Re-entrant jet . Cloud transported downstream . Vapor shedding. The mechanisms of the unsteady behavior are well simulated. t=0.01 s t=0.025 s t=0.075 s.
LPT with random walk model And interPhaseChangeFoam with non-homogeneous nuclei distribution.
Aurélia Vallier Division of Fluid Mechanics Department of Energy Sciences Lund Institute of Technology, Lund Sweden 1 Lund university / Energy Sciences / Fluid Mechanics
INTRODUCTION
Cavitation in hydro-turbines - Travelling bubble - Attached cavitation - Sheet cavitation - Cloud cavitation - Supercavitation - Vortex cavitation → interPhaseChangeFoam (based on Sauer model)
Lund university / Energy Sciences / Fluid Mechanics
OUTLINE
• Sauer model • Nuclei distribution • Sauer model with a non-uniform nuclei distribution
3 Lund university / Energy Sciences / Fluid Mechanics
SAUER MODEL Pressure drop
Cavitation number
σ=
p∞− p v 1/ 2ρu 2∞
4 n0 . πR 3 3 α= 4 1+ n0 . πR 3 3
Nuclei
Nuclei density n0 Nuclei radius R
Two phase flow
Interface tracking Transport equation Mass transfert
Volume Of Fluid
Turbulence
Turbulence model
RANS (2D) LES(3D)
Bubble dynamics
Rayleght-Plesset equation
Lund university / Energy Sciences / Fluid Mechanics
= v l 1− =v l 1− ∂ ˙ =m ∇ . U ∂t l
dR 2 p R− p ∞ = dt 3 l
4
SAUER MODEL - Achievements The mechanisms of the unsteady behavior are well simulated.
. Attached cavity t=0.01 s
. Re-entrant jet
t=0.025 s
. Cloud transported downstream
t=0.075 s
. Vapor shedding
Lund university / Energy Sciences / Fluid Mechanics
SAUER MODEL - Limitations The region with low void fraction is not reproduced correctly.
. Transition between the attached cavity and the cloud of vapor
. The break-off with many small structures
. Compressibility → collapse, shock wave, erosion
Lund university / Energy Sciences / Fluid Mechanics
SAUER MODEL Pressure drop
Cavitation number
σ=
p∞− p v 1/ 2ρu 2∞
4 n0 . πR 3 3 α= 4 1+ n0 . πR 3 3
Nuclei
Nuclei density n0 Nuclei radius R
Two phase flow
Interface tracking Transport equation Mass transfert
Volume Of Fluid
Turbulence
Turbulence model
RANS (2D) + RandomWalk LES(3D)
Bubble dynamics
Rayleght-Plesset equation
Lund university / Energy Sciences / Fluid Mechanics
= v l 1− =v l 1− ∂ ˙ =m ∇ . U ∂t l
dR 2 p R− p ∞ = dt 3 l
7
SAUER MODEL Pressure drop
Cavitation number
σ=
p∞− p v 1/ 2ρu 2∞
4 n0 . πR 3 3 α= 4 1+ n0 . πR 3 3
Nuclei
Nuclei density n0 Nuclei radius R
Two phase flow
Interface tracking Transport equation Mass transfert
Volume Of Fluid
Turbulence
Turbulence model
RANS (2D) + RandomWalk LES(3D)
Bubble dynamics
Rayleght-Plesset equation
Lund university / Energy Sciences / Fluid Mechanics
= v l 1− =v l 1− ∂ ˙ =m ∇ . U ∂t l
dR 2 p R− p ∞ = dt 3 l
8
SAUER MODEL Pressure drop
Cavitation number
σ=
Nuclei
Nuclei density n0 Nuclei radius R
Two phase flow
Interface tracking Transport equation Mass transfert
Turbulence
Bubble dynamics
Turbulence model
Volume Of Fluid
=v l 1− =v l 1− ∂ = m˙ ∇ . U ∂t l
RANS (2D) + RandomWalk LES(3D)
→ numerical simulations? Rayleght-Plesset equation
Lund university / Energy Sciences / Fluid Mechanics
1/ 2ρu 2∞
4 n0 . πR 3 3 α= 4 1+ n0 . πR 3 3
Nuclei distribution? Assumption: uniform Experiments : non uniform
p∞− p v
dR 2 p R− p∞ = dt 3 l
9
OUTLINE
• Sauer model • Nuclei distribution • Sauer model with a non-uniform nuclei distribution
10 Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - LPT Mean flow data (Converged, steady state solution – RANS)
U
Particles (Lagrangian Particle Tracking LPT)
P
x p , Dp ,U p ,mp
11 Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - LPT Mean flow data (Converged, steady state solution – RANS)
U
Particles (Lagrangian Particle Tracking LPT)
P
x p , Dp ,U p ,mp
{ 12 Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - LPT Mean flow data (Converged, steady state solution – RANS)
U
Particles (Lagrangian Particle Tracking LPT)
P
x p , Dp ,U p ,mp
{ Turbulence inhomogeneities Lund university / Energy Sciences / Fluid Mechanics
Random Walk model
13
NUCLEI DISTRIBUTION - Random walk model U ⇒ U =U U fluct U
fluct
= 2k /3
ue , t e , l e
N(0, 1)
Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - Random walk model U ⇒ U =U U fluct U
fluct
= 2k /3
ue , t e , l e
N(0, 1) Eddy life time
0.63 3/ 2 l e C k / t e= = ue 2k /3
le Particle transit time t tr =− P ln 1− P∣U −U P∣ Interaction time
t inter =min t e , t tr
Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION – Problem Set Up Wall U=0 m/s ∇p=0 Inlet Ux=8m/s ∇p=0
Outlet ∇U=0 p=0 Pa
Injection 500 particles / time step Dp=1 to 50 μm ρ=1000 (hard particle) Up=0 Solution method LPT one way coupling with/without Random Walk Average on 50 flow-through periods Lund university / Energy Sciences / Fluid Mechanics
16
NUCLEI DISTRIBUTION - Results
Dp=40 μm
Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - Results
Dp=1 μm
Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - Results
Lund university / Energy Sciences / Fluid Mechanics
NUCLEI DISTRIBUTION - Results
Dp=50 μm Lund university / Energy Sciences / Fluid Mechanics
SAUER MODEL Pressure drop
Cavitation number
σ=
Nuclei
Nuclei density n0 Nuclei radius R
Two phase flow
Interface tracking Transport equation Mass transfert
Nuclei distribution?
Assumption: uniform Experiment: non uniform Turbulence model LPTTurbulence simulations: non uniform
p∞− p v 1/ 2ρu 2∞
4 n0 . πR 3 3 α= 4 1+ n0 . πR 3 3
Volume Of Fluid
= v l 1− =v l 1− ∂ ˙ =m ∇ . U ∂t l
RANS (2D) + RandomWalk LES(3D)
Bubble dynamics of Sauer model Rayleght-Plesset → sensitivity to a equation non uniform nuclei content?
dR 2 p R− p ∞ = dt 3 l
Lund university / Energy Sciences / Fluid Mechanics
21
OUTLINE
• Sauer model • Nuclei distribution • Sauer model with a non-uniform nuclei distribution
22 Lund university / Energy Sciences / Fluid Mechanics
NON UNIFORM NUCLEI CONTENT • InterPhaseChangeFoam n0=1e8 • Nuclei density Smaller nuclei density N=1e2 or 1e4 Large nuclei density n0=1e8 Thickness of the layer =0.5, 1, 2 or 4 mm • MyInterPhaseChangeFoam - volScalarField n0nonunif - funkySetField (1e-6 or 1e-4 in the domain, and 1 in the layer) - n0 → n0nonunif . n0 Lund university / Energy Sciences / Fluid Mechanics
NON UNIFORM NUCLEI CONTENT
Lund university / Energy Sciences / Fluid Mechanics
NON UNIFORM NUCLEI CONTENT Uniform N =
t=0.02s
t=0.03s
Lund university / Energy Sciences / Fluid Mechanics
t=0.05s
t=0.06s
t=0.07s
Lund university / Energy Sciences / Fluid Mechanics
CONCLUSIONS • Performances/limitations of Sauer model • Non uniform nuclei content → inception, → thickness and velocity of the re-entrant jet, → shape of the cavitating structures and volume of vapor.
Lund university / Energy Sciences / Fluid Mechanics