  Richards &   Wolf   diffraction   integral   for   nonparaxial   focusing   [69].   For   some   spectral distributions  it  can  be  evaluated  analytically  using  an  integral  given  by  Ref.([70], p.  1467)  for  spherical  harmonics: ⎛ ⎞ z 2 2 (cos χ ) J m ( k ρ sin χ ) exp ( ikz cos χ ) sin χ dχ = 2i n − m Pnm ⎜ ⎟ jn k ρ + z , 2 2 ⎝ ρ +z ⎠ 0 (34) m where   Pn  is  an  associated   Legendre  polynomial,  and   jn  is  a  spherical  Bessel

(

π

∫P

m n

)

function.   The   function   Pn0 (cos χ )  corresponds  to  a  spectral  distribution Pn (k / kcγ 2 β 2 − 1 / β ) ,  and  we  obtain

⎡ ⎛ ct ⎞ ⎤ ⎛ z′ ⎞ Un ( ρ, z′ ) = −2i n kcγ 2 β 2 exp −kcγ 2 β z0 exp ⎢ ikcγ 2 β 2 ⎜ z − ⎟ ⎥ Pn ⎜ ⎟ jn kcγ 2 β R′ , ⎝ β ⎠ ⎦ ⎝ R′ ⎠ ⎣ (35) where

(

)

(

)

(36) z′ = (z + iβ z0 ) − β ct , R′ = ρ 2 / γ 2 + z′ 2 . Here   we   have   introduced   a   complex   displacement   z0 to  include  traveling complex  source-­‐sink  multipole  solutions  [48]. Similarly  for   β > 1 ,  introducing  the  variable k 1 (37) p′ = + ,   2 2 kc Γ β β we  have

U( ρ, z, t ′) = exp ⎡⎣ −ikc Γ 2 β ( β z − ct ) ⎤⎦

(



)

(

(38)

)

                     × ∫ k1′ f (k) J 0 kc Γβ ρ p′ 2 − 1 exp −ikc Γ 2 β 2 ct ′p′ dp′, 1

and  putting   p′ = cosh χ ′ ,

U( ρ, z, t ′) = kc Γ 2 β 2 exp ⎡⎣ −ikc Γ 2 β ( β z − ct ) ⎤⎦ ∞

(

)

                   × ∫ f (k) J 0 ( kc Γβ ρ sinh χ ′ ) exp −ikc Γ 2 β 2 ct ′ cosh χ ′ sinh χ ′dχ ′.

(39)

0

A   particular   solution   can   be   obtained   by   taking   f (k) = exp{−[k − β kc / (β + 1)]z0 } , k > β kc / (β + 1) ,  which  gives  from  Eq.40 U( ρ, z,t) =

(

{

β exp −Γ 2 β kc i[ β (z + iz0 ) − ct] + ρ 2 / Γ 2 − [(z + iβ z0 ) − β ct] ρ 2 / Γ 2 − [(z + iβ z0 ) − β ct]

}) .

(41) It  can  be  seen  that  if   kc = 0 ,  the  solution  becomes  identical  to  that  for  the  Type  2 (X  wave)  in  Eq.18  with   k0 = 0 .

Fig.  3. It   is   straightforward   to   calculate   the   dispersion   diagram,   a   plot   of k = ω / c  versus   kz ,  from  the  3D  spatial  frequency  spectrum  (Fig.  4.).  It  is  seen that   the   group   velocity,   given   by   c(∂k / ∂k z ) ,  is  independent  of  frequency  for pulses   of   Types   2,   3   or   4.   Type   2   pulses   (X-­‐waves)  are   superluminal,   and   also have  a  phase  velocity  that  is  independent  of  frequency.  For  Types  3,  4,  the  phase velocity   is   different   from   the   group   velocity,   so   that   the   pulse   exhibits   fringes that   move   through   the   envelope.   Components   that   exhibit   negative   phase velocity,   but   positive   group   velocity,   are   allowed.   For   Type   4,   β < 1 ,  the magnitude  of  the  phase  velocity  is  greater  than  c.  For  Type  1  pulses,  the  group and  phase  velocities  have  the  same  sign.

Fig.  4. 5.  Applications  in  biomedical  imaging Localized   waves   have   numerous   potential   applications,   and   of   these   the applications   in   biological   and   medical   imaging   are   important   examples.   We mentioned   that   Bessel   beams   can   in   principle   result   in   improved   spatial resolution   compared   using   a   circular   pupil   of   the   same   dimension   [8,   14]. However,  cross-­‐polarization  effects  rule  out  use  of  plane-­‐polarized  illumination for   high   numerical   aperture   systems   [20,   71].   This   problem   can   be   overcome   by illumination  with  other  polarization  distributions  such  as  radially-­‐polarized  light [72].  Radially-­‐polarized  Bessel  beams  were,  in  fact,  proposed  many  years  ago  for particle   acceleration   [73].   They   produce   a   longitudinal,   on-­‐axis   electric   field. Another  option  is  TE  polarized  illumination  [74],  which  produces  a  concentrated transverse  electric  field.  The  original  FWM  was  TE  polarized  [41]. Bessel   beams   have   been   used   successfully   for   illumination   in   optical coherence   tomography   (OCT)   [75,   76].   Usually,   OCT   employs   lenses   of   low numerical   aperture,   so   that   polarization   effects   are   unimportant.   Further,   the axial   resolution   in   OCT   results   from   the   finite   coherence   length   of   the   source,   so that   good   3D   imaging   results   even   with   low   numerical   aperture,   unlike   in confocal  microscopy  where  high  numerical  aperture  is  necessary.  Using  a  Bessel beam   allows   a   higher   numerical   aperture   to   be   used   to   improve   spatial resolution,  while  maintaining  focusing  depth.  Binary  phase  masks  have  also  been used  for  similar  applications  [77,  78].  Bessel  beams  also  have  the  advantage  of the   ‘self-­‐healing’   effect   in   scattering   media,   allowing   deep   penetration   into biological  tissue  [79]. References 1. G.  B.  Airy,  "The  diffraction  of  an  annular  aperture,"  Phil.  Mag.  Ser.  3  18,  1-­‐ 10  (1841). 2. J.  W.  S.  Rayleigh,  "On  the  diffraction  of  object  glasses,"  M.  Notes  of  the  R. Astron.  Soc.  33,  59-­‐63  (1872). 3. G.  C.  Steward,  "IV  Aberration  diffraction  effects,"  Phil.  Trans.  Royal  Soc. London,  Ser.  A  225,  131-­‐198  (1926). 4. W.  H.  Steel,  "Etude  des  effets  combinés  des  aberrations  et  d'une obturation  centrale  de  la  pupille  sur  le  contraste  des  images  optiques," Revue  d'Optique  32,  4,  143,  269  (1953). 5. J.  Stratton,  Electromagnetic  Theory  (McGraw-­‐Hill,  New  York,  1941). 6. E.  H.  Linfoot  and  E.  Wolf,  "Diffraction  images  in  systems  with  an  annular aperture,"  Proc.  Phys.  Soc.  B  66,  145-­‐149  (1953). 7. W.  T.  Welford,  "Use  of  annular  apertures  to  increase  focal  depth,"  J.  Opt. Soc.  Am.  50,  749-­‐753  (1960).

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

C.  J.  R.  Sheppard,  "The  use  of  lenses  with  annular  aperture  in  scanning optical  microscopy,"  Optik  48,  329-­‐334  (1977). J.  H.  McLeod,  "The  axicon:  A  new  type  of  optical  element,"  J.  Opt.  Soc.  Am. 44,  592-­‐597  (1954). J.  Fujiwara,  "Optical  properties  of  conic  surfaces.  I  Reflecting  cone,"  J.  Opt. Soc.  Am.  52,  287-­‐292  (1962). D.  H.  Kelly,  "Axicons,  annuli,  and  coherent  light,"  J.  Opt.  Soc.  Am.  53,  525 (1963). J.  Dyson,  "Circular  and  spiral  diffraction  gratings,"  Proc.  Roy.  Soc.  Lond. Ser.  A  248,  93-­‐106  (1958). W.  H.  Steel,  "Axicons  with  spherical  surfaces,"  in  Optics  in  Metrology,  P. Mollet,  ed.  (Pergamon,  1960),  pp.  181-­‐193. C.  J.  R.  Sheppard  and  A.  Choudhury,  "Image  formation  in  the  scanning microscope,"  Optica  Acta  24,  1051-­‐1073  (1977). C.  J.  R.  Sheppard  and  T.  Wilson,  "Imaging  properties  of  annular  lenses," Appl.  Opt.  18,  3764-­‐3769  (1979). C.  J.  R.  Sheppard,  "Scanning  microscopes,"  4,198,571  (1980). C.  J.  R.  Sheppard  and  T.  Wilson,  "The  image  of  a  single  point  in microscopes  of  large  numerical  aperture,"  Proc.  Roy.  Soc.  Lond.  A379, 145-­‐158  (1982). C.  J.  R.  Sheppard  and  T.  Wilson,  "Gaussian-­‐beam  theory  of  lenses  with annular  aperture,"  IEE  Journal  on  Microwaves,  Optics  and  Acoustics  2, 105-­‐112  (1978). F.  Gori,  G.  Guatteri,  and  C.  Padovani,  "Bessel-­‐Gauss  beams,"  Optics  Comm. 64,  491-­‐495  (1987). C.  J.  R.  Sheppard,  "Electromagnetic  field  in  the  focal  region  of  wide-­‐ angular  annular  lens  and  mirror  systems,"  IEE  Journal  of  Microwaves, Optics  and  Acoustics  2,  163-­‐166  (1978). J.  Durnin,  "Exact  solutions  for  nondiffracting  beams.  I.  The  scalar  theory," Journal  of  the  Optical  Society  of  America  A  4,  651-­‐654  (1987). J.  Durnin,  J.  J.  Miceli,  Jr.,  and  J.  H.  Eberly,  "Diffraction-­‐free  beams,"  Phys. Rev.  Letts.  58,  1499-­‐1501  (1987). G.  Yang,  "An  optical  pickup  using  a  diffractive  optical  element  for  a  high-­‐ density  optical  disc,"  Optics  Comm.  159,  19-­‐22  (1999). H.  F.  Wang  and  F.  Gan,  "High  focal  depth  with  a  pure-­‐phase  apodizer," Appl.  Opt.  40,  5658-­‐5662  (2001). H.  F.  Wang  and  F.  Gan,  "Phase  shifting  apodizers  for  increasing  focal depth,"  App.  Opt.  41,  5263-­‐5266  (2002). H.  F.  Wang,  L.  P.  Shi,  G.  Q.  Yuan,  X.  S.  Miao,  W.  L.  Tan,  and  T.  C.  Chong, "Subwavelength  and  super-­‐resolution  nondiffraction  beam,"  Appl.  Phys. Lett.  89,  171102  (2006). C.  J.  R.  Sheppard,  J.  Campos,  J.  C.  Escalera,  and  S.  Ledesma,  "Three-­‐zone pupil  filters,"  Optics  Comm.  281,  3623-­‐3630  (2008). H.  F.  Wang,  L.  Shi,  B.  Luk`yanchuk,  C.  Sheppard,  and  C.  T.  Chong,  "Creation of  a  needle  of  longitudinally  polarized  light  in  vacuum  using  binary optics,"  Nature  Photonics  2,  501-­‐506  (2008). C.  J.  R.  Sheppard,  "Binary  phase  filters  with  maximally-­‐flat  response,"  Opt. Lett.  36,  1386-­‐1388  (2011). M.  Born  and  E.  Wolf,  Principles  of  Optics  (Pergamon,  Oxford,  1959).

31. 32. 33. 34. 35. 36. 37. 38.

39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49.

M.  Porras,  R.  Borghi,  and  M.  Santarsiero,  "Relationship  between  elegant Laguerre-­‐Gauss  and  Bessel-­‐Gauss  beams,"  J.  Opt.  Soc.  Am.  A  18,  177-­‐184 (2001). S.  Saghafi  and  C.  J.  R.  Sheppard,  "Near  field  and  far  field  of  elegant Hermite-­‐Gaussian  and  Laguerre-­‐Gaussian  modes,"  J.  mod.  Optics  45, 1999-­‐2009  (1998). C.  J.  R.  Sheppard,  "Beam  duality,  with  application  to  generalized  Bessel-­‐ Gaussian,  and  Hermite-­‐  and  Laguerre-­‐Gaussian  beams,"  Optics  Express 17,  3690-­‐3697  (2009). C.  J.  R.  Sheppard  and  X.  Gan,  "Free-­‐space  propagation  of  femto-­‐second light  pulses,"  Optics  Comm.  133,  1-­‐6  (1997). J.  A.  Campbell  and  S.  Soloway,  "Generation  of  a  nondiffracting  beam  with  a frequency  independent  beam  width,"  J.  Acoustical  Soc.  Am.  88,  2467-­‐2477 (1990). Z.  Y.  Liu  and  D.  Y.  Fan,  "Propagation  of  pulsed  zeroth-­‐order  Bessel  beams," J.  mod.  Optics  45,  L17-­‐L21  (1998). I.  P.  Christov,  "Propagation  of  femtosecond  light  pulses,"  Optics  Comm. 53,  364-­‐366  (1985). J.  Lu  and  J.  F.  Greenleaf,  "Nondiffracting  X  waves  -­‐  exact  solutions  to  free-­‐ space  scalar  wave  equations  and  their  finite  aperture  realizations,"  IEEE Trans.  Ultrasonics,  Ferroelectrics  and  Frequency  Control  39,  19-­‐31 (1992). M.  Kempe,  U.  Stamm,  B.  Wilhelmi,  and  W.  Rudolph,  "Spatial  and  temporal transformation  of  femtosecond  laser  pulses  by  lenses  and  lens  systems,"  J. Opt.  Soc.  Am.  B  9,  1158-­‐1165  (1992). S.  Feng  and  H.  G.  Winful,  "Spatiotemporal  structure  of  isodiffracting ultrashort  electromagnetic  pulses,"  Phys.  Rev.  E  61,  862-­‐873  (2000). J.  N.  Brittingham,  "Focus  wave  modes  in  homogeneous  Maxwell's equations:  Transverse  electric  mode,"  J.  Appl.  Phys.  54,  1179-­‐1189 (1983). P.  A.  Bélanger,  "Packetlike  solutions  of  the  homogeneous-­‐wave  equation," J.  Opt.  Soc.  Am.  A  1,  723-­‐724  (1984). R.  W.  Ziolkowski,  "Exact  solutions  of  the  wave  equation  with  complex source  locations,"  J.  Math.  Phys.  26,  861-­‐863  (1985). C.  J.  R.  Sheppard,  "Bessel  pulse  beams  and  focus  wave  modes,"  J.  Opt.  Soc. Am.  A  18,  2594-­‐2600  (2001). R.  W.  Ziolkowski,  I.  M.  Besieris,  and  A.  M.  Shaarawi,  "Aperture  realizations of  exact  solutions  to  homogeneous-­‐wave  equations,"  J.  Opt.  Soc.  Am.  A  10, 75-­‐87  (1993). E.  Heyman  and  T.  Melamed,  "Certain  considerations  in  aperture  synthesis of  ultrawideband/short-­‐pulse  radiation,"  IEEE  Trans.  on  Antennas  and Propagation  AP-­42,  518-­‐525  (1994). K.  Reivelt  and  P.  Saari,  "Optical  generation  of  focus  wave  modes,"  J.  Opt. Soc.  Am.  A  17,  1785-­‐1790  (2000). C.  J.  R.  Sheppard,  "Generalized  Bessel  pulse  beams,"  J.  Opt.  Soc.  Am.  A  19, 2218-­‐2222  (2002). P.  Saari  and  K.  Reivelt,  "Generation  and  classification  of  localized  waves by  Lorentz  transformations  in  Fourier  space,"  Phys.  Rev.  E  69,  036612 (2004).

50. 51. 52. 53. 54. 55. 56. 57. 58. 59.

60. 61. 62. 63. 64. 65. 66. 67. 68. 69.

A.  E.  Siegman,  "Hermite-­‐Gaussian  functions  of  complex  arguments  as optical-­‐beam  eigenfunctions,"  J.  Opt.  Soc.  Am.  63,  1093-­‐1094  (1973). S.  Y.  Shin  and  L.  Felsen,  "Gaussian  beam  modes  by  multipoles  with complex  source  points,"  J.  Opt.  Soc.  Am.  67,  699-­‐700  (1977). M.  Couture  and  P.-­‐A.  Belanger,  "From  Gaussian  beam  to  complex-­‐source-­‐ point  spherical  wave,"  Physical  Review  A  24,  355-­‐359  (1981). E.  Zauderer,  "Complex  argument  Hermite-­‐Gaussian  and  Laguerre-­‐ Gaussian  beams,"  J.  Opt.  Soc.  Am.  A  3,  465-­‐469  (1986). C.  J.  R.  Sheppard  and  S.  Saghafi,  "Beam  modes  beyond  the  paraxial approximation:  A  scalar  treatment,"  Phys.  Rev.  A  57,  2971-­‐2979  (1998). C.  J.  R.  Sheppard,  "High-­‐aperture  beams:  reply  to  comment,"  Journal  of  the Optical  Society  of  America  A  24,  1211-­‐1213  (2007). E.  Heyman,  "Focus  wave  modes:  a  dilemma  with  causality,"  IEEE  Trans. on  Antennas  and  Propagation  AP-­37,  1604-­‐1608  (1989). A.  M.  Shaarawi,  I.  M.  Besieris,  and  R.  W.  Ziolkowski,  "The  propagating  and evanescent  field  components  of  localized  wave  solutions,"  Optics  Comm. 116,  183-­‐192  (1995). A.  M.  Shaarawi,  R.  W.  Ziolkowski,  and  I.  M.  Besieris,  "On  the  evanescent fields  and  the  causality  of  the  focus  wave  modes,"  Journal  of  Math.  Phys. 36,  5565-­‐5587  (1995). C.  J.  R.  Sheppard  and  C.  J.  Cogswell,  "Reflection  and  transmission  confocal microscopy,"  presented  at  Optics  in  Medicine,  Biology  and  Environmental Research,  Garmisch-­‐Partenkirchen,  Germany,  1990,  in  Proc.  Int.  Conf. Optics  Within  Life  Sciences,  G  von  Bally,  S.  Khanna,  eds.  (Springer,  1993), pp.  310-­‐315. S.  Hell  and  E.  H.  K.  Stelzer,  "Fundamental  improvement  of  resolution  with a  4Pi-­‐confocal  fluorescence  microscope  using  two-­‐photon  excitation," Optics  Comm.  93,  277-­‐282  (1992). C.  J.  R.  Sheppard  and  P.  Saari,  "Lommel  pulses:  An  analytic  form  for localized  waves  of  the  focus  wave  mode  type  with  bandlimited  spectrum," Optics  Express  16,  150-­‐160  (2008). C.  W.  McCutchen,  "Generalized  aperture  and  the  three-­‐dimensional diffraction  image,"  J.  Opt.  Soc.  Am.  54,  240-­‐244  (1964). C.  J.  R.  Sheppard  and  M.  D.  Sharma,  "Spatial  frequency  content  of ultrashort  pulsed  beams,"  J.  Optics  A:  Pure  and  Applied  Optics  4,  549-­‐552 (2002). M.  Born  and  E.  Wolf,  Principles  of  Optics,  5th  ed.  (Pergamon  Press,  Oxford, 1975). P.  K.  Overfelt,  "Bessel-­‐Gauss  pulses,"  Physical  Review  A  44,  3941-­‐3947 (1991). K.  Reivelt  and  P.  Saari,  "Bessel–Gauss  pulse  as  an  appropriate mathematical  model  for optically  realizable  localized  waves,"  Opt.  Lett.  29,  1176-­‐1178  (2004). E.  Karimi,  G.  Zito,  B.  Piccirillo,  L.  Marrucci,  and  E.  Santamato, "Hypergeometric-­‐Gaussian  beams,"  Opt.  Lett.  32,  3053-­‐3055  (2007). M.  A.  Bandres  and  J.  C.  Gutierrez-­‐Vega,  "Circular  beams,"  Opt.  Lett.  33, 177-­‐179  (2008). C.  J.  R.  Sheppard  and  H.  J.  Matthews,  "Imaging  in  high  aperture  optical systems,"  J.  Opt.  Soc.  Am.  A  4,  1354-­‐1360  (1987).

70. 71. 72. 73. 74. 75. 76. 77. 78.

79.

P.  M.  Morse  and  H.  Feshbach,  Methods  of  Theoretical  Physics  (McGraw  Hill, New  York,  1978). G.  J.  Brakenhoff,  P.  Blom,  and  P.  Barends,  "Confocal  scanning  light microscopy  with  high  aperture  immersion  lenses,"  J.  Microsc.  117,  219-­‐ 232  (1979). C.  J.  R.  Sheppard  and  A.  Choudhury,  "Annular  pupils,  radial  polarization, and  superresolution,"  Appl.  Opt.  43,  4322-­‐4327  (2004). J.  P.  Fontana  and  R.  H.  Pantel,  "A  high-­‐energy,  laser  accelerator  for electrons  using  the  inverse  Cherenkov  effect,"  J.  Appl.  Phys.  54,  4285 (1983). C.  J.  R.  Sheppard  and  S.  Rehman,  "Highly  convergent  focusing  of  light based  on  rotating  dipole  polarization,"  Appl.  Opt.  50,  4463-­‐4467  (2011). Z.  H.  Ding,  H.  W.  Ren,  Y.  H.  Zhao,  J.  S.  Nelson,  and  Z.  P.  Chen,  "High-­‐ resolution  optical  coherence  tomography  over  a  large  depth  range  with an  axicon  lens,"  Opt.  Lett.  27,  243-­‐245  (2002). R.  A.  Leitgeb,  M.  Villiger,  A.  H.  Bachmann,  L.  Steinmann,  and  T.  Lasser, "Extended  focus  depth  for  Fourier  domain  optical  coherence  microscopy," Opt.  Lett.  31,  2450-­‐2452  (2006). L.  Liu,  C.  Liu,  W.  Howe,  C.  Sheppard,  and  N.  Chen,  "Binary-­‐phase  spatial filter  for  real-­‐time  swept-­‐source  optical  coherence  microscopy,"  Opt.  Lett. 32,  2375-­‐2377  (2007). L.  B.  Liu,  F.  Diaz,  L.  J.  Wang,  B.  Loiseaux,  J.-­‐P.  Huignard,  C.  J.  R.  Sheppard, and  N.  G.  Chen,  "Superresolution  along  extended  depth  of  focus  with binary-­‐phase  filters  for  the  Gaussian  beam,"  J.  Opt.  Soc.  Am.  25,  2095-­‐ 2101  (2008). F.  O.  Fahrbach,  P.  Simon,  and  A.  Rohrbach,  "Microscopy  with  self-­‐ reconstructing  beams,"  Nature  Photonics  4,  780-­‐785  (2010).

Figure  Captions Fig.  1.  Bessel-­‐like  beams  can  be  produced  using  (a)  a  narrow  annular  pupil,  (b) an  axicon,  or  (c)  a  diffractive  axicon.  In  all  cases  the  rays  in  the  image  space  all travel  in  the  same  direction  relative  to  the  axis. Fig.  2.  The  intensity  in  the  central  plane  of  a  Bessel  pulse  for  four  different  cases; (a)   FWM,   (b)   incoherent   superposition   of   FWMs,   and   (c)   X-­‐waves,   and   (d) incoherent   superposition   of   X-­‐waves.   Parameters   are s = 1 ,   2k0 = kc ,

k0 z0 = 0.1 , α = 20 .  The  cross-­‐section  of  a  monochromatic  Bessel  beam  is  shown as  a  dashed  line. Fig.   3.   Different   types   of   pulsed   Bessel   beam   shown   in   a   3D   Fourier representation.  Type  1  corresponds  to  identical  Bessel  function  for  all  spectral components.   Type   2   is   X-­‐wave.   Type   4   with   β = 1  reduces  to  Type  3  (FWM). Type  4  with   β = 2 is  superluminal.  Type  4  with   β = 1 / 2 is  subluminal. Fig.  4.  The  dispersion  curves   k  versus   kz for  different  types  of  pulsed  beam.  Type 1   corresponds   to   identical   Bessel   function   for   all   spectral   components.   Type   2   is X-­‐wave.   Type   4   with   β = 1  reduces  to  Type  3  (FWM).  Type  4  with   β = 2 is superluminal.  Type  4  with   β = 1 / 2 is  subluminal.

Suggest Documents