Lower Cretaceous (Upper Barremian-Lower Aptian?) Palynoflora from the Kitadani Formation (Tetori Group, Inner Zone of Central Japan) Author(s): Julien Legrand , Denise Pons , Kazuo Terada , Atsushi Yabe and Harufumi Nishida Source: Paleontological Research, 17(3):201-229. 2013. Published By: The Palaeontological Society of Japan DOI: http://dx.doi.org/10.2517/1342-8144-17.3.201 URL: http://www.bioone.org/doi/full/10.2517/1342-8144-17.3.201
BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
Paleontological Research, vol. 17, no. 3, pp. 201–229, August 1, 2013 © by the Palaeontological Society of Japan doi:10.2517/1342-8144-17.3.201
Lower Cretaceous (upper Barremian-lower Aptian?) palynoflora from the Kitadani Formation (Tetori Group, Inner Zone of central Japan) JULIEN LEGRAND1, 2, DENISE PONS1, KAZUO TERADA3, ATSUSHI YABE4
AND
HARUFUMI NISHIDA2
1UMR 7207 CNRS, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, Université Pierre et Marie Curie (UPMC), Paris 75231, France 2Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan (e-mail:
[email protected]) 3 Fukui Prefectural Dinosaur Museum, Katsuyama 911-8601, Japan 4National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan
Received May 14, 2012; Revised manuscript accepted November 13, 2012
Abstract. The Tetori Group, which crops out in the Inner Zone of central Japan, has been extensively studied for its rich floral and vertebrate fossil assemblages. The authors provide the first contribution to the palynoflora of the Kitadani Formation, which has been dated as late Barremian to early Aptian on the basis of the freshwater bivalves recorded from it. The studied assemblage yields 45 genera and 41 species of spores and gymnosperm pollen grains, some freshwater algae, one epiphyllous fungus, and various plant fragments. No angiosperm pollen grains were observed. Some forms described here in detail are not yet known from the literature. They probably correspond to new species, but the scarcity of the specimens has caused us to place them temporarily in open nomenclature. This palynological study adds new data to the present knowledge on the Barremian-Aptian Tetori-type Paleoflora of eastern Asia. The authors compare the palynological inventory with recently published data obtained from the Barremian strata of the Choshi Group, the Outer Zone of Southwest Japan. Then, they situate the results among the previous paleoenvironmental reconstructions of the Tamodani Flora, and confirm a warm temperate and moderately humid climate, with locally drier conditions. Even if some elements of the assemblage suggest transportation, all of them are of continental origin and confirm a fluvio-lacustrine environment for the deposition. Key words: Inner Zone of Japan, Kitadani Formation, Lower Cretaceous, Palynology, Tamodani Flora
Introduction During the late Mesozoic period, Japan was separated into two zones by a marine basin: the Inner Zone (northwestern part, along the Sea of Japan) connected to the east of the Korean Peninsula and representing the margin of the Eurasian continent, and the Outer Zone (southeastern part, along the Pacific Ocean) in Southwest Japan represented by oceanic islands located further to the south (Hirooka et al., 1983, 1985; Yaskawa, 1975; Otofuji et al., 1985; Kojima, 1989; Matsukawa and Obata, 1992; Matsuoka et al., 1997; Ishida et al., 2003; Lee and Kim, 2005; Lee, 2008; Hisada et al., 2008; Matsukawa and Fukui, 2009). However, some authors doubt the existence of the Outer Zone terranes, and propose an oceanward growth of all of proto-Japan along the Eurasian
continental margin, until it became an island arc during the Miocene (Isozaki, 1996, 1997; Maruyama et al., 1997; Otoh, 1998; Otoh and Sasaki, 1998; Yamakita and Otoh, 2000; Isozaki et al., 2010). From his extensive study of fossil plants from Japan and eastern Asia, Kimura (1979, 1987) distinguished a “Tetori-(Siberian-)type” Paleoflora in the Inner Zone and a “Ryoseki-(NorthGondwanian-)type” Paleoflora in the Outer Zone, reflecting peculiar conditions of geography and climate and arguing for the terranes hypothesis, with a lowlatitudinal origin of the Outer Zone terranes (Figure 1). He further subdivided the Tetori-type Paleoflora into four stratofloras (Kimura, 1975). However, recent stratigraphic and paleobotanical studies (Yabe et al., 2003; Yabe and Kubota, 2004; Yamada and Uemura, 2008; Yamada, 2009) challenge the uniformity of the Tetori-
202
Julien Legrand et al.
138°E
((1) 1)) Tetori-type Flora
Tetori-type Flora
36°N
ed
pe -ty Flora
40°N Kitadani Dinosaur Quarry
In Ou ner Z ter one Zon e
Kitadani Dinosaur Quarry
x
44°N
(2) N Mi
126°E
34°N
Mixedtype Flora
Mixed-type Flora
Ryoseki-type Flora 500 km
130°E
28°N
Ryoseki-type Flora
140°E
pre-Jurassic Asian continental margin Abukuma and South Kitakami terranes Tamba, Mino and Ashio terranes
20°N
Middle–Late Jurassic terranes Early Cretaceous terranes Late Cretaceous terranes pre-Cambrian (?) - early Paleozoic terranes
South Chichibu terrane
500 km
floras boundaries coastlines faults Localities of Early Cretaceous floras Ryoseki-type Tetori-type Mixed-type
Figure 1. Paleofloristic provinces in Japan and eastern Asia during the Late Jurassic to the Early Cretaceous. 1, paleogeographical map illustrating the relative locations of the Inner and Outer Zones (modified from Golozoubov et al., 1999); 2, a present-day map (from Kimura, 1987).
type Paleoflora throughout the Middle Jurassic to Early Cretaceous time interval, emphasized in the paleofloral provincialism concept of Kimura and coworkers (Kimura, 1958, 1979, 1987; Kimura and Sekido, 1976, 1978; Kimura and Ohana, 1997), and point to the necessity of its revision. The Tetori Group sporadically outcrops in the Hida region of the Tetori Basin (Matsukawa, 1991). It is Middle Jurassic to Early Cretaceous in age and is divided, in ascending order, into the Kuzuryu, Itoshiro and Akaiwa subgroups (Maeda, 1961; Fujita, 2002; Kusuhashi et al., 2002). Microremains from the Tetori Group were studied for the first time by Umetsu (2002), Umetsu and Matsuoka (2003) and Umetsu and Sato (2007), whose samples covered the whole Tetori Group except for its uppermost part (the Kitadani Formation and correlatives). They reported palynomorphs from the Itoshiro and Akaiwa subgroups
(most likely in the Nochino Formation in the Kuzuryu River area, equivalent to the Akaiwa Formation). However, their data were not good enough regarding the preservation state of fossils and stratigraphic range, and they could only identify five genera of fern spores (Appendicisporites, Cicatricosisporites, Cyathidites, Osmundacidites, Schizaeoisporites) and one genus of gymnosperm pollen grains (Classopollis), but no species. The Fukui Prefectural Dinosaur Museum ordered a palynological survey from Palyno Survey Company Co. Ltd. in 1998 at the Dinosaur Quarry of the Kitadani Formation, in which two genera of spores (Cicatricosisporites and Concavisporites) and six genera of pollen grains (Podocarpidites, Araucariacites, Classopollis, Ephedripites, Cycadopites, cf. Exesipollenites) were identified. On the occasion of an excavation project held by the Fukui Prefectural Dinosaur Museum (Shibata and Goto, 2008) at the locality known as the “Dinosaur Quarry”
Palynoflora from the Kitadani Formation Sakhal
N
or
ye
in
Russia
203
Pri m
China
Hokkaido
an
Fukui Prefecture
Honshu
Jap
rea Ko
Japon
36º15'N
Shikoku Kyushu
1000 km 136ºE
137ºE Noto Peninsula
Sea of Japan
36º50'N
TOYAMA PREFECTURE
Kitadani Dinosaur Quarry
ISHIKAWA Mount Haku
Takayama
36ºN FUKUI PREFECTURE GIFU PREFECTURE
SHIGA PREF.
Sugiyama
50 km
Su giy am a
R iv er
Biwa lake
Katsuyama
Takin
ami
Rive
r
marine and non-marine sediments - Upper Pleistocene to Holocene lower terrace - Upper Pleistocene non-alkaline mafic volcanic rocks - Lower Pleistocene non-alkaline mafic volcanic rocks - Lower to Middle Miocene non-alkaline mafic volcanic rocks - Upper Miocene to Pliocene non-alkaline felsic volcanic rocks - Upper Cretaceous non-marine sedimentary rocks (Tetori Group) - Lower Cretaceous Funatsu Granite - Jurassic gneiss - Hida metamorphic rocks 2000 m river Fukui-Ishikawa prefectural boundary
136º50'E Figure 2.
36º10'N
136º55'E
Location map of the quarry and geology of the area (modified from Geological Survey of Japan, AIST, 2010).
along the Sugiyama River (affluent to the Takinami River, northeast of Katsuyama City), we took samples for palynological study in the siltstones and fine-grained sandstones of the Kitadani Formation (Akaiwa Subgroup, Tetori Group), which crops out in the Takinami River area (Figure 2). Our study considerably complements macrofloral data previously reported from the Barremian-Aptian Tamodani Flora (= Myodani Flora: Matsuo and Omura, 1966). It will help to improve the understanding of the paleoenvironment of this area and to enhance knowledge of palynofloras of the Inner Zone of Japan. Another goal of the paper is the compilation of a more complete species list for these units. We also compare the composition of the Kitadani palynoflora
with that reported from the Barremian of the Choshi Group, the Outer Zone of Japan (Legrand et al., 2011).
Geological setting The Akaiwa Subgroup is mainly composed of alluvial sediments deposited in a freshwater deltaic or fluvial environment (Masuda et al., 1991). The Kitadani Formation can be correlated to the Myodani Formation (Kawai, 1961), which represents the uppermost part of the Akaiwa Subgroup in the Tedori River area (Maeda, 1958, 1961). It conformably overlies the Akaiwa Formation and is unconformably overlain by the Omichidani Formation (Upper Cretaceous) (for the relations among units
Materials and methods The samples were taken from four horizons of siltstone and fine-grained sandstone cropping out at the locality known as the “Kitadani Dinosaur Quarry”. Methods for the palynological study are the same as in Legrand et al. (2011). The formation, the horizon, the number of the slide, and the position of fossils under the England Finder™ Graticule are indicated in the legend for each specimen illustrated in this paper. Because it is difficult to compare the fossil spores and
(2)
300 m
Kita-4
Kita-3 Kita-2
3rd Dinosaur Excavation Project - FPDM 2007
Kitadani Fm
(1)
Kita-1 Aka. Fm
and floras mentioned, see Fujita, 2003; Yabe et al., 2003). The freshwater sediments of the formation are mainly composed of alternating beds of siltstone and sandstone, and probably represent deposition in a meandering river environment (Azuma, 2003) (Figure 3). Maeda (1961, 1962), Isaji (1993) and Kozai et al. (2001, 2002) studied the mollusc and bivalve freshwater fauna (the “TPN fauna”) of the formation, among which Nippononaia ryosekiana Suzuki, reported by Isaji (1993), characterizes the late Barremian Sebayashi-type Fauna of the Monobegawa Group (the Outer Zone of Southwest Japan) (Kozai et al., 2002) and suggests assigning a late Barremian to early Aptian age to the formation. Moreover, Kubota (2005) reported a charophyte gyrogonite assemblage dated as Barremian from the Takinami River area. A rich vertebrate fossil assemblage (turtles, crocodiles, dinosaurs, fishes) has been reported from the “Kitadani Dinosaur Quarry” in the past few decades (Azuma and Tomida, 1995, 1997; Kobayashi, 1998; Azuma and Currie, 2000; Goto et al., 2002; Kobayashi and Azuma, 2003; Currie and Azuma, 2006; Shibata and Goto, 2008). Fossil plants from the Tamodani Flora were studied by Matsuo and Omura (1966), Kimura (1975), Kimura and Horiuchi (1979), Yabe et al. (2003) and Yabe and Kubota (2004). However, only a few fossil plants have been reported from the Kitadani Formation, and many plant megafossils still remain unstudied (Goto et al., 2002). The megafossil assemblage from the Kitadani Formation is characterized by a scarcity of Filicopsida (mainly represented by Onychiopsis of Dicksoniaceae and Gleichenites of Gleicheniaceae) and an abundance of Cycadales and Coniferales (represented by cones and twigs). Yabe and Kubota (2004) described a twig of Brachyphyllum obesum Heer (Cheirolepidiaceae), representing the first occurrence of this species in the Inner Zone. Zamiophyllum sp., considered as a “Ryoseki-type” element, was reported from the Myodani Formation, which is stratigraphically correlated to the Kitadani Formation (Matsuo and Omura, 1966).
Omi. Fm
Julien Legrand et al.
Lower Cretaceous upper Barremian-lower Aptian ?
204
unconformity siltstone alternating beds of siltstone and fine-grained sandstone fine-grained sandstone coarse-grained sandstone
palynoflora plant remain gastropod bivalve dinosaur remain 50 m (1) 10 m (2)
Figure 3. Synthetic stratigraphical column of the Kitadani Formation along the Takinami River (1, modified from Maeda, 1958; 2, modified from Shibata and Goto, 2008). Abbreviations: Aka. Fm, Akaiwa Formation; Omi. Fm, Omichidani Formation.
pollen grains to genera of plants living today, we followed the classification scheme of sporae dispersae, based on palynomorph morphology, defined by Potonié and Kremp (1954, 1955), Dettmann (1963), Potonié (1956, 1958, 1960, 1966, 1970a, 1970b, 1975), and Pflug (1953). However, we tried to determine the presumed botanical affinities based on previous works identifying palynomorphs found in situ in fructifications, or on morphological similarities with present species.
Systematic descriptions We present below, in nomenclatural order, species that
Palynoflora from the Kitadani Formation
205
Table 1. List of all the taxa encountered during our investigation, in nomenclatural order, with their occurrences in the formation and their figurative position in brackets. -, one grain; R, rare; P, present; C, common. Kita-2
Kita-3
Kita-4
R P P
P P
R R P
R R P
– R R P
ANTETURMA PROXIMEGERMINANTES Turma Triletes Azonales Suprasubturma Acavatitriletes Subturma Azonotriletes Infraturma Laevigati, Quasilaevigati Auritulinasporites deltaformis Burger, 1966 Biretisporites potoniaei (Delcourt and Sprumont, 1955) Delcourt, Dettmann and Hughes, 1963 (Figure 4.1) Biretisporites sp. (Figure 4.2) Cibotiumspora paradoxa (Maljavkina, 1949) Chang, 1965 Cyathidites australis Couper, 1953 (Figure 4.6) Cyathidites minor Couper, 1953 Deltoidospora hallii Miner, 1935 Todisporites major Couper, 1958 (Figure 4.3) Todisporites minor Couper, 1958 (Figure 4.4) Infraturma Apiculati Subinfraturma Granulati Scabrati Concavissimisporites punctatus (Delcourt and Sprumont, 1955) Brenner, 1963 (Figure 4.5) Granulatisporites sp. (Figure 4.7) Impardecispora apiverrucata (Couper, 1958) Venkatachala, Kar and Raza, 1969 (Figure 4.9) Osmundacidites wellmanii Couper, 1953 (Figure 4.8) Subinfraturma Verrucati Converrucosisporites sp. in Legrand, Pons, Nishida and Yamada, 2011 Leptolepidites psarosus Norris, 1969 (Figures 4.11a–b, 4.12) Manumia japonica Legrand, Pons, Nishida and Yamada, 2011 (Figure 4.10) Subinfraturma Baculati Baculatisporites comaumensis (Cookson, 1953) Potonié, 1956 (Figure 4.13) Baculatisporites sp. (Figures 4.14a–b) Subinfraturma Nodati Anapiculatisporites cooksonae Playford, 1965 (Figure 4.15) Echinatisporis varispinosus (Pocock, 1962) Srivastava, 1975 Echinatisporis sp. (Figure 4.16) Infraturma Murornati Cicatricosisporites hallei Delcourt and Sprumont, 1955 (Figures 5.7, 5.8, 5.10) Cicatricosisporites hughesi Dettmann, 1963 (Figure 4.17) Cicatricosisporites minor (Bolkhovitina, 1959) Pocock, 1964 (Figures 5.2a–b, 5.4) Cicatricosisporites pseudotripartitus (Bolkhovitina, 1961) Dettmann, 1963 (Figures 5.9a–b) Cicatricosisporites sinuosus Hunt, 1985 Cicatricosisporites sp. 2 in Legrand, Pons, Nishida and Yamada, 2011 Cicatricosisporites cf. C. sp. in Williams and Bujak, 1980 (Figures 5.3a–b, 5.5a–b, 5.6) Cicatricosisporites sp. 1 (Figures 5.1a–b) Cicatricosisporites sp. 2 (Figures 6.1a–b) Cicatricosisporites sp. 3 (Figures 6.2a–b, 6.3a–b) Cicatricosisporites sp. 4 (Figures 6.4a–b) Ischyosporites crateris Balme, 1957 (Figures 6.5–7, 6.10) Reticulatisporites spp. (Figures 7.1, 7.4, 7.5) Retitriletes austroclavatidites (Cookson, 1953) Döring, Krutzsch, Mai and Schulz in Krutzsch, 1963
– R P –
–
R R R R
R R P R
– R R
R R P
P P
R
R P R
R
R
P
R
R R – R R
R R R P R
R R R R R R R
C R R
206
Julien Legrand et al. Table 1.
Continued.
Retitriletes sp. 1 (Figure 6.9) Retitriletes sp. 2 (Figures 6.8, 6.11) Ruffordiaspora australiensis (Cookson, 1953) Dettmann and Clifford, 1992 (Figures 7.2, 7.3, 7.6, 7.10a–b) Turma Triletes Zonales Subturma Auritotriletes Infraturma Appendiciferi Appendicisporites potomacensis Brenner, 1963 (Figures 7.7a–b) Plicatella sp. (Figures 7.8a–b) Subturma Zonotriletes Infraturma Cingulati Cingulatisporites sp. 1 in Legrand, Pons, Nishida and Yamada, 2011 (Figure 8.1) Cingulatisporites sp. (Figure 8.2) Contignisporites sp. (Figures 7.9a–b) Polycingulatisporites reduncus (Bolkhovitina, 1953) Playford and Dettmann, 1965 Subinfraturma Laticingulati Gleicheniidites senonicus Ross, 1949 (Figures 8.3–4) Infraturma Tricrassati Coronatispora valdensis (Couper, 1958) Dettmann, 1963 (Figures 8.5a–b) Subturma Zonolaminatitriletes Infraturma Zonati Aequitriradites spinulosus (Cookson and Dettmann, 1958) Cookson and Dettmann, 1961 (Figure 8.7) Aequitriradites verrucosus (Cookson and Dettmann, 1958) Cookson and Dettmann, 1961 Aequitriradites sp. in Legrand, Pons, Nishida and Yamada, 2011 (Figures 8.8, 8.9) Couperisporites complexus (Couper, 1958) Pocock, 1962 (Figures 8.11a–b) Triporoletes reticulatus (Pocock, 1962) Playford, 1971 (Figures 8.10–b) Turma Monoletes Suprasubturma Acavatomonoletes Subturma Azonomonoletes Infraturma Laevigatomonoleti Laevigatosporites ovatus Wilson and Webster, 1946 (Figure 8.12) Laevigatosporites sp. (Figure 8.13) Incertae sedis Incertae sedis sp. 1 (Figure 8.6) Incertae sedis sp. 2 (Figure 8.16)
Kita-2 P R
Kita-3 P R P
Kita-4 R
R R
R R – R
R R
–
R
R –
R
–
R R R P R
R
R
R
R –
P –
R
– –
ANTETURMA VARIEGERMINANTES (= POLLENITES) Turma Saccites Subturma Monosaccites Callialasporites dampieri (Balme, 1957) Sukh-Dev, 1961 (Figure 10.1) Subturma Disaccites Alisporites thomasii (Couper, 1958) Pocock, 1962 Alisporites sp. in Legrand, Pons, Nishida and Yamada, 2011 Cedripites sp. (Figure 10.2) Vitreisporites pallidus (Reissinger, 1939) Nilsson, 1958
–
– R
R R R
–
Palynoflora from the Kitadani Formation Table 1.
207
Continued.
Turma Aletes and Kryptoaperturates Subturma Azonaletes Infraturma Psilonapiti Inaperturopollenites sp. in Legrand, Pons, Nishida and Yamada, 2011 Infraturma Granulonapiti Araucariacites australis Cookson, 1947 ex Couper, 1953 Balmeiopsis limbatus (Balme, 1957) Archangelsky, 1977 Spheripollenites psilatus Couper, 1958 Taxodiaceaepollenites hiatus (Potonié, 1931) Kremp, 1949 ex Potonié, 1958 Infraturma Circumpollini Classopollis torosus (Reissinger, 1950) Couper, 1958 emend. Burger, 1965 (Figures 10.3, 10.4) Turma Plicates Subturma Costates (= Polyplicates) Infraturma Costati Ephedripites montanaensis Brenner, 1968 Ephedripites sp. 1 (Figure 10.5) Ephedripites sp. 2 (Figure 10.6) Gnetaceaepollenites sp. in Legrand, Pons, Nishida and Yamada, 2011 Gnetaceaepollenites sp. (Figures 10.7, 10.8) Subturma Monocolpates (Monosulcites) and Zonocolpates Infraturma Quasilaevigati and Microsculptati Cycadopites minimus (Cookson, 1947) Pocock, 1970 Cycadopites sp. (Figure 10.11) Subturma Tricolpates, Triptyches Infraturma Heterotricolpati, Praecolpati Eucommiidites minor Groot and Penny, 1960 Eucommiidites troedssonii (Erdtman, 1948) Potonié, 1958 Turma Poroses Subturma Monoporines Exesipollenites tumulus Balme, 1957 (Figure 10.9) Exesipollenites tumulus Balme, 1957 subsp. triangulus Liu in Song, Zheng, Liu, Ye, Wang and Zhou, 1980 (Figures 8.14, 10.15) Incertae sedis Incertae sedis sp. 2 in Legrand, Pons, Nishida and Yamada, 2011 Incertae sedis sp. 3 (Figure 10.12)
Kita-2
Kita-3
Kita-4
R
R
R
P
P R
R – –
R
R
R
R – –
R –
R –
– R
R R
P R
R R
R R
C –
C –
– –
ALGAE CHLOROPHYTA Charophyceae Chomotriletes minor (Kedves, 1961) Pocock, 1970 (Figure 10.10) Ovoidites parvus (Cookson and Dettmann, 1959) Nakoman, 1966 Prasinophyceae Cymatiosphaera sp. (Figures 10.15, 10.16) Prasinophycean spores (Figures 10.13, 10.14) Incertae sedis Schizosporis reticulatus Cookson and Dettmann, 1959
R R R C R
C
208
Julien Legrand et al. Table 1.
Continued. Kita-2
Kita-3
Kita-4
FUNGI ASCOMYCOTA Microthyriacites sp. in Legrand, Pons, Nishida and Yamada, 2011
R
Incertae sedis Incertae sedis sp. 4 (Figure 10.17)
R
PLANT FRAGMENTS Cuticle fragments of gymnosperms (Figures 11.1a–b) Cuticle fragments of Cheirolepidiaceae (Figures 11.2–11.5) Cross-fields of Coniferalean woods (Figures 10.18, 10.19) Vascular element of Bennettitales (Figure 10.21) Vessel element with scalariform perforation plates (Figure 10.20)
have been identified during this investigation (Table 1). The preparations are housed in the Collection de Paléobotanique of the Université Pierre et Marie Curie (UPMC), Paris (France). Only taxa in open nomenclature are described. Well known palynomorphs are not described. ANTETURMA PROXIMEGERMINANTES Turma Triletes Azonales
shows similarities to our spore. Botanical affinities.—Filicopsida. Infraturma Apiculati Subinfraturma Granulati Scabrati Genus Granulatisporites Ibrahim, 1933 emend. Potonié and Kremp, 1954 Type species: Granulatisporites granulatus Ibrahim, 1933
Suprasubturma Acavatitriletes Granulatisporites sp. Subturma Azonotriletes Infraturma Laevigati, Quasilaevigati Genus Biretisporites (Delcourt and Sprumont, 1955) Delcourt, Dettmann and Hughes, 1963 Type species: Biretisporites potoniaei (Delcourt and Sprumont, 1955) Delcourt, Dettmann and Hughes, 1963 Biretisporites sp. Figure 4.2 Biretisporites sp. in Legrand, 2009, p. 128, pl. I, figs. 6-7.
Occurrence.—Kitadani Fm (horizons Kita-2, 3, 4). Description.—Psilate trilete microspore. Amb rounded triangular. The laesurae are straight, thin, strongly raised (2 to 6 μm), and extend to the equator of the spore. Exine about 2 μm thick. Equatorial diameter = 20–55 μm. Remarks.—Lygodiumsporites equilabiatus Li, 2000 reported from the Neocomian of northwestern China,
Figure 4.7 Granulatisporites sp. A. in Legrand, 2009, p. 134, pl. II, fig. 9.
Occurrence.—Kitadani Fm (horizons Kita-2, 3). Distribution.—Barremian of the Choshi Group in southwestern Honshu, Japan (Legrand, 2009). Description.—Trilete microspore. Amb rounded triangular. The laesurae are narrow (less than 1 μm), straight, and extend to 3/4 of the spore radius. Both faces are covered by granula uniformly spaced. Exine thin (about 1 μm). Equatorial diameter = 25–45 μm. Botanical affinities.—Filicopsida. Subinfraturma Baculati Genus Baculatisporites Pflug and Thomson in Thomson and Pflug, 1953 Type species: Baculatisporites primarius (Wolff, 1934) Pflug and Thomson in Thomson and Pflug, 1953
Palynoflora from the Kitadani Formation
209
Figure 4. 1, Biretisporites potoniaei (Delcourt and Sprumont, 1955) Delcourt, Dettmann and Hughes, 1963, proximal face, Kitadani Fm, 2c-M50/3; 2, Biretisporites sp., proximal face, Kitadani Fm, 2a-C51-b; 3, Todisporites major Couper, 1958, proximal face, Kitadani Fm, SEM3f; 4, Todisporites minor Couper, 1958, proximal face, Kitadani Fm, 2-2c-K50/2; 5, Concavissimisporites punctatus (Delcourt and Sprumont, 1955) Brenner, 1963, proximal face, Kitadani Fm, 2c-K67/2; 6, Cyathidites australis Couper, 1953, proximal face, Kitadani Fm, 2b-N34/3; 7, Granulatisporites sp., proximal face, Kitadani Fm, SEM-3e; 8, Osmundacidites wellmanii Couper, 1953, proximal face, Kitadani Fm, 2xK41/2; 9, Impardecispora apiverrucata (Couper, 1958) Venkatachala, Kar and Raza, 1969, proximal face, Kitadani Fm, 2b-S32/3; 10, Manumia japonica Legrand, Pons, Nishida and Yamada, 2011, proximal face, Kitadani Fm, 2a-X48; 11a–b, 12, Leptolepidites psarosus Norris, 1969 (11a–b, proximal and distal faces, Kitadani Fm, 3-3-M44/4; 12, distal face, Kitadani Fm, 3-3-P51/1); 13, Baculatisporites comaumensis (Cookson, 1953) Potonié, 1956, distal face, Kitadani Fm, 2a-M51/2; 14a–b, Baculatisporites sp., proximal and distal faces, Kitadani Fm, 2bN61; 15, Anapiculatisporites cooksonae Playford, 1965, Kitadani Fm, 2a-O61/1; 16, Echinatisporis sp., Kitadani Fm, 2a-V61/2; 17, Cicatricosisporites hughesi Dettmann, 1963, distal face, Kitadani Fm, SEM-3f. Scale bar: 10 μm.
210
Julien Legrand et al. Baculatisporites sp. Figures 4.14a–b
Baculatisporites sp. D. in Legrand, 2009, p. 143, pl. IV, figs. 5-6.
Occurrence.—Kitadani Fm (horizons Kita-2, 4). Description.—Trilete microspore. Amb rounded triangular. The laesurae are straight and extend to 3/4 of the spore radius. The proximal face is psilate. The equatorial area and the distal face are densely covered by small bacula (0.5–1.5 μm high and 0.1–0.5 μm wide). Exine 1– 1.5 μm thick. Equatorial diameter = 28–40 μm. Botanical affinities.—Osmundales, Osmundaceae.
from the same laesura. The distal face is ornamented by three sets of six muri parallel to the equator, among which one goes on with three or four of the muri to the distal pole (Figure 9). The ornamentation of this form corresponds to the type I-B defined by Krutzsch (1963). The muri join near the apices where they form thickenings (Figure 9). Equatorial diameter = 50–60 μm. Remarks.—This form seems to be similar to Cicatricosisporites sp. reported by Williams and Bujak (1980) from the Valanginian of Deep Sea Drilling Project Site 416, located in the Atlantic Ocean northeast of Africa. Botanical affinities.—Schizaeales, Anemiaceae. Cicatricosisporites sp. 1
Subinfraturma Nodati Figures 5.1a–b
Genus Echinatisporis Krutzsch, 1959 Type species: Echinatisporis varispinosus (Pocock, 1962) Srivastava, 1975 Echinatisporis sp. Figure 4.16 Echinatisporis sp. E. in Legrand, 2009, p. 148, pl. V, fig. 13.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Microspore. Amb oval. The laesurae are not seen. Both faces are ornamented by long echinae (4–5 μm high and 1–2 μm in basal diameter) more or less curved. Exine about 1.5 μm thick. Equatorial diameter = 35–40 μm. Botanical affinities.—Lycopsida, Selaginellaceae.
Cicatricosisporites sp. J. in Legrand, 2009, p. 161, pl. X, fig. 4.
Occurrence.—Kitadani Fm (horizon Kita-3). Description.—Small trilete microspore. Amb rounded. The laesurae are straight, bordered by narrow lips, and extend to 2/3 of the spore radius. Exine canaliculate; muri can bifurcate. On the proximal face, three sets of 6– 7 muri (about 1.5 μm wide) depart from a laesura and are parallel to the adjacent one when turning unclockwise. The distal face is ornamented by a set of about eight muri parallel to the opposite side, running from one of the apices until the distal pole; a second set of about 12 muri fans out from the pole to the other two apices (Figure 9). Equatorial diameter = 25 μm. Botanical affinities.—Schizaeales, Anemiaceae. Cicatricosisporites sp. 2
Infraturma Murornati Genus Cicatricosisporites Potonié and Gelletich, 1933 emend. Potonié, 1966 Type species: Cicatricosisporites dorogensis Potonié and Gelletich, 1933 Cicatricosisporites cf. C. sp. in Williams and Bujak, 1980 Figures 5.3a–b, 5a–b, 6 Cicatricosisporites sp. M. in Legrand, 2009, p. 162, pl. XI, figs. 1-2.
Occurrence.—Kitadani Fm (horizon Kita-3). Description.—Large trilete microspore. Amb rounded. The laesurae are straight, bordered by narrow lips, and seem to extend to 1/2 of the spore radius. Exine canaliculate; muri can bifurcate. On the proximal face, three sets of about 10 muri depart from a laesura and are parallel to the adjacent one; among the three sets, two depart
Figures 6.1a–b Cicatricosisporites sp. G. in Legrand, 2009, p. 160–161, pl. X, fig. 5.
Occurrence.—Kitadani Fm (horizon Kita-3). Description.—Trilete microspore. Amb rounded triangular. The laesurae are straight, bordered by narrow lips, and extend to 3/4 of the spore radius. Exine cicatricose. The proximal face is ornamented by three sets of 10 muri (about 0.5 μm wide, separated by furrows of the same width) departing from a laesura and parallel to the adjacent one when turning clockwise. On the distal face, 18 to 20 narrow muri are more or less parallel between them and to one set of the proximal face, fanning out from an apex (Figure 9). The ornamentation of this form corresponds to the type VI-C defined by Krutzsch (1963). Equatorial diameter = 25–50 μm. Botanical affinities.—Schizaeales, Anemiaceae.
Palynoflora from the Kitadani Formation
211
Figure 5. 1a–b, Cicatricosisporites sp. 1, proximal and distal faces, Kitadani Fm, 3-9-O51; 2a–b, 4, Cicatricosisporites minor (Bolkhovitina, 1959) Pocock, 1964; 2a–b, proximal and distal faces, Kitadani Fm, 2z-D32/3; 4, proximal face, Kitadani Fm, SEM-3f; 3a–b, 5a–b, 6, Cicatricosisporites cf. C. sp. in Williams and Bujak (1980); 3a–b, Kitadani Fm, 3-7-J23; 5a–b, Kitadani Fm, 3-5-G36/1; 6, Kitadani Fm, SEM-3f; 7, 8, 10, Cicatricosisporites hallei Delcourt and Sprumont, 1955; 7, distal face, Kitadani Fm, SEM-3c; 8, proximal face, Kitadani Fm, SEM-3c; 10, proximal face, Kitadani Fm, SEM-3c; 9a–b, Cicatricosisporites pseudotripartitus (Bolkhovitina, 1961) Dettmann, 1963, proximal and distal faces, Kitadani Fm, 3-9-L36/1. Scale bar: 10 μm.
212
Julien Legrand et al.
Figure 6. 1a–b, Cicatricosisporites sp. 2, proximal and distal faces, Kitadani Fm, 2z-S22/3; 2a–b, 3a–b, Cicatricosisporites sp. 3; 2a– b, proximal and distal faces, Kitadani Fm, 2w-L50/1; 3a–b, proximal and distal faces, Kitadani Fm, 2v-P63; 4a–b, Cicatricosisporites sp. 4, proximal and distal faces, Kitadani Fm, 2v-T57/2; 5a–b, 6, 7, 10, Ischyosporites crateris Balme, 1957; 5a, b, proximal and distal faces, Kitadani Fm, 3-2-N29/1; 6, proximal face, Kitadani Fm, SEM-3f; 7, distal face, Kitadani Fm, SEM-3f; 10, proximal face, Kitadani Fm, SEM3a; 8, 11, Retitriletes sp. 2; 8, lateral view, Kitadani Fm, SEM-3a; 11, proximal face, Kitadani Fm, SEM-3f; 9, Retitriletes sp. 1, distal face, Kitadani Fm, 2c-N56g. Scale bar: 10 μm.
Palynoflora from the Kitadani Formation Cicatricosisporites sp. 3 Figures 6.2a–b, 3a–b Cicatricosisporites sp. H. in Legrand, 2009, p. 161, pl. IX, fig. 6. Cicatricosisporites sp. I. in Legrand, 2009, p. 161, pl. IX, fig. 7.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Trilete microspore. Amb rounded triangular. The laesurae are straight, slightly raised, and extend to 3/4 of the spore radius. Exine cicatricose. On the proximal face, a small psilate contact area is followed by three sets of 3–4 muri parallel to the equator, which link the laesurae. The distal face is ornamented by 8– 9 muri slightly curved and parallel between them and to one set on the proximal face (Figure 9). The ornamentation of this form corresponds to the type VI-B defined by Krutzsch (1963). Equatorial diameter = 25–30 μm. Botanical affinities.—Schizaeales, Anemiaceae. Cicatricosisporites sp. 4 Figures 6.4a–b Cicatricosisporites sp. L. in Legrand, 2009, p. 162, pl. X, fig. 1.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Large trilete microspore. Amb rounded triangular with sides straight to slightly concave and raised tops. The laesurae are straight, slightly raised, and extend to 3/4 of the spore radius. Exine cicatricose. On the proximal face, a small psilate contact area is followed by three sets of three muri parallel to the equator, which join near the apices to form thickenings. The distal face is ornamented by three sets of three muri parallel to the equator, among which 2–3 muri of one set goes on to the distal pole (Figure 9). The ornamentation of this form corresponds to the type I-B defined by Krutzsch (1963). Equatorial diameter = 55–60 μm. Botanical affinities.—Schizaeales, Anemiaceae. Genus Reticulatisporites Ibrahim, 1933 emend. Neves, 1964 Type species: Reticulatisporites reticulatus (Ibrahim in Potonié, Ibrahim and Loose, 1932) Ibrahim, 1933
213
the distal face (muri about 1 μm high; luminae polygonal, 2–8 μm in diameter). Exine about 1.5 μm thick. A thin membrane can be seen at the equator (less than 2 μm wide). Equatorial diameter = 32–45 μm. Botanical affinities.—Schizaeales, Schizaeaceae. Genus Retitriletes van der Hammen, 1956 ex Pierce, 1961 emend. Döring, Krutzsch, Mai and Schulz in Krutzsch, 1963 Type species: Retitriletes globosus Pierce, 1961 Retitriletes sp. 1 Figure 6.9 Retitriletes sp. in Legrand, 2009, p. 154, pl. VII, fig. 7.
Occurrence.—Kitadani Fm (horizons Kita-2, 3, 4). Description.—Trilete microspore. Amb rounded triangular more or less deformed. The laesurae are not well seen. The proximal face is flat and psilate, followed by a reticulum near the equator and on the distal face (mesh polygonal, of various shapes; muri 4–7 μm high); this reticulum is topped by a more or less transparent membrane. Exine about 1.5 μm thick. Equatorial diameter = 40–60 μm. Remarks.—Junggarsporites membranceous Yu (1982), reported by Li (2000) from the Neocomian of the Tarim Basin in Northwest China, is strongly similar to our form. Botanical affinities.—Lycopsida, Lycopodiaceae (Döring et al. in Krutzsch, 1963). Retitriletes sp. 2 Figures 6.8, 6.11
Occurrence.—Kitadani Fm (horizon Kita-3). Description.—Trilete microspore. Amb rounded triangular. The laesurae are straight, slightly raised, and extend to 3/4 of the spore radius. A small psilate contact area is followed by a reticulum (luminae polygonal, 2– 3 μm in diameter; muri about 2 μm high) near the equator and on the distal face. Equatorial diameter = 45–50 μm. Botanical affinities.—Lycopsida, Lycopodiaceae (Döring et al. in Krutzsch, 1963).
Reticulatisporites spp. Figures 7.1, 7.4, 7.5
Turma Triletes Zonales
Reticulatisporites sp. B. in Legrand, 2009, p. 153, pl. VII, fig. 10-11.
Subturma Auritotriletes
Occurrence.—Kitadani Fm (horizons Kita-2, 3). Description.—Trilete microspores. Ambs rounded triangular. The laesurae are straight and extend to the equator of the spore. On the proximal face, a psilate contact area is followed by a reticulum near the equator and on
Infraturma Appendiciferi Genus Plicatella Maljavkina, 1949 emend. Burden and Hills, 1989 Type species: Plicatella trichacantha Maljavkina, 1949
214
Julien Legrand et al.
Figure 7. 1, 4, 5, Reticulatisporites spp.; 1, proximal face, Kitadani Fm, 2-2a-J49/3; 4, distal face, Kitadani Fm, 2-2a-G63m; 5, distal face, Kitadani Fm, SEM-3f; 2, 3, 6, 10a–b, Ruffordiaspora australiensis (Cookson, 1953) Dettmann and Clifford, 1992; 2, lateral view, Kitadani Fm, SEM-3c; 3, lateral view, Kitadani Fm, SEM-3f; 6, proximal face, Kitadani Fm, SEM-3f; 10a–b, proximal and distal faces, Kitadani Fm, 3-2-J66/1; 7a–b, Appendicisporites potomacensis Brenner, 1963, proximal and distal faces, Kitadani Fm, 2b-N60/2; 8a–b, Plicatella sp., proximal and distal faces, Kitadani Fm, 2w-S36; 9a–b, Contignisporites sp., proximal and distal faces, Kitadani Fm, 2y-P35. Scale bar: 10 μm.
Palynoflora from the Kitadani Formation Plicatella sp. Figures 7.8a–b Appendicisporites sp. B. in Legrand, 2009, p. 166, pl. XII, fig. 3.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Trilete microspore. Amb triangular with straight to slightly convex sides; crest (about 10 μm high) at the apices. The laesurae are thin, straight, and extend to 3/4 of the spore radius. Exine canaliculate. On the proximal face, three sets of 2–3 muri (about 1 μm wide) parallel to the equator. The distal face is ornamented by 8–10 muri parallel to one side, extending beyond the apices to form transparent crests. Equatorial diameter = 30–55 μm. Remarks.—The diagnosis of Plicatella baqueroensis (Archangelsky and Gamerro, 1966) Davies, 1985 has similarities with our description, but P. baqueroensis is larger (equatorial diameter 60 to 97 μm) than the Japanese form. Botanical affinities.—Schizaeales, Schizaeaceae (Dettmann and Clifford, 1992).
215
rounded triangular. The laesurae are straight, and extend to 3/4 of the spore radius. Exine canaliculate. The proximal face is psilate. The distal face is ornamented by four muri (about 3 μm wide) departing from the cingulum and parallel to one side. No verruca on the proximal face. All specimens have a ǻ-ratio (Dettmann, 1963) comprised between 1 and 1.5. Equatorial diameter = 25–45 μm; cingulum width = 2 μm. Botanical affinities.—Polypodiales, Pteridaceae (Filatoff and Price, 1988). Turma Monoletes Suprasubturma Acavatomonoletes Subturma Azonomonoletes Infraturma Laevigatomonoleti Genus Laevigatosporites Ibrahim, 1933 emend. Schopf, Wilson and Bentall, 1944 Type species: Laevigatosporites vulgaris (Ibrahim in Potonié, Ibrahim and Loose, 1932) Ibrahim, 1933
Subturma Zonotriletes Infraturma Cingulati Genus Cingulatisporites Thomson in Thomson and Pflug, 1953 Type species: Cingulatisporites levispeciosus Pflug in Thomson and Pflug, 1953 Cingulatisporites sp. Figure 8.2 Cingulatisporites sp. C. in Legrand, 2009, p. 168, pl. XIV, fig. 9.
Occurrence.—Kitadani Fm (horizons Kita-2, 4). Description.—Small cingulate trilete microspore. Amb rounded. The laesurae are straight, slightly raised, and extend to the cingulum. Exine scabrate. Equatorial diameter = 20–25 μm; cingulum width = 2–4 μm. Botanical affinities.—Filicopsida.
Laevigatosporites sp. Figure 8.13 Laevigatosporites sp. B. in Legrand, 2009, p. 178, pl. XVII, fig. 7.
Occurrence.—Kitadani Fm (horizon Kita-3). Description.—Monolete microspore. Amb beanshaped, broadly elliptical in lateral view; proximal face slightly concave. The laesura is straight and runs on about 1/3 of the length of the proximal face. Exine psilate, about 1.5 μm thick. Equatorial diameter = 43 μm; polar diameter = 28 μm. Botanical affinities.—Filicopsida. Incertae sedis Incertae sedis sp. 1 Figure 8.6 Incertae sedis sp. D. in Legrand, 2009, p. 179, pl. XVII, fig. 4.
Genus Contignisporites Dettmann, 1963 Type species: Contignisporites glebulentus Dettmann, 1963 Contignisporites sp. Figures 7.9a–b
Occurrence.—Kitadani Fm (horizon Kita-2, 3, 4). Description.—Cingulate trilete microspore. Amb
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Small trilete psilate microspore. Amb rounded triangular. The laesurae are straight, slightly raised, and extend to the equator of the spore. Exine 1– 1.5 μm thick. Equatorial diameter = 15 μm. Botanical affinities.—Filicopsida.
216
Julien Legrand et al.
Figure 8. 1, Cingulatisporites sp. 1 in Legrand et al., 2011, proximal face, Kitadani Fm, 3-10-M21/3; 2, Cingulatisporites sp., proximal face, Kitadani Fm, 2c-K69/3; 3, 4, Gleicheniidites senonicus Ross, 1949; 3, proximal face, Kitadani Fm, 3a-O35/2; 4, proximal face, Kitadani Fm, 3cX61b; 5a–b, Coronatispora valdensis (Couper, 1958) Dettmann, 1963, proximal and distal faces, Kitadani Fm, 2c-O32/4; 6, Incertae sedis sp. 1, proximal face, Kitadani Fm, 2a-K50/3; 7, Aequitriradites spinulosus (Cookson and Dettmann, 1958) Cookson and Dettmann, 1961, Kitadani Fm, 2w-D46; 8, 9, Aequitriradites sp. in Legrand et al., 2011; 8, Kitadani Fm, 2w-F44/2; 9, Kitadani Fm, SEM-3d; 10a–b, Triporoletes reticulatus (Pocock, 1962) Playford, 1971, proximal and distal faces, Kitadani Fm, 2w-V49; 11a–b, Couperisporites complexus (Couper, 1958) Pocock, 1962, Kitadani Fm, 2-2c-G53bg; 12, Laevigatosporites ovatus Wilson and Webster, 1946, lateral view, Kitadani Fm, 2w-J66/1; 13, Laevigatosporites sp., lateral view, Kitadani Fm, 3-3c-P72/1; 14, 15, Exesipollenites tumulus Balme, 1957 subspecies triangulus Liu in Song, Zheng, Liu, Ye, Wang and Zhou, 1980; 14, Kitadani Fm, 2a-L32/2; 15, Kitadani Fm, 3a-R61/1; 16, Incertae sedis sp. 2, Kitadani Fm, 2a-K51/3. Scale bar: 10 μm, except 11b: 5 μm.
Palynoflora from the Kitadani Formation
Cicatricosisporites cf. C. sp. in Williams and Bujak (1980)
Cicatricosisporites sp. 1
Cicatricosisporites sp. 3 Figure 9.
217
Cicatricosisporites sp. 2
Cicatricosisporites sp. 4
Ornamentation of the schizaealean forms corresponding to taxa placed in open nomenclature.
Incertae sedis sp. 2 Figure 8.16 Incertae sedis sp. E. in Legrand, 2009, p. 179, pl. XI, fig. 3.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Large microspore. Amb oval. The laesurae are not seen. Exine canaliculate. The muri of the proximal and distal faces cross each other, and seem to gather to form a thickening. Length × width = 75 × 50 μm. Botanical affinities.—Schizaeales or Gnetales?. ANTETURMA VARIEGERMINANTES = POLLENITES
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Bisaccate pollen grain. Shape is wider than long, with sacci and central body of similar size. Central body is spherical. Sacci are oval, folded, slightly hanging, and wrap the proximal face of the central body. Exine about 4 μm thick. Total width = 55 μm. Central body (length × width) = 40 × 30 μm. Saccates (length × width) = 40 × 20 μm. Botanical affinities.—Coniferales, Pinaceae. Turma Plicates Subturma Costates (= Polyplicates) Infraturma Costati
Turma Saccites Subturma Disaccites Genus Cedripites Wodehouse, 1933 Type species: Cedripites eocenicus Wodehouse, 1933 Cedripites sp. Figure 10.2 Cedripites sp. A. in Legrand, 2009, p. 183, pl. XVIII, figs. 9-10.
Genus Ephedripites Bolkhovitina, 1953 ex Potonié, 1958 Type species: Ephedripites mediolobatus Bolkhovitina, 1953 ex Potonié, 1958 Ephedripites sp. 1 Figure 10.5 Ephedripites sp. A. in Legrand, 2009, p. 190, pl. XX, fig. 17.
Occurrence.—Kitadani Fm (horizons Kita-2, 3). Description.—Polyplicate pollen grain. Amb ellipsoi-
218
Julien Legrand et al.
Figure 10. 1, Callialasporites dampieri (Balme, 1957) Sukh-Dev, 1961, Kitadani Fm, 2y-X35/4; 2, Cedripites sp., polar view, Kitadani Fm, 2w-M35; 3, 4, Classopollis torosus (Reissinger, 1950) Couper, 1958 emend. Burger, 1965; 3, polar view, Kitadani Fm, 3-3-S24/10; 4, polar view, Kitadani Fm, SEM-3f; 5, Ephedripites sp. 1, lateral view, Kitadani Fm, 2x-R47/4; 6, Ephedripites sp. 2, lateral view, Kitadani Fm, 2-2c-Q62/3; 7, 8, Gnetaceaepollenites sp.; 7, lateral view, Kitadani Fm, 2w-Q56; 8, polar view, Kitadani Fm, 2w-Q58; 9, Exesipollenites tumulus Balme, 1957, polar view, Kitadani Fm, 2c-Q57/3; 10, Chomotriletes minor (Kedves, 1961) Pocock, 1970, Kitadani Fm, 3-6-P55; 11, Cycadopites sp., Kitadani Fm, SEM-3d; 12, Incertae sedis sp. 3, Kitadani Fm, 2-2a-F37/4; 13, 14, prasinophycean spores; 13, Kitadani Fm, SEM-3e; 14, Kitadani Fm, SEM-3e; 15, 16, Cymatiosphaera sp.; 15, Kitadani Fm, 2w-S36; 16, Kitadani Fm, 2a-S28/4; 17, Incertae sedis sp. 4, Kitadani Fm, 2b-K37/1; 18, 19, cross-fields of Coniferales, radial section; 18, Kitadani Fm, 3-9-W30/2; 19, Kitadani Fm, 3-7-D43/1; 20, vessel with scalariform perforation plates and opposite intervessel pits, Kitadani Fm, SEM-3c; 21, bennettitalean vascular element, Kitadani Fm, 2-2a A39/3. Scale bar: 10 μm.
Palynoflora from the Kitadani Formation dal. The exine is ornamented by about 25 longitudinal straight ribs; they are separated by furrows less than 0.5 μm wide, and join at the two ends of the grain. Ribs sections semicircular, about 1–1.5 μm wide. Length = 90 μm; width = 35 μm. Botanical affinities.—Gnetales, Ephedraceae (Ephedra).
219
Occurrence.—Kitadani Fm (horizon Kita-3). Description.—Monosulcate pollen grain. Amb elliptical with apices slightly sharpened. A wide furrow runs along the whole grain. Exine psilate (about 1.5 μm thick). Length = 55 μm; width = 30 μm. Botanical affinities.—Cycadales or Bennettitales (Balme, 1995).
Ephedripites sp. 2 Figure 10.6 Ephedripites sp. B. in Legrand, 2009, p. 190, pl. XX, fig. 21.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Polyplicate pollen grain. Amb oval. The exine is ornamented by about 10 longitudinal straight ribs; they are separated by furrows 1–1.5 μm wide, and join at the two ends of the grain. Ribs sections semicircular, about 3 μm wide. Length = 38 μm; width = 24 μm. Botanical affinities.—Gnetales, Ephedraceae (Ephedra). Genus Gnetaceaepollenites Thiergart, 1938 Type species: Gnetaceaepollenites ellipticus Thiergart, 1938 Gnetaceaepollenites sp. Figures 10.7, 10.8 Gnetaceaepollenites sp. A. in Legrand, 2009, p. 190, pl. XX, fig. 1314, 16, 18.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Polyplicate pollen grain. Amb ellipsoidal. The exine is ornamented by about 12–15 ribs running from one end of the grain to the other. Ribs 1.5– 2.5 μm wide, separated by furrows less than 0.5 μm wide. Ends of the ribs closely gather at each end of the long axe, without joining. Length = 40–45 μm; width = 22–30 μm. Botanical affinities.—Gnetales. Subturma Monocolpates (Monosulcites) and Zonocolpates Infraturma Quasilaevigati and Microsculptati Genus Cycadopites Wodehouse, 1933 ex Wilson and Webster, 1946 Type species: Cycadopites follicularis Wilson and Webster, 1946 Cycadopites sp. Figure 10.11
Incertae sedis Incertae sedis sp. 3 Figure 10.12 Incertae sedis sp. H. in Legrand, 2009, p. 195–196, pl. XXI, fig. 10.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Polyplicate pollen grain. Amb ellipsoidal fusiform, very deformed. The exine is ornamented by many straight narrow ribs (less than 1 μm) that longitudinally run along the grain, separated by furrows of the same width (about 20 ribs can be seen). The ribs merge at each end of the grain. Length = 55–60 μm; width = 25–28 μm. Remarks.—This form shows morphological similarities with Jugella sp. cf. J. sibirica Mtch. and Shakhm reported by Li (2000) and Yu et al. (1982) from the Lower Cretaceous of northern and central China. Botanical affinities.—Gymnosperms, Gnetales. ALGAE Genus Cymatiosphaera Wetzel, 1933 ex Deflandre, 1954 Type species: Cymatiosphaera radiata Wetzel, 1933 Cymatiosphaera sp. Figures 10.15, 10.16 Incertae sedis sp. J. in Legrand, 2009, p. 202, pl. XXIV, figs. 7-8.
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Polygonal-shaped body. The face seen is delimited by a polygonal, smoothly undulating “muri,” extended on its sides by six other polygons. Ornamentation psilate to scabrate. Equatorial diameter = 30 μm. Botanical affinities.—Chlorophyta, Prasinophyceae. Incertae sedis Incertae sedis sp. 4 Figure 10.17 Incertae sedis sp. I. in Legrand, 2009, p. 202, pl. XXIV, fig. 9.
220
Julien Legrand et al.
Table 2. Botanical affinities of all the taxa encountered during our investigation. Phylogenic classification is modified from Hilton and Bateman (2006), Smith et al. (2006), Chase and Reveal (2009) – APG III - and Friis et al. (2009). Abbreviations used for the Tamodani Flora: A, Akaiwa Formation (Kimura, 1975); C, Chinaboradani Formation (Kimura and Horiuchi, 1979); K, Kitadani Formation (Yabe and Kubota, 2004); O, probably upper part of the Akaiwa Subgroup, exposed in the upper stream of the Ogamigo Valley (Yabe et al., 2003). BOTANICAL AFFINITY Class
Subclass [Bryophyta]
FOSSILS
Order
Marchantiidae
Family
Microflora
Unknown
Lycopodiidae
Lycopodiales
Lycopodiaceae
Retitriletes austroclavatidites, Retitriletes sp. 1, Retitriletes sp. 2
Selaginellidae
Selaginellales
Selaginellaceae
Anapiculatisporites cooksonae, Echinatisporis varispinosus, Echinatisporis sp.
Equisetidae
Equisetales
[Lycophyta]
Equisetaceae Polypodiaceae
Equisetites sp. in Kimura, 1975 (A) Baculatisporites comaumensis
Aspleniaceae Polypodiales
Macrofossils from the Tamodani Flora
Aequitriradites spinulosus, Aequitriradites verrucosus, Aequitriradites sp. in Legrand et al., 2011, Couperisporites complexus, Triporoletes reticulatus
Pteridaceae
Asplenium dicksonianum Heer (C) Contignisporites sp., Manumia japonica
Arctopteris sp. in Kimura, 1975 (A)
Dennstaedtiaceae Biretisporites potoniaei Saccolomataceae Cicatricosisporites sinuosus
Cyatheales
Schizaeales [Monilophyta]
Cibotiumspora paradoxa, Concavissimisporites verrucosus, Converrucosisporites sp. in Legrand et al., 2011, Dicksoniaceae or Cyathidites australis, Cyathidites minor, Deltoidospora hallii, Cyatheaceae Impardecispora apiverrucata, Ischyosporites crateris, Leptolepidites psarosus
Anemiaceae
Cicatricosisporites hallei, Cicatricosisporites hughesi, Cicatricosisporites minor, Cicatricosisporites pseudotripartitus, Cicatricosisporites sp. 2 in Legrand et al., 2011, Cicatricosisporites cf. C. sp. in Williams and Bujak, 1980, Cicatricosisporites sp. 1, Cicatricosisporites sp. 2, Cicatricosisporites sp. 3, Cicatricosisporites sp. 4, Ruffordiaspora australiensis
Schizaeaceae
Appendicisporites potomacensis, Ischyosporites crateris, Plicatella sp., Reticulatisporites spp.
Matoniaceae
Auritulinasporites deltaformis
Polypodiidae
Gleicheniales
Gleicheniaceae
Osmundales
Osmundaceae
[Embryophyta]
Unknown
Unknown Ginkgooidae
Ginkgoales
Cycadidae
Cycadales
Cyatheaceae: Birisia onychioides (Vassilevskaja and Kara-Mursa) Samylina (A, C), Coniopteris sp. cf. C. arctica (Prynada) Samylina (C), Cyathocaulis naktongensis Ogura (O) Dicksoniaceae: Onychiopsis elongata (Geyler) Yokoyama (A, C)
Auritulinasporites deltaformis, Gleicheniidites senonicus
Gleichenites nipponensis Oishi (C), Gleichenites porsildi Seward (A)
Baculatisporites comaumensis, Baculatisporites sp., Biretisporites potoniaei, Osmundacidites wellmanii, Todisporites major, Todisporites minor
Osmunda? sp. in Kimura and Horiuchi, 1979 (C), Osmundopsis sp. in Kimura, 1975 (A), cf. Osmundopsis sp. cf. O. efimoviae Samylina (C)
Biretisporites sp., Cingulatisporites sp., Coronatispora valdensis, Granulatisporites sp., Laevigatosporites ovatus, Laevigatosporites sp., Polycingulatisporites reduncus
Adiantopteris sp. in Kimura, 1975 (A), Cladophlebis ex gr. denticulata (Brongniart) Fontaine (A), Cladophlebis sp. cf. C. pseudolobifolia Vakhrameev (A), Jacutopteris sp. in Kimura, 1975 (A), Sphenopteris kochibeana (Yokoyama) Oishi (A)
Incertae sedis sp. 1, Incertae sedis sp. 2 Ginkgoidium? sp. in Kimura, 1975 (A), Ginkgoites sp. in Kimura, 1975 (A), Pseudotorellia sp. in Kimura, 1975 (A), Sphenobaiera? sp. in Kimura, 1975 (A)
Ginkgoaceae Cycadaceae Taxaceae or Cupressaceae
Cycadopites minimus, Cycadopites sp.
Nilssonia sp. in Kimura, 1975 (A)
Exesipollenites tumulus, Exesipollenites tumulus subsp. triangulus, Spheripollenites psilatus, Taxodiaceaepollenites hiatus
Podocarpaceae or Araucariacites australis, Balmeiopsis limbatus, Araucariaceae Callialasporites dampieri Pinaceae Pinidae
Coniferales
Cedripites sp.
Cheirolepidiaceae Classopollis torosus, cuticle fragments and or Voltziaceae cross-fields of Cheirolepidiaceae Inaperturopollenites sp. in Legrand et al., 2011
[Gymnosperms] Unknown
Unknown
Pteridospermales
Unknown
Caytoniales
Caytoniaceae
Bennettitales
Unknown
Alisporites thomasii, Alisporites sp. in Legrand et al., 2011 Vitreisporites pallidus Cycadopites minimus, Cycadopites sp., vascular element of Bennettitales
Erdtmanithecales Erdtmanithecaceae Eucommiidites minor, Eucommiidites troedssonii BEG group
Ephedraceae
Ephedripites montanaensis, Ephedripites sp. 1, Ephedripites sp. 2
Unknown
Gnetaceaepollenites sp. in Legrand et al., 2011, Gnetaceaepollenites sp., Incertae sedis sp. 3
Gnetales
Unknown
Incertae sedis sp. 2 in Legrand et al., 2011
Brachyphyllum obesum Heer (K) Coniferae sp. in Kimura and Horiuchi, 1979 (C), Conites sp. in Kimura, 1975 (A), Pityophyllum lindstroemii Nathorst (A), Podozamites eichwaldi Schimper (A, C), Podozamites reinii Geyler (A)
Palynoflora from the Kitadani Formation Table 2.
221
Continued. BOTANICAL AFFINITY
Phylum
FOSSILS
Class
Order
Family
Charophyceae
Zygnematales
Zygnemataceae
Microflora Chomotriletes minor, Ovoidites parvus
Pyramimonadales Cymatiosphaeraceae Cymatiosphaera sp. Algae Prasinophyceae Chlorophyta Unknown Prasinophycean spores Unknown Fungi Dothideomycetes Ascomycota
Microthyriales
Schizosporis reticulatus Unknown
Microthyriacites sp. in Legrand et al., 2011
Occurrence.—Kitadani Fm (horizon Kita-2). Description.—Uniformly reticulated body. Shape polygonal. Flat spines (about 1.5 μm thick, 5–10 μm in basal diameter, 5–10 μm high) surmount the reticulum. Equatorial diameter = 35–40 μm. Botanical affinities.—Unknown.
Results The horizon Kita-1 of the Kitadani Formation, at the lowermost part of the outcrop, is barren of palynomorphs. The horizons Kita-2, 3 and 4 contain a rich and diverse assemblage, among which the best state of preservation is observed in the horizon Kita-2. The Kitadani palynoflora consists of 79 morphospecies, among which we could identify 47 genera and 46 species of spores and pollen grains (Table 1). They are represented by 5 morphospecies of Bryophyta, 6 morphospecies of Lycophyta, 41 morphospecies of Monilophyta (dominated by 15 morphospecies of Schizaeales, 9 morphospecies of Cyatheales, and 6 morphospecies of Osmundales), 24 morphospecies of gymnosperms (dominated by 10 morphospecies of Coniferales, 6 morphospecies of Gnetales, and 2 morphospecies of Bennettitales or Cycadales) (Table 2). Spores of Filicopsida dominate the assemblage. Among them, schizaealean spores are the most abundant and diversified, with many types of Cicatricosisporites (eleven types are observed), followed by Plicatella, Appendicisporites and some rare Reticulatisporites. We note the presence of Cicatricosisporites sinuosus (Saccolomataceae), which was already reported from the Barremian Ashikajima and Kimigahama formations of the Choshi Group (Legrand, 2009; Legrand et al., 2011). Impardecispora apiverrucata (Dicksoniaceae), Ischyosporites crateris, I. estherae (Schizaeaceae or Dicksoniaceae) and Concavissimisporites verrucosus (Pteridaceae, Cyatheaceae or Dicksoniaceae) are common, and Cyathidites (Cyatheaceae or Dicksoniaceae) is rare. Osmundaceous spores are also recorded: Biretisporites potoniaei, Baculatisporites spp., Osmundacidites spp. and Todisporites spp. Gleicheniidites senonicus (Gleicheniaceae) is quite rare. The ornamented spores
Manumia japonica (Pteridaceae?), Leptolepidites psarosus and Converrucosisporites sp. are present. Umetsu and Sato (2007) reported a spore similar to Leptolepidites psarosus from the late Aptian-early Albian Hiraiga Formation (northeastern Honshu, Japan) under the name Multinodisporites sp., but the ornamentation of this genus does not correspond to our observation. Coronatispora valdensis (Filicopsida) is rare. Monolete spores of the genus Laevigatosporites are recorded in all three horizons of the formation, and were observed in groups in the horizon Kita-3. Spores of hepatics are well represented, with common Couperisporites complexus in the three horizons. Aequitriradites spinulosus, A. verrucosus and Triporoletes reticulatus are also common. Spores with lycopsid affinities are common, with Echinatisporis varispinosus and Retitriletes austroclavatidites. Among the gymnosperm pollen grains, Exesipollenites tumulus and Classopollis torosus (Coniferales or Erdtmanithecales: Tekleva and Krassilov, 2009) are most abundant. Eucommiidites (Erdtmanithecales), Ephedripites and Gnetaceaepollenites (Gnetales) are rare. Monosulcate pollen grains of the genus Cycadopites (Bennettitales, Cycadales or Pentoxylales), Araucariacites australis and Balmeiopsis limbatus (Araucariaceae) and Callialasporites dampieri (Podocarpaceae) are common. Bisaccate pollen grains are rare, represented by the genera Alisporites, Cedripites and Pityosporites. Spheripollenites psilatus (Cupressaceae or Taxaceae) is rare. In addition to spores and pollen grains, wood fragments are recorded: cross-fields of Coniferales (Figures 10.18, 10.19), a fragment of bennettitalean vascular element (Figure 10.21), a vessel element with scalariform perforation plates (Figure 10.20). Cuticles with cell walls slightly sinuous sometimes extending into trichomes (Figures 11.1a–b), and cuticles with papillae on the epidermal cells and stomata subsidiary cells (Figures 11.2– 11.5), probably belonging to cheirolepidiaceous plants, are also encountered. Epiphyllous fungi, fungi spores of Microthyriacites, prasinophycean and zygnematacean freshwater algae spores (Figures 10.11–10.14, 10.16) and the species Schizosporis reticulatus are present. We summarize the composition of the palynoflora in a
222
Julien Legrand et al.
Figure 11. 1a–b, Internal view of gymnosperm cuticle fragments, with detail on a trichome (hair), Kitadani Fm, SEM-3a; 2–5, cuticle fragments of Cheirolepidiaceae, with papillae on the epidermous cells and stomata subsidiary cells; 2, Kitadani Fm, SEM-3f; 3, Kitadani Fm, 3-9-T31; 4, Kitadani Fm, 3-2-U51b; 5, stomata with papillae on its subsidiary cells, Kitadani Fm, 3-9-O27/1. Scale bars: 10 μm.
Kita-2
Kita-3
7%
8% 20%
8%
Kita-4 10%
12%
2% 24%
10% 12%
12%
3% 11%
14% 14%
3% 1%
12% 1% 1% 25%
25%
28%
15% 1% 2%
19%
Psilate spores
Bisaccate pollen grains
Exesipollenites tumulus
Cicatricose spores
Monosulcate pollen grains
Araucariaceae
Other ornamented spores
Classopollis torosus
Other gymnosperms
Figure 12.
Percentages of nine palynomorph groups in the Kita-2, Kita-3 and Kita-4 horizons of the Kitadani Formation.
Palynoflora from the Kitadani Formation diagram (Figure 12). The horizon Kita-4 is not as well preserved as horizons Kita-2 and Kita-3, which can partly explain the differences observed in percentages.
Discussion Palynofloral characteristics of the Kitadani Formation The palynoflora from the Kitadani Formation shows a diverse assemblage. Most identified taxa have a long stratigraphic range and/or global distribution during the Cretaceous period. In the absence of angiosperm pollen grains or other biostratigraphically significant microfossils in this terrestrial deposit, we face the same difficulty as previously expressed by several authors concerning the assignation of an accurate age to the Kitadani Formation. The Kitadani palynoflora is dominated by spores of herbaceous plants (50–59%), mostly Filicopsida: Schizaeales, Cyatheales, and Osmundales; gymnosperm pollen is subdominant (21–27%) and consists primarily of Coniferales and Bennettitales, Cycadales or Pentoxylales. The Kitadani palynoflora has few Gleicheniales, bisaccate pollen grains, or pollen of Gnetales and Erdtmanithecales. It shows a general agreement in floristic composition with what has been described for the Tetoritype Paleoflora. It differs in the absence of Ginkgoales and Czekanowskiales pollen, which may be difficult to distinguish from other monosulcate pollen grains. Our palynofloral results showing dominance of Filicopsida spores and absence of matoniaceous spores confirm the Tetori-type macrofloral data of Kimura (1987). Manumia japonica, reported for the first time from the Barremian palynofloras of the Choshi Group (Legrand et al., 2011), is also present in the Kitadani Formation, but in lower proportions. Genera Appendicisporites and Gleicheniidites, as well as species Impardecispora apiverrucata, Ischyosporites crateris and Couperisporites complexus are rare to frequent in the Kitadani Formation, whereas they have not been reported from the assemblages of the Choshi Group (Legrand et al., 2011). The hepatics, common in the palynomorph assemblages, have not been reported from the macroflora. Among pollen grains, the presence of Classopollis is consistent with the report of Brachyphyllum obesum. Classopollis torosus and Exesipollenites tumulus are equally abundant and characterize the assemblage. Among Exesipollenites grains, some show an oval to subtriangular shape and an apparently triangular central body that corresponds to the subspecies E. tumulus subsp. triangulus previously reported from southeastern China (Song et al., 1980; Han and Jiang, 1981; Song et al., 1981, 1995).
223
Bisaccate pollen grains are encountered in low percentages in the Kitadani Formation, with the genera Alisporites (Pteridospermales?) and Cedripites (Coniferales, Pinaceae) and the species Vitreisporites pallidus (Caytoniales). Among Ephedripites grains observed, Ephedripites montanaensis characterizes the Lower Cretaceous worldwide. Gnetales, and more particularly the genera Ephedripites and Gnetaceaepollenites, are largely represented in the Lower Cretaceous sediments of Asia, often reported under the genus name Schizaeoisporites. Paleoecology Only continental elements were encountered in the assemblages: spores and pollen grains of terrestrial plants (Marchantiopsida, Lycopsida, Filicopsida and gymnosperms), wood and cuticle fragments of gymnosperms, fungi and freshwater algae. The records of the freshwater green algae Ovoidites parvus and Chomotriletes minor are in accordance with previous reports of freshwater molluscs and bivalves, and indicate a fluvio-lacustrine environment. Fern spores of Cyathidites and Deltoidospora as well as epiphyllous fungi are encountered, implying locally humid conditions (Harris, 1937; Pedersen and Lund, 1980). A number of palynomorphs and wood remains are fragmented, suggesting long maceration or transportation. However, the fine-grained sediments in which microremains are included, with accumulation of woods, refute long-distance transportation (Tschudy, 1961). We can surmise that most of the assemblages probably derived from the local community near the depositional area. Terrestrial elements were carried out by water (runoff) or wind from the adjacent areas, which can explain the rare occurrence of bisaccate pollen grains, for example. The latter may also have not been very abundant in the source vegetation. Among spores, the record of groups of Laevigatosporites ovatus represents immature spores still grouped in the sporangium, and confirms the proximity of the plant producing these spores to the site of deposition. Paleoclimate Inner Japan, as the easternmost part of the Eurasian continent, was attributed to a humid subtropical latitudinal climatic belt in some paleoclimatic reconstructions for the Early Cretaceous (Kimura, 1987; Chumakov et al., 1995; Golozoubov et al., 1999). The genera Cyathidites and Deltoidospora are common. The diversity of schizaealean spores associated to some gleichenialean spores, the low percentages of bisaccate pollen grains, and the abundance of monosulcate pollen grains, are consistent with a warm and humid climate. Cheirolepidiaceous-like wood remains and cuti-
224
Julien Legrand et al.
cle fragments have been recorded, particularly in the horizon Kita-3. Some cuticles show trichomes or papillae, indicating an adaptation to dry (papillae on stomata subsidiary cells, which extend them to protect the substomatal cavity from desiccation) and sunny (papillae on epidermous cells) conditions (Pons, 1979; Watson and Alvin, 1996). Concerning the macroremains previously reported from the Kitadani Formation, only the Coniferales Brachyphyllum obesum has been identified (Yabe and Kubota, 2004), so the cuticle fragments encountered may belong to this species. Cheirolepidiaceous plants are considered to have formed mangroves, and also to have been adapted to arid or semiarid conditions (Srivastava, 1976; Upchurch and Doyle, 1981; Pons and Koeniguer, 1985). In the adjacent regions of South China (semiarid to arid climate), Classopollis is much more abundant (50%) than in Japan (12–15% in the Kitadani Formation of the Inner Zone, and 9–14% in the Choshi Group of the Outer Zone; see Legrand et al., 2011), indicating different climatic conditions. Ruffordiaspora australiensis (Schizaeales, Anemiaceae) is present in the formation; this spore was produced by Ruffordia goepperti (Dunker) Seward, whose macroremains were previously reported from many Lower Cretaceous localities in Europe (England: Seward, 1894; Spain: Diéguez and Meléndez, 2000), China (Deng and Chen, 2001), North America (Skog, 1992) and Japan (Kuwajima Formation: Yabe, 1922; Kimura, 1987). This plant is thought to have lived near lakes and to have tolerated dry conditions (Hughes and Moody-Stuart, 1966). Various paleoenvironments are represented in the site of deposition. Our results indicate a warm temperate and humid climate, with locally drier conditions. They are in accordance with previous hypotheses by Kimura (1979, 1987) and Vakhrameev (1991).
Conclusion We identified 47 genera and 46 species of spores and pollen grains from the late Barremian to early Aptian? Kitadani Formation. This palynofloral description provides new data to the present knowledge of the Inner Zone palynofloras previously studied by Umetsu (2002), Umetsu and Matsuoka (2003) and Umetsu and Sato (2007), who identified seven morpho-genera of spores and pollen grains in a bad state of preservation. Among palynomorphs, only continental elements have been recorded, suggesting a fluvio-lacustrine environment with locally drier conditions. The composition of the assemblages indicates that most of the elements probably come from the local community near the depositional area. Our results are consistent with the hypothesis by Vakhrameev (1991) that the Tamodani Flora belonged to
an ecotone located between the Euro-Sinian (including the Outer Zone) and Sibero-Canadian Provinces.
Acknowledgements This study has been financed by a scholarship for Education and Research offered by the Japanese Government (Monbukagakusho: MEXT), and by the University of Tokyo and Chuo University, Tokyo, Japan. We are grateful to the Fukui Prefectural Dinosaur Museum for the opportunity to collect samples from the “Kitadani Dinosaur Quarry”. Many thanks to Jean Broutin (Université Pierre et Marie Curie) for his kind advice and correction of the manuscript. We are thankful to Dr. Debra Willard and Dr. Hiroshi Kurita for accepting to review this manuscript. Their comments greatly contributed to its improvement.
References Archangelsky, S., 1977: Balmeiopsis, nuevo nombre genérico para el palinomorfo Inaperturopollenites limbatus Balme, 1957. Ameghiniana, vol. 14, p. 122–126. Archangelsky, S. and Gamerro, J. C., 1966: Estudio palinológico de la Formación Baqueró (Cretácico), provincia de Santa Cruz. IV. Ameghiniana, vol. 4, p. 363–372. Azuma, Y., 2003: Early Cretaceous vertebrate remains from Katsuyama City, Fukui Prefecture, Japan. Memoir of the Fukui Prefectural Dinosaur Museum, no. 2, p. 17–22. Azuma, Y. and Currie, P. J., 2000: A new carnosaur (Dinosauria, Theropoda) from the Lower Cretaceous of Japan. Canadian Journal of Earth Sciences, vol. 37, p. 1735–1753. Azuma, Y. and Tomida, Y., 1995: Early Cretaceous dinosaur fauna of the Tetori Group in Japan. In, Sun, A. and Wang, Y. eds., Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers, p. 125–131. China Ocean Press, Beijing. Azuma, Y. and Tomida, Y., 1997: Japanese dinosaurs. In, Currie, P. and Padian, K. eds., Encyclopedia of Dinosaurs, p. 375–379. Academic Press, San Diego. Balme, B. E., 1957: Spores and pollen grains from the Mesozoic of western Australia. Commonwealth Scientific and Industrial Research Organization, Coal Research Section, no. 25, p. 1–48. Balme, B. E., 1995: Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, vol. 87, p. 81–323. Bolkhovitina, N. A., 1953: Spores and pollen characteristic of Cretaceous deposits of central regions of USSR. Proceedings of the Geological Institute of the Russian Academy of Sciences, vol. 145, p. 1–184. (in Russian) Bolkhovitina, N. A., 1959: Spore-pollen complexes of the Mesozoic deposits of the Vilyuysk depression and their stratigraphic significance. Proceedings of the Geological Institute of the Russian Academy of Sciences, vol. 24, p. 1–185. (in Russian) Bolkhovitina, N. A., 1961: Fossil and recent spores of the family Schizaeaceae. Proceedings of the Geological Institute of the Russian Academy of Sciences, vol. 40, p. 1–176. (in Russian) Brenner, G. J., 1963: The spores and pollen of the Potomac Group of Maryland. Bulletin of the Department of Geology, Mines and Water Resources, Maryland, vol. 27, p. 1–215.
Palynoflora from the Kitadani Formation Brenner, G. J., 1968: Middle Cretaceous spores and pollen from northeastern Peru. Pollen and Spores, vol. 10, p. 341–383. Burden, E. T. and Hills, L. V., 1989: Illustrated key to genera of Lower Cretaceous terrestrial palynomorphs (excluding megaspores) of western Canada. American Association of Stratigraphic Palynologists, Contribution Series, no. 21, p. 1–147. Burger, D., 1965: Some new species of Classopollis from the Jurassic of the Netherlands. Leidse geologische mededelingen, vol. 33, p. 63–69. Burger, D., 1966: Palynology of uppermost Jurassic and lowermost Cretaceous strata in the eastern Netherlands. Leidse geologische mededelingen, vol. 35, p. 209–276. Chang, L., 1965: Spore-pollen complexes of the Yima Coal-bearing Series in western Hunan Province. Acta Paleontologica Sinica, vol. 13, p. 160–196. (in Chinese with English abstract) Chase, M. W. and Reveal, J. L., 2009: A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society, vol. 161, p. 122–127. Chumakov, N. M., Zharkov, M. A., Herman, A. B., Doludenko, M. P., Kalandadze, N. N., Lebedev, E. L., Ponomarenko, A. G. and Rautian, A. S., 1995: Climatic zones in the middle of the Cretaceous period. Stratigraphy and Geological Correlation, vol. 3, p. 3–14. Cookson, I. C., 1947: Plant microfossils from the lignites of the Kerguelen Archipelago. B.A.N.Z. Antarctic Research Expedition, 1929-1931, Reports, Series A, vol. 2, p. 129–142. Cookson, I. C., 1953: Difference in microspore composition of some samples from a bore at Comaum, South Australia. Australian Journal of Botany, vol. 1, p. 462–473. Cookson, I. C. and Dettmann, M. E., 1958: Some trilete spores from upper Mesozoic deposits in the eastern Australian region. Proceedings of the Royal Society of Victoria, vol. 70, p. 95–128. Cookson, I. C. and Dettmann, M. E., 1959: On Schizosporis, a new form genus from Australian Cretaceous deposits. Micropaleontology, vol. 5, p. 213–216. Cookson, I. C. and Dettmann, M. E., 1961: Reappraisal of the Mesozoic microspore genus Aequitriradites. Palaeontology, vol. 4, p. 425–427. Couper, R. A., 1953: Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey, Palaeontological Bulletin, vol. 22, p. 1–77. Couper, R. A., 1958: British Mesozoic microspores and pollen grains, a systematic and stratigraphic study. Palaeontographica, Abteilung B, vol. 103, p. 75–179. Currie, P. J. and Azuma, Y., 2006: New specimens, including a growth series, of Fukuiraptor (Dinosauria, Theropoda) from the Lower Cretaceous Kitadani Quarry of Japan. Journal of the Paleontological Society of Korea, vol. 22, p. 173–193. Davies, E. H., 1985: The miospore and dinoflagellate cyst Oppelzonation of the Lias of Portugal. Palynology, vol. 9, p. 105–132. Deflandre, G., 1954: Systématique des Hystrichosphaeridés: sur l’acception du genre Cymatiosphaera O. Wetzel. Compte rendu sommaire des séances de la Société géologique de France, vol. 12, p. 257–258. Delcourt, A., Dettmann, M. E. and Hughes, N. F., 1963: Revision of some Lower Cretaceous microspores from Belgium. Palaeontology, vol. 6, p. 282–292. Delcourt, A. and Sprumont, G., 1955: Les spores et grains de pollen du Wealdien du Hainaut. Mémoires de la Société Belge de Géologie, vol. 4, p. 1–7. Deng, S. and Chen, F., 2001: The Early Cretaceous Filicopsida from Northeast China, 249 p. Geological Publishing House, Beijing. Dettmann, M. E., 1963: Upper Mesozoic microfloras from southeast-
225
ern Australia. Proceedings of the Royal Society of Victoria, vol. 77, p. 1–148. Dettmann, M. E. and Clifford, H. T., 1992: Phylogeny and biogeography of Ruffordia, Mohria and Anemia (Schizaeaceae) and Ceratopteris (Pteridaceae): evidence from in situ and dispersed spores. Alcheringa, vol. 16, p. 269–314. Diéguez, C. and Meléndez, N., 2000: Early Cretaceous ferns from lacustrine limestones at Las Hoyas, Cuenca Province, Spain. Palaeontology, vol. 43, p. 1113–1141. Erdtman, G., 1948: Did dicotyledonous plants exist in Early Jurassic times? Geologiska Föreningens i Stockholm Förhandlingar, vol. 70, p. 265–271. Filatoff, J. and Price, P. L., 1988: A pteridacean spore lineage in the Australian Mesozoic. Memoirs of the Association of Australasian Palaeontologists, vol. 5, p. 89–124. Friis, E. M., Pedersen, K. R. and Crane, P. R., 2009: Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. American Journal of Botany, vol. 96, p. 252–283. Fujita, M., 2002: A new contribution to the stratigraphy of the Tetori Group, adjacent to Lake Kuzuryu, Fukui Prefecture, central Japan. Memoir of the Fukui Prefectural Dinosaur Museum, no. 1, p. 41–53. Fujita, M., 2003: Geological age and correlation of the vertebratebearing horizons in the Tetori Group. Memoir of the Fukui Prefectural Dinosaur Museum, no. 2, p. 3–14. Geological Survey of Japan, AIST, 2010: Seamless Digital Geological Map of Japan 1:200,000. CD-ROM on Feb. 1, 2010 version. Research Information Database DB084, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba. Golozoubov, V. V., Markevich, V. S. and Bugdaeva, E. V., 1999: Early Cretaceous changes of vegetation and environment in East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 153, p. 139–146. Goto, M., Yabe, A. and Sano, S., 2002: The research report of the Dinosaur Fossil Exploratory Excavation held by Fukui Prefecture in 2001. Memoir of the Fukui Prefectural Dinosaur Museum, no. 1, p. 102–118. Groot, J. J. and Penny, J. S., 1960: Plant microfossils and age of nonmarine Cretaceous sediments of Maryland and Delaware. Micropaleontology, vol. 6, p. 225–236. Hammen, T., van der, 1956: A palynological systematic nomenclature. Boletin geologico (Bogota), vol. 4, p. 63–101. Han, X. P. and Jiang, Q. Q., 1981: Middle Cretaceous sporo-pollen assemblages of Huichang Basin, Jiangxi Province. Acta Botanica Sinica, vol. 23, p. 405–412. (in Chinese with English abstract) Harris, T. M., 1937: The fossil flora of Scoresby Sound East Greenland. Part 5: Stratigraphic relations of the plant beds. Meddelelser om Grønland, vol. 112, p. 1–112. Hilton, J. and Bateman, R. M., 2006: Pteridosperms are the backbone of seed-plant phylogeny. Journal of the Torrey Botanical Society, vol. 133, p. 119–168. Hirooka, K., Uchiyama, S., Date, T., Kanai, H., Hattori, I. and Nakajima, T., 1983: Paleomagnetic evidence of accretion and tectonism of the Hida and the Circum-Hida terranes, central Japan. In, Howell, D. G., Jones, D. L., Cox, A. and Nur, A. eds., Proceedings of Circum-Pacific Terrane Conference, p. 115–117. Stanford University Publications in Geological Sciences, Stanford. Hirooka, K., Uchiyama, S., Date, T., Kanai, H. and Nakajima, T., 1985: Paleomagnetic evidence for accretion and bending tectonics of the Hida and the Circum-Hida terranes, central Japan. In, Howell, D. G. ed., Tectonostratigraphic Terranes of the Circum-Pacific
226
Julien Legrand et al.
Region, p. 391–399. Council for Energy and Mineral Resources, Houston. Hisada, K., Takashima, S., Arai, S. and Lee, Y. I., 2008: Early Cretaceous paleogeography of Korea and Southwest Japan inferred from occurrence of detrital chromian spinels. Island Arc, vol. 17, p. 471–484. Hughes, N. F. and Moody-Stuart, J., 1966: Descriptions of schizaeaceous spores taken from Early Cretaceous macrofossils. Palaeontology, vol. 9, p. 274–289. Hunt, C. O., 1985: Miospores from the Portland Stone Formation and the lower part of the Purbeck Formation (Upper Jurassic / Lower Cretaceous) from Dorset, England. Pollen et Spores, vol. 27, p. 419–451. Ibrahim, A. C., 1933: Sporenformen des Aegir-horizonts des RuhrReviers, 47 p. Dissertation, University of Berlin, Konrad Triltsch, Wurzburg. Isaji, S., 1993: Nippononaia ryosekiana (Bivalvia, Mollusca) from the Tetori Group in central Japan. Bulletin of the National Science Museum, Series C, vol. 19, p. 65–71. Ishida, K., Kozai, T., Park, S. O. and Mitsugi, T., 2003: Gravel bearing Radiolaria as tracers for erosional events: a review of the status of recent research in SW Japan and Korea. Journal of Asian Earth Sciences, vol. 21, p. 909–920. Isozaki, Y., 1996: Anatomy and genesis of a subduction related orogen: a new view of geotectonic subdivision and evolution of the Japanese Islands. Island Arc, vol. 5, p. 289–320. Isozaki, Y., 1997: Jurassic accretion tectonics of Japan. Island Arc, vol. 6, p. 25–51. Isozaki, Y., Aoki, K., Nakama, T. and Yanai, S., 2010: New insight into a subduction-related orogen: reappraisal on geotectonic framework and evolution of the Japanese Islands. Gondwana Research, vol. 18, p. 82–105. Kawai, M., 1961: On the late Mesozoic crustal movements in the western part of the Hida plateau, central Honshu, Japan. Part 3 (Geological study around Mt. Haku in Fukui, Ishikawa and Gifu Prefectures). Bulletin of the Geological Survey of Japan, vol. 12, p. 13–32. (in Japanese with English abstract) Kedves, M., 1961: Etudes palynologiques dans le bassin de Dorog II. Pollen and Spores, vol. 3, p. 101–153. Kimura, T., 1958: Paleofloristic provinces recognized in the Onychiopsis Series. Journal of the Geological Society of Japan, vol. 64, p. 687. (in Japanese; original title translated) Kimura, T., 1975: Middle - late Early Cretaceous plants newly found from the upper course of the Kuzuryu River area, Fukui Prefecture, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, no. 98, p. 55–93. Kimura, T., 1979: Late Mesozoic palaeofloristic provinces in East Asia. Proceedings of the Japan Academy, Series B, vol. 55, p. 425–430. Kimura, T., 1987: Recent knowledge of Jurassic and Early Cretaceous floras in Japan and phytogeography of this time in East Asia. Bulletin of the Tokyo Gakugei University, Section IV, vol. 39, p. 87– 115. Kimura, T. and Horiuchi, J., 1979: Some late Early Cretaceous plants from Fukui Prefecture, in the Inner Zone of Japan. Transactions and Proceedings of the Palaeontological Society of Japan, new ser., no. 113, p. 1–14. Kimura, T. and Ohana, T., 1997: Catalogue of the Late Jurassic and Early Cretaceous plant-taxa in Japan. Memoir of the Geological Society of Japan, vol. 48, p. 176–188. (in Japanese with English abstract) Kimura, T. and Sekido, S., 1976: Mesozoic plants from the Akaiwa Formation (upper Neocomian), the Itoshiro Group, central
Honshu, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, no. 103, p. 343–378. Kimura, T. and Sekido, S., 1978: Addition to the Mesozoic plants from the Akaiwa Formation (upper Neocomian), the Itoshiro Group, central Honshu, Inner Zone of Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, no. 109, p. 259–279. Kobayashi, Y., 1998: A new goniopholidid from the Early Cretaceous Kitadani Formation, Fukui Prefecture, Japan. Journal of Vertebrate Paleontology, vol. 18, p. 56. Kobayashi, Y. and Azuma, Y., 2003: A new iguanodontian (Dinosauria, Ornithopoda) from the Cretaceous Kitadani Formation of Fukui Prefecture, Japan. Journal of Vertebrate Paleontology, vol. 23, p. 166–175. Kojima, S., 1989: Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 69, p. 213–232. Kozai, T., Ishida, K., Chang, K. H. and Park, S. O., 2001: Correlation of Early Cretaceous non-marine bivalve fauna of SW Japan and Korea. Third Symposium of IGCP 434: Tethys Himalaya Environmental Changes during the Cretaceous, Abstract Volume, p. 11– 12. Kozai, T., Ishida, K., Park, S. O. and Chang, K. H., 2002: Early Cretaceous non-marine bivalves from Korea and Japan. Abstracts with Programs, 2002 Annual Meeting of the Palaeontological Society of Japan, p. 16–17. Kremp, G. O. W., 1949: Pollenanalytische Untersuchung des miozanen Braunkohlenlagers von Konin an der Warthe. Palaeontographica Abteilung B, vol. 90, p. 53–89. Krutzsch, W., 1959: Mikropalaontologische (sporenpalaontologische) Untersuchungen in der Braunkohle des Geiseltales. Geologie, vol. 8, p. 1–425. Krutzsch, W., 1963: Atlas der Mittel- und Jungtertiären Dispersen Sporen und Pollen-sowie der Mikroplanktonformen des Nördlichen Mitteleuropas. Lieferung III. Sphagnaceoide und selaginellaceoide Sporenformen, 128 p. Gustav Fischer, Jena and Berlin. Kubota, K., 2005: Charophyte gyrogonites from the Lower Cretaceous Kitadani Formation of the Tetori Group in the Takinamigawa area, Katsuyama City, Fukui Prefecture, central Japan. Paleontological Research, vol. 9, p. 203–213. Kusuhashi, N., Matsuoka, H., Kamiya, H. and Setoguchi, T., 2002: Stratigraphy of the late Mesozoic Tetori Group in the Hakusan region, central Japan: an overview. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, vol. 59, p. 9–31. Lee, Y. I., 2008: Paleogeographic reconstructions of the East Asia continental margin during the middle to late Mesozoic. Island Arc, vol. 17, p. 458–470. Lee, Y. I. and Kim, J. Y., 2005: Provenance of the Hayang Group (Early Cretaceous) in the Yeongyang Subbasin, SE Korea and its bearing on the Cretaceous palaeogeography of SW Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 228, p. 278– 295. Legrand, J., 2009: Palynologie des Dépôts Jurassique Supérieur et Crétacé Inférieur du Japon, et Provinces Paléofloristiques du Sud-Est Asiatique, 366 p. Thèse de 3e cycle, Université Pierre-etMarie-Curie, Paris. (unpublished) Legrand, J., Pons, D., Nishida, H. and Yamada, T., 2011: Barremian palynofloras from the Ashikajima and Kimigahama formations (Choshi Group, Outer Zone of South-west Japan). Geodiversitas, vol. 33, p. 87–135. Li, W.-B., 2000: Early Cretaceous palynoflora from northern Tarim Basin. Acta Palaeontologica Sinica, vol. 39, p. 28–45. (in Chinese
Palynoflora from the Kitadani Formation with English abstract) Maeda, S., 1958: Stratigraphy and geological structure of the Tetori Group in the Hakusan district. Part 1. Stratigraphy. Journal of the Geological Society of Japan, vol. 64, p. 583–594. (in Japanese with English abstract) Maeda, S., 1961: On the geological history of the Mesozoic Tetori Group in Japan. Journal of College of Arts and Sciences, Chiba University, Natural Sciences Series, vol. 3, p. 396–426. (in Japanese with English abstract) Maeda, S., 1962: Some Lower Cretaceous pelecypods from the Akaiwa Subgroup, the upper division of the Tetori Group in central Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, no. 48, p. 343–351. Malyavkina, V. S., 1949: Identification of spores and pollen of the Jurassic and Cretaceous. Trudy Vsesoyuznogo Neftyanogo Naucho-Issledovatel'skogo Geologorazvedochnogo Instituta, vol. 33, p. 1–137. (in Russian) Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M., 1997: Paleogeographic maps of the Japanese Islands: plate tectonics synthesis from 750 Ma to the present. Island Arc, vol. 6, p. 121– 142. Masuda, F., Ito, M., Matsukawa, M., Yokokawa, M. and Makino, Y., 1991: Depositional environments of the Tetori Group. In, Matsukawa, M. ed., Lower Cretaceous Nonmarine and Marine Deposits in Tetori and Sanchu, p. 11–17. IGCP-245 Field Trip Guide Book, Fukuoka. Matsukawa, M., 1991: Introduction of the Tetori Group. In, Matsukawa, M., ed., Lower Cretaceous Nonmarine and Marine Deposits in Tetori and Sanchu, p. 7–10. IGCP-245 Field Trip Guide Book, Fukuoka. Matsukawa, M. and Fukui, M., 2009: Hauterivian–Barremian marine molluscan fauna from the Tetori Group in Japan and late Mesozoic marine transgressions in East Asia. Cretaceous Research, vol. 30, p. 615–631. Matsukawa, M. and Obata, I., 1992: Correlation of nonmarine and marine formations in the Lower Cretaceous of Japan: contribution to nonmarine formations in Asia. In, Mateer, N. J. and Chen, P. J. eds., Aspects of Nonmarine Cretaceous Geology, p. 78–93. China Ocean Press, Beijing. Matsuo, H. and Omura, K., 1966: So-called “Tetori Series” in the Tedori-gawa area. Annals of Science, College of Liberal Arts, Kanazawa University, vol. 3, p. 77–97. (in Japanese with English abstract) Matsuoka, M., Takahashi, O., Hayashi, K., Ito, M. and Konovaloy, V. P., 1997: Early Cretaceous paleogeography of Japan, based on tectonic and faunal data. Memoirs of the Geological Society of Japan, no. 48, p. 29–42. Miner, E. L., 1935: Paleobotanical examination of Cretaceous and Tertiary coals. American Midland Naturalist, vol. 16, p. 585–625. Nakoman, E., 1966: Contribution à l'étude palynologique des formations tertiaires du bassin de Thrace. I. Etude qualitative. Annales de la Société Géologique du Nord, vol. 86, p. 65–107. Neves, R., 1964: Knoxisporites (Potonié and Kremp) Neves, 1961. Compte Rendu du 5ème Congrès International de Stratigraphie et de Géologie du Carbonifère, Paris, 9–12 Septembre 1963, vol. 3, p. 1063–1069. Nilsson, T., 1958: Uber das Vorkommen eines mesozoischen Sapropelgesteins in Schonen. Lunds universitets årsskrift, vol. 54, p. 1– 112. Norris, G., 1969: Miospores from the Purbeck Beds and marine Upper Jurassic of southern England. Palaeontology, vol. 12, p. 574–620. Otofuji, Y., Matsuda, T. and Nohda, S., 1985: Opening mode of the Japan Sea inferred from the palaeomagnetism of the Japan Arc.
227
Nature, vol. 317, p. 603–604. Otoh, S., 1998: Late Jurassic to Early Cretaceous tectonic inversion in eastern margin of Asia. In, Kim, Y. H. ed., International Symposium on Earth and Environmental Sciences, p. 19–36. Basic Science Research Institute of Gyeongsang National University, Jinju. Otoh, S. and Sasaki, M., 1998: “Asia” and the “Japanese Islands” in Paleo-Mesozoic time. Memoirs of the Geological Society of Japan, vol. 50, p. 159–176. (in Japanese with English abstract) Pedersen, K. R. and Lund, J. J., 1980: Palynology of the plant-bearing Rhaetian to Hettangian Kap Stewart Formation, Scoresby Sund, East Greenland. Review of Palaeobotany and Palynology, vol. 31, p. 1–69. Pflug, H. D., 1953: Zur Entstehung und Entwicklung des angiospermiden Pollens in der Erdgeschichte. Palaeontographica, Abteilung B, vol. 95, p. 60–171. Pierce, R. L., 1961: Lower Upper Cretaceous plant microfossils from Minnesota. Minnesota Geological Survey Bulletin, vol. 42, p. 1– 86. Playford, G., 1965: Plant microfossils from Triassic sediments near Poatina, Tasmania. Journal of the Geological Society of Australia, vol. 12, p. 173–210. Playford, G., 1971: Palynology of Lower Cretaceous (Swan River) strata of Saskatschewan and Manitoba. Palaeontology, vol. 14, p. 533–565. Playford, G. and Dettmann, M. E., 1965: Rhaeto-Liassic plant microfossils from the Leigh Creek Coal Measures, South Australia. Senckengeriana Lethaea, vol. 46, p. 127–181. Pocock, S. A. J., 1962: Microfloral analysis and age determination of strata at the Jurassic-Cretaceous boundary in the western Canada Plains. Palaeontographica Abteilung B, vol. 111, p. 1–95. Pocock, S. A. J., 1964: Pollen and spores of the Chlamydospermidae and Schizaeaceae from Upper Manville strata of the Saskatoon area of Saskatchewan. Grana Palynologica, vol. 5, p. 129–209. Pocock, S. A. J., 1970: Palynology of the Jurassic sediments of western Canada. Pt. 1. Terrestrial species. Palaeontographica Abteilung B, vol. 130, p. 12–136. Pons, D., 1979: Les organes reproducteurs de Frenelopsis alata (K. Feistm.) Knobloch, Cheirolepidiaceae du Cénomanien de l’Anjou, France. 104e Congrès national des Sociétés savantes, Bordeaux, Sciences I, p. 209–231. Pons, D. and Koeniguer, J.-C., 1985: Les Gymnospermes, 20 p. Clartés: l’Encyclopédie du Présent, fasc. 4070. Éditions Techniques, Paris. Potonié, R., 1931: Pollenformen aus tertiaeren Braunkohlen. Jahrbuch der Preußischen Geologischen Landesanstalt zu Berlin, vol. 52, p. 1–7. Potonié, R., 1956: Synopsis der Gattungen der Sporae dispersae. I. Teil: Sporites. Beihefte zum Geologischen Jahrbuch, vol. 23, p. 1– 103. Potonié, R., 1958: Synopsis der Gattungen der Sporae dispersae. II. Teil: Sporites (Nachträge), Saccites, Aletes, Praecolpates, Polyplicates, Monocolpates. Beihefte zum Geologischen Jahrbuch, vol. 31, p. 1–114. Potonié, R., 1960: Synopsis der Gattungen der Sporae dispersae. III. Teil: Nachträge Sporites, Fortsetzung Pollenites mit Generalregister zu Teil I-III. Beihefte zum Geologischen Jahrbuch, vol. 39, p. 1–189. Potonié, R., 1966: Synopsis der Gattungen der Sporae dispersae. IV. Teil: Nachträge zu allen Gruppen (Turmae). Beihefte zum Geologischen Jahrbuch, vol. 72, p. 1–244. Potonié, R., 1970a: Synopsis der Gattungen der Sporae dispersae. V. Teil: Nachträge zu allen Gruppen (Turmae). Beihefte zum Geologischen Jahrbuch, vol. 87, p. 1–222.
228
Julien Legrand et al.
Potonié, R., 1970b: Synopsis der Gattungen der Sporae dispersae. VI. Teil: Nachträge zu allen Gruppen (Turmae). Beihefte zum Geologischen Jahrbuch, vol. 94, p. 1–176. Potonié, R., 1975: Synopsis der Gattungen der Sporae dispersae. VII. Teil: Nachträge zu allen Gruppen (Turmae). Fortschritte in der Geologie von Rheinland und Westfalen, vol. 25, p. 23–150. Potonié, R. and Gelletich, J., 1933: Uber Pteridophyten-sporen einer eozanen Braunkohle aus Dorog in Ungarn. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, vol. 33, p. 517–523. Potonié, R., Ibrahim, A. C. and Loose, F., 1932: Sporenformen aus den Flozen Agir und Bismarck des Ruhrgebietes. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie Abteilung B, vol. 67, p. 438–454. Potonié, R. and Kremp, G., 1954: Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geologisches Jahrbuch, vol. 69, p. 111–194. Potonié, R. and Kremp, G., 1955: Die Sporae dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und Zeitabschnitte Teil I. Palaeontographica, Abteilung B, vol. 98, p. 1–136. Reissinger, A., 1939: Die “Pollenanalyse” ausgedehnt auf alle Sedimentgesteine der geologischen Vergangenheit. Palaeontographica Abteilung B, vol. 84, p. 1–20. Reissinger, A., 1950: Die “Pollenanalyse” ausgedehnt auf alle Sedimentgesteine der geologischen Vergangenheit. Palaeontographica Abteilung B, vol. 90, p. 90–126. Ross, K., 1949: Investigations of the Senonian of the Kristianstad District, S. Sweden. 1. On a Cretaceous pollen and spore bearing clay deposit of Scania. Bulletin of the Geological Institution of the University of Upsala, vol. 34, p. 25–43. Schopf, J. M., Wilson, L. R. and Bentall, R., 1944: An annotated synopsis of Paleozoic fossil spores and the definition of generic groups. Illinois State Geological Survey, Report of Investigations, vol. 91, p. 1–73. Seward, A. C., 1894: The Wealden flora. I. Thallophyta-Pteridophyta, 179 p. Catalogue of the Mesozoic Plants in the Department of Geology 1. British Museum of Natural History, London. Shibata, M. and Goto, M., 2008: Report of the 3rd Dinosaur Excavation Project in Katsuyama, Fukui, 2007. Memoir of the Fukui Prefectural Dinosaur Museum, no. 7, p. 109–116. Skog, J. E., 1992: The Lower Cretaceous ferns in the genus Anemia (Schizaeaceae), Potomac Group of Virginia, and relationships within the genus. Review of Palaeobotany and Palynology, vol. 70, p. 279–295. Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H. and Wolf, P. G., 2006: A classification for extant ferns. Taxon, vol. 55, p. 705–731. Song, Z., Zheng, Y. and Liu, J., 1995: Palynological assemblages across the Cretaceous/Tertiary boundary in northern Jiangsu, eastern China. Cretaceous Research, vol. 16, p. 465–482. Song, Z., Zheng, Y., Liu, J., Ye, P., Wang, C. and Zhou, S., 1980: Cretaceous-Tertiary sporo-pollen assemblages of northern Jiangsu. Paper for the 5th International Palynological Conference, Nanjing Institute of Geology and Palaeontology, Academia Sinica, 17 p. Song, Z., Zheng, Y., Liu, J., Ye, P., Wang, C. and Zhou, S., 1981: Cretaceous-Tertiary palynological assemblages from Jiangsu, 270 p. Geological Publishing House, Beijing. (in Chinese with English abstract) Srivastava, S. K., 1975: Microspores from the Fredericksburgh Group (Albian) of the southern United States. Paléobiologie Continentale, vol. 6, p. 1–119.
Srivastava, S. K., 1976: The fossil pollen genus Classopollis. Lethaia, vol. 9, p. 437–457. Sukh-Dev, 1961: The fossil flora of Jabalpur Series 3. Spores and pollen grains. The Palaeobotanist, vol. 8, p. 43–56. Tekleva, M. V. and Krassilov, V. A., 2009: Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes. Review of Palaeobotany and Palynology, vol. 156, p. 130–138. Thiergart, F., 1938: Die Pollenflora der Niederlausitzer Braunkohle, besonders im Profil der Grube Marga bei Senftenberg. Jahrbuch der Preußischen Geologischen Landesanstalt zu Berlin, vol. 58, p. 282–356. Thomson, P. W. and Pflug, H., 1953: Pollen und Sporen des mitteleuropaischen Tertiars. Palaeontographica Abteilung B, vol. 94, p. 1–138. Tschudy, R. H., 1961: Palynomorphs as indicators of facies environments in Upper Cretaceous and Lower Tertiary strata, Colorado and Wyoming. Symposium on Late Cretaceous Rocks, Wyoming and Adjacent Areas, Wyoming Geological Association 16th Annual Field Conference Guidebook, p. 53–59. Umetsu, K., 2002: Organic microfossils discovered from the Tetori Group in the Izumi Village, Fukui Prefecture. Abstracts with Programs, 2002 Annual Meeting of the Palaeontological Society of Japan, p. 142. (in Japanese; original title translated) Umetsu, K. and Matsuoka, A., 2003: Early Cretaceous fossil spores and pollen from the Tetori Group in the upper reaches of the Kuzuryu river, Fukui Prefecture, central Japan. Journal of the Geological Society of Japan, vol. 109, p. 420–423. (in Japanese with English abstract) Umetsu, K. and Sato, Y., 2007: Early Cretaceous terrestrial palynomorph assemblages from the Miyako and Tetori groups, Japan, and their implication to paleophytogeographic provinces. Review of Palaeobotany and Palynology, vol. 144, p. 13–24. Upchurch, G. R. and Doyle, J., 1981: Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In, Romans, C. ed., Geobotany II, p. 167–202. Plenum, New York. Vakhrameev, V. A., 1991: Jurassic and Cretaceous Floras and Climates of the Earth, 318 p. Cambridge University Press, Cambridge. Venkatachala, B. S., Kar, R. K. and Raza, S., 1969: Palynology of the Mesozoic sediments of Kutch, W. India. 3. Morphological study and revision of the spore genus Trilobosporites Pant ex Potonié, 1956. The Palaeobotanist, vol. 17, p. 123–126. Watson, J. and Alvin, K. L., 1996: An English Wealden floral list, with comments on possible environmental indicators. Cretaceous Research, vol. 17, p. 5–26. Wetzel, O., 1933: Die in organischer Substanz erhaltenen Mikrofossilien des baltischen Kreide-Feuersteins mit einem sedimentpetrographischen und stratigraphischen Anhang (Schluß). Palaeontographica Abteilung A, vol. 78, p. 1–110. Williams, G. L. and Bujak, J. P., 1980: Palynological stratigraphy of Deep Sea Drilling Project Site 416. In, Lancelot, Y., Winterer, E. L. et al., Initial Reports of the Deep Sea Drilling Project, vol. 50, p. 467–495. U.S. Government Printing Office, Washington DC. Wilson, L. R. and Webster, R. M., 1946: Plant microfossils from a Fort Union coal of Montana. American Journal of Botany, vol. 33, p. 271–278. Wodehouse, R. P., 1933: The oil shales of the Eocene Green River Formation. Bulletin of the Torrey Botanical Club, vol. 60, p. 479– 535. Wolfe, H., 1934: Mikrofossilien des pliozänen Humodils der Grube Freigericht bei Dettingen a.M. und Vergleich mit ältern Schichten des Tertiärs sowie posttertiären Ablagerungen. Arbeiten aus dem
Palynoflora from the Kitadani Formation Institut für Paläobotanik und Petrographie der Brennsteine, vol. 5, p. 55–86. Yabe, A. and Kubota, K., 2004: Brachyphyllum obesum, newly discovered thermophilic conifer branch from the Lower Cretaceous Kitadani Formation of the Tetori Group, central Japan. Memoir of the Fukui Prefectural Dinosaur Museum, no. 3, p. 23–29. Yabe, A., Terada, K. and Sekido, S., 2003: The Tetori-Type Flora, revisited: a review. Memoir of the Fukui Prefectural Dinosaur Museum, no. 2, p. 23–42. Yabe, H., 1922: Notes on some Mesozoic plants from Japan, Korea and China, in the collection of the Institute of Geology and Paleontology of the Tohoku Imperial University. I. Science Reports of the Tohoku Imperial University, Second Series (Geology), vol. 7, no. 1, p. 1–48. Yamada, T., 2009: Vegetational history through Middle Jurassic to Early Cretaceous in Japan. Bunrui, vol. 9, p. 115–121. (in Japanese with English title)
229
Yamada, T. and Uemura, K., 2008: The plant fossils from the Kaizara Formation (Callovian, Jurassic) of the Tetori Group in the Izumi district, Fukui Prefecture, central Japan. Paleontological Research, vol. 12, p. 1–17. Yamakita, S. and Otoh, S., 2000: Cretaceous rearrangement processes of pre-Cretaceous geologic units of the Japanese Islands by MTLKurosegawa left-lateral strike-slip system. Memoirs of the Geological Society of Japan, vol. 56, p. 23–38. (in Japanese with English abstract) Yaskawa, K., 1975: Palaeolatitude and relative position of South-west Japan and Korea in the Cretaceous. Geophysical Journal of the Royal Astronomical Society, vol. 43, p. 835–846. Yu, J., Zhang, W., Zhao, Q. and Song, S., 1982: Late Jurassic and Early Cretaceous palynological assemblages from Minhe Basin, Qinghai and Gansu Provinces. Bulletin of Institute of Geology, Chinese Academy of Geological Sciences, vol. 5, p. 111–126. (in Chinese with English abstract)