Lucas Numbers and Lucas Polynomials - Science and Education

2 downloads 0 Views 197KB Size Report
Jun 7, 2017 - Fibonacci and Lucas numbers have been studied by many researchers for a long time to get intrinsic theory and applications of these numbersย ...
Turkish Journal of Analysis and Number Theory, 2017, Vol. 5, No. 4, 121-125 Available online at http://pubs.sciepub.com/tjant/5/4/1 ยฉScience and Education Publishing DOI:10.12691/tjant-5-4-1

On the ๐’Œ๐’Œ -Lucas Numbers and Lucas Polynomials Ali Boussayoud1,*, Mohamed Kerada1, Nesrine Harrouche2

1

LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria 2 Department of Mathematics, University of Jordan, Amman 11942, Jordan *Corresponding author: [email protected]

Received December 23, 2016; Revised May 11, 2017; Accepted June 07, 2017

Abstract In this paper, we introduce an operator in order to derive some new symmetric properties of ๐‘˜๐‘˜-Lucas numbers and Lucas polynomials. By making use of the operator defined in this paper, we give some new generating functions for ๐‘˜๐‘˜ -Lucas numbers and Lucas polynomials. Keywords: k-Lucas numbers, Lucas polynomials, generating functions

Cite This Article: Ali Boussayoud, Mohamed Kerada, and Nesrine Harrouche, โ€œOn the ๐‘˜๐‘˜ -Lucas Numbers and Lucas Polynomials.โ€ Turkish Journal of Analysis and Number Theory, vol. 5, no. 4 (2017): 121-125. doi: 10.12691/tjant-5-4-1. ek = ( x1 , x2 ,โ€ฆ, xn )

1. Introduction Fibonacci and Lucas numbers have been studied by many researchers for a long time to get intrinsic theory and applications of these numbers in many research areas as Physics, Engineering, Architecture, Nature and Art. For example, the ratio of two consecutive numbers converges

1+ 5 which was thoroughly 2 interested in [13]. We should recall that, for kโˆˆ โ„+ , and k-Lucas k-Fibonacci Lk ,n Fk,n to the Golden ratio ฮฑ =

{

}nโˆˆ๏Ž

{

}nโˆˆ๏Ž

sequences have been defined by the recursive equations [9,10]; = F k , n + 2 kFk , n +1 + Fk , n , L= k , n + 2 kLk , n +1 + Lk , n ,

with initial conditions Fk ,0 = 1, Fk ,1 = k and Lk ,0 = 2,

Lk ,1 = k , respectively. For the special case k=1, it is clear that these two sequences are simplified to the well-known Fibonacci and Lucas sequences, respectively. In this contribution, we shall define a new useful operator

โˆ‘

x11 x22 โ€ฆ xnin , 0 โ‰ค k โ‰ค n.

With ๐‘–๐‘–1 , ๐‘–๐‘–2 , โ€ฆ , ๐‘–๐‘–๐‘›๐‘› = 0 or 1,

x11 x22 โ€ฆ xnin , 0 โ‰ค k โ‰ค n.

hk = ( x1 , x2 ,โ€ฆ, xn )

i1 +i2 +โ€ฆ+in = k

โˆ‘

i1 +i2 +โ€ฆ+in = k

i

i

i

i

With ๐‘–๐‘–1 , ๐‘–๐‘–2 , โ€ฆ , ๐‘–๐‘–๐‘›๐‘› โ‰ฅ 0, First, we set ๐‘’๐‘’0 (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) = 1 and โ„Ž0 (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) = 1 (by convention). For ๐‘˜๐‘˜ > ๐‘›๐‘› or k < 0 , we set

ek ( x1 , x= = 2 , โ€ฆ, xn ) 0 and hk ( x1 , x 2 , โ€ฆ, xn ) 0.

Definition 1. [1] Let ๐ต๐ต and ๐‘ƒ๐‘ƒ be any two alphabets, then we give ๐‘†๐‘†๐‘›๐‘› (๐ต๐ต โˆ’ ๐‘ƒ๐‘ƒ) by the following form:

โˆ pโˆˆP(1 โˆ’ pt ) โˆž = โˆ‘ Sn ( B โˆ’ P ) t n , โˆ bโˆˆB(1 โˆ’ bt ) n=0

with the condition ๐‘†๐‘†๐‘›๐‘› (๐ต๐ต โˆ’ ๐‘ƒ๐‘ƒ) = 0 for ๐‘›๐‘› < 0.

Definition 2. [2] Let ๐‘”๐‘” be any function on R n , then we consider the divided difference operator as the following form

๏ฃฎ g ( x1 , โ€ฆ, xi , xi +1 , โ€ฆ, xn ) ๏ฃน denoted by ฮด pk p for which we can formulate, extend and 1 2 ๏ฃฏ ๏ฃบ ๏ฃฏ โˆ’ g ( x1 , โ€ฆ xi โˆ’1 , xi +1 , xi , โ€ฆ, xn ) ๏ฃป๏ฃบ ๏ฃฐ prove new results based on our previous ones [4,5,6]. In โˆ‚ xi , xi +1 ( g ) = . order to determine generating functions for k-Fibonacci xi โˆ’ xi +1 numbers, ๐‘˜๐‘˜ -Lucas numbers and Lucas polynomials, we Definition 3. [7] The symmetrizing operator ๐›ฟ๐›ฟ๐‘๐‘๐‘˜๐‘˜1 ๐‘๐‘ 2 is combine between our indicated past techniques and these defined by presented polishing approaches. Let ๐‘˜๐‘˜ and ๐‘›๐‘› be two positive integers and {๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› } p1k g ( p1 ) โˆ’ p2k g ( p2 ) are set of given variables, recall [8] that = the ๐‘˜๐‘˜ -th ฮด pk p g ( p1 ) for all k โˆˆ ๏Ž. 1 2 p1 โˆ’ p2 elementary symmetric function ๐‘’๐‘’๐‘˜๐‘˜ (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) and the ๐‘˜๐‘˜ -th complete homogeneous symmetric function Remark 1. Let ๐‘ƒ๐‘ƒ = {๐‘๐‘1 , ๐‘๐‘2 } an alphabet, we have โ„Ž๐‘˜๐‘˜ (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) are defined respectively by

122

Turkish Journal of Analysis and Number Theory

hk ( p1 , p2 )= Sk ( p1 + p2 )= ฮด pk p ( p1 ) . 1 2

lim

= ฯƒ r.

n โ†’โˆž Lk , n

2. The ๐’Œ๐’Œ-Lucas Numbers and Properties

The ๐‘˜๐‘˜ -Lucas numbers have been defined in [11] for any number ๐‘˜๐‘˜ as follows. Definition 4. [11] For any positive real number, the ๐‘˜๐‘˜ -Lucas numbers, say ๏ฟฝ๐ฟ๐ฟ๐‘˜๐‘˜,๐‘›๐‘› ๏ฟฝ๐‘›๐‘›โˆˆโ„• is defined recurrently by

Lk ,n +1 =+ kLk ,n Lk ,n โˆ’1 for n โ‰ฅ 1,

Lk ,n + r

(2.1)

with initial conditions ๐ฟ๐ฟ๐‘˜๐‘˜ ,0 = 2, ๐ฟ๐ฟ๐‘˜๐‘˜,1 = ๐‘˜๐‘˜. Note that if ๐‘˜๐‘˜ is a real variable ๐‘ฅ๐‘ฅ then ๐ฟ๐ฟ๐‘˜๐‘˜ ,๐‘›๐‘› = ๐ฟ๐ฟ๐‘ฅ๐‘ฅ ,๐‘›๐‘› and they correspond to the Lucas polynomials defined by

๏ฃฑ2 if n = 0 ๏ฃด if n 1 . Ln +1 ( x ) ๏ฃฒ= x = ๏ฃด xL x + L ๏ฃณ n ( ) n โˆ’1 ( x ) if n > 1

In addition, the general term of the ๐‘˜๐‘˜ -Lucas numbers may be obtained by the formula [10]:

= Lk ,n kFk ,n โˆ’1 + Fk ,n +1.

3. On the Symmetric Functions of Some Numbers and Polynomails Theorem 1. [4] Let ๐‘ƒ๐‘ƒ and ๐ต๐ต be two alphabets, respectively, {๐‘๐‘1 , ๐‘๐‘2 } and {๐‘๐‘1 , ๐‘๐‘2 , ๐‘๐‘3 } , then we have โˆž

โˆ‘ hn (b1, b2 , b3 )hn ( p1, p2 ) t n

n =0

๏ฃซ 1 โˆ’ p1 p2 e2 ( b1 , b2 , b3 ) t 2 ๏ฃถ ๏ฃฌ ๏ฃท ๏ฃฌ โˆ’ p p e (b , b , b ) h ( p , p ) t3 ๏ฃท ๏ฃญ 1 2 2 1 2 3 1 1 2 ๏ฃธ

(3.1)

= . Particular cases of the ๐‘˜๐‘˜ -Lucas numbers are โˆž โˆž n n n n e ( b , b , b ) p t e ( b , b , b ) p t โˆ‘ n 0= โˆ‘n 0 n 1 2 3 2 n 1 2 3 1 โ€ข If ๐‘˜๐‘˜ = 1, the classical Lucas numbers is obtained: =

)(

(

L0 2,= L1 1, and =

In the case ๐ต๐ต = {1} based on Theorem 1, we deduce the following Lemmas. Lemma 1. Given an alphabet ๐‘ƒ๐‘ƒ = {๐‘๐‘1 , โˆ’๐‘๐‘2 }, we have

Ln +1 = Ln + Ln โˆ’1 for n โ‰ฅ 1:

= {Ln }nโˆˆ๏Ž

{2,1,3, 4, 7,โ€ฆ} .

โˆž

โˆ‘ hn ( p1,[โˆ’ p2 ]) t n = 1โˆ’ p โˆ’ p

โ€ข If ๐‘˜๐‘˜ = 2, the Pell-Lucas numbers appears:

Qn +1 = 2Qn + Qn โˆ’1 for n โ‰ฅ 1

such that

The well-known Binet's formula in the Lucas numbers theory allows us to express the ๐‘˜๐‘˜ -Lucas number in function of the roots ๐‘Ÿ๐‘Ÿ1 and ๐‘Ÿ๐‘Ÿ2 of the characteristic equation, associated to the recurrence relation (2.1): (2.2)

Proposition 1. (Binet's formula) The nth ๐‘˜๐‘˜ -Lucas number is given by Lk ,n

r n โˆ’ r2n , = 1 r1 โˆ’ r2

where ๐‘Ÿ๐‘Ÿ1 , ๐‘Ÿ๐‘Ÿ2 are the roots of the characteristic equation (2.2) and ๐‘Ÿ๐‘Ÿ1 > ๐‘Ÿ๐‘Ÿ2 . Proof . The roots of the characteristic equation (2.2) are

k โˆ’ k2 + 4 k + k2 + 4 and r2 = . 2 2 Note that, since ๐‘˜๐‘˜ > 0, the ๐‘Ÿ๐‘Ÿ2 < 0 < ๐‘Ÿ๐‘Ÿ1 and |๐‘Ÿ๐‘Ÿ2 | < |๐‘Ÿ๐‘Ÿ1 |, ๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2 = ๐‘˜๐‘˜ and ๐‘Ÿ๐‘Ÿ1 . ๐‘Ÿ๐‘Ÿ2 = โˆ’1, ๐‘Ÿ๐‘Ÿ1 โˆ’ ๐‘Ÿ๐‘Ÿ2 = โˆš๐‘˜๐‘˜ 2 + 4. If ๐œŽ๐œŽ denotes the positive root of the characteristic equation, the general term may be written in the form [10] r1 =

Lk ,n =

ฯƒ n โˆ’ ฯƒ โˆ’n ฯƒ +ฯƒ

2

) t โˆ’ p1 p2t 2

. (3.2)

โˆž

formula (3.2) can be written as: โˆž

n n p โˆ‘ โˆž 0= p1n t n โˆ’ p2 โˆ‘ โˆž n 0[ โˆ’ p2 ] t p1 โˆ’ [โˆ’ p2 ]

n n 1 n ฮด p1[ โˆ’ p2 ] โˆ‘ p= 1t = n =0

= =

โˆž

โˆ‘

n =0 โˆž

p1n +1 โˆ’ [โˆ’ p2 ]n +1 n t p1 โˆ’ [โˆ’ p2 ]

โˆ‘ hn ( p1,[โˆ’ p2 ])t n .

n =0

white the right -hand side can be expressed as

p1 1โˆ’1p t โˆ’ [โˆ’ p2 ] 1โˆ’[ โˆ’1p ]t 1 1 2 ฮด p1[ โˆ’ p2 ] = 1 โˆ’ p1t p1 โˆ’ [โˆ’ p2 ] = = =

โˆ’1

and the limit of the quotient of two terms is

1

1

โˆ‘ nโ‰ฅ0 p1t n and (1 โˆ’ p1t ) be two sequences โˆž โˆ‘ nโ‰ฅ0 p1nt n = 1 โˆ’1p1t , the left-hand side of the

Proof. Let

{2, 2, 6,14,34,โ€ฆ} .

r 2= kr + 1.

(

n =0

= Q0 2,= Q1 2, and

= {Qn }nโˆˆ๏Ž

)

=

p1 1โˆ’1p t โˆ’ [โˆ’ p2 ] 1+ 1p

2t

1

p1 โˆ’ [โˆ’ p2 ] p1 (1 + p2t ) + p2 (1 โˆ’ p1t ) ( p1 + p2 )(1 โˆ’ p1t )(1 + p2t ) p1 + p2 ( p1 + p2 )(1 โˆ’ ( p1 โˆ’ p2 )t โˆ’ p1 p2t 2 ) 1 1 โˆ’ ( p1 โˆ’ p2 )t โˆ’ p1 p2t 2

Turkish Journal of Analysis and Number Theory

This completes the proof. Lemma 2. Given an alphabet ๐‘ƒ๐‘ƒ = {๐‘๐‘1 , โˆ’๐‘๐‘2 } , we have

โˆž

โˆ‘ hn ( p1,[โˆ’ p2 ]) t n=

โˆž

1

โˆ‘ Fk ,nt n=

1 โˆ’ kt โˆ’ t 2

= n 0= n 0

โˆž

p โˆ’ p + p1 p2t . (3.3) ( 1 2 ) t โˆ’ p1 p2t 2

1 2 โˆ‘ hn+1 ( p1,[โˆ’ p2 ]) t n = 1โˆ’ p โˆ’ p

n =0

Proof. Let

123

โˆž

โˆ‘ nโ‰ฅ0 p1t n

and (1 โˆ’ p1t ) be two sequences

โˆž pnt n nโ‰ฅ0 1

such that โˆ‘ = 1 , the left-hand side of the 1 โˆ’ p1t formula (3.3) can be written as: โˆž

ฮด 2 p1[ โˆ’ p2 ] โˆ‘ p1n t n = n =0

n n p12 โˆ‘ โˆž n =0 p1 t p1 โˆ’ [โˆ’ p2 ]

โˆ’ = =

[โˆ’ p2 ]

2

โˆ‘

n =0 โˆž

n n โˆ‘โˆž n =0[ โˆ’ p2 ] t

p1n + 2 โˆ’ [โˆ’ p2 ]n + 2 n t p1 โˆ’ [โˆ’ p2 ]

โˆ‘ hn+1 ( p1,[โˆ’ p2 ])t n .

n =0

which represents a generatings functions for ๐‘˜๐‘˜ -Fibonacci numbers (with ๐‘๐‘1 = ๐‘Ÿ๐‘Ÿ1 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž [โˆ’๐‘๐‘2 ] = ๐‘Ÿ๐‘Ÿ2 ). โˆž

k +t

, โˆ‘ hn+1 ( p1,[โˆ’ p2 ]) t n = 1 โˆ’ kt โˆ’ kt 2

p12 1โˆ’1p t โˆ’ [โˆ’ p2 ]2 1โˆ’[ โˆ’1p ]t 1 1 2 ฮด p1[ โˆ’ p2 ] = 1 โˆ’ p1t p1 โˆ’ [โˆ’ p2 ] 2

p2t ) โˆ’ = ( p1 + p2 )(1 โˆ’ p1t )(1 + p2t )

p22 (1 โˆ’ p1t )

p12 + p12 p2t โˆ’ p22 + p22 p1t = ( p1 + p2 )(1 โˆ’ ( p1 โˆ’ p2 )t โˆ’ p1 p2t 2 ) =

p12 โˆ’ p22 + p1 p2 ( p1 + p2 )t ( p1 + p2 )(1 โˆ’ ( p1 โˆ’ p2 )t โˆ’ p1 p2t 2 )

=

p1 โˆ’ p2 + p1 p2t . 1 โˆ’ ( p1 โˆ’ p2 )t โˆ’ p1 p2t 2

This completes the proof. Taking ๐‘๐‘1 โˆ’ ๐‘๐‘2 = 1 and ๐‘๐‘1 ๐‘๐‘2 = 1 in (3.2) and (3.3), we obtain the generating functions given by Boussayoud et al [5] which arises 1) The generating function of the Fibonacci numbers โˆž

1

โˆ‘ Fnt n = 1 โˆ’ t โˆ’ t 2 .

which represents a new generatings functions. โ€ข Multiplying the equation (3.4) by (2 + ๐‘˜๐‘˜ 2 ) and subtract it from (3.5) by (๐‘˜๐‘˜) , we obtain

โˆ‘ [( 2 + k 2 ) hn ( p1,[โˆ’ p2 ]) โˆ’ khn+1 ( p1,[โˆ’ p2 ])]t n

n =0

=

2 โˆ’ kt 1 โˆ’ kt โˆ’ t 2

,

from which we have the following theorem. Theorem 3. For n โˆˆ โ„• , the generating function of the ๐‘˜๐‘˜ -Lucas numbers is given by โˆž

โˆ‘ Lnt n = 1 โˆ’ t โˆ’ t 2 .

n =0

( โˆ’1)n+1 Fk ,n ,

2) Lk ,โˆ’ n =

( โˆ’1)n Lk ,n

hold for all ๐‘›๐‘› โ‰ฅ 0.

๐‘๐‘1 ๐‘๐‘2 = 1 and ๐‘๐‘1 โˆ’ ๐‘๐‘2 = ๐‘˜๐‘˜ substituting in (3.2) and (3.3) we end up with Choosing ๐‘๐‘1 and ๐‘๐‘2 such that ๏ฟฝ

โ€ข Put ๐‘˜๐‘˜ = 2 in the relationship (3.6) we have โˆž

2 โˆ’ 2t

โˆ‘Qnt n = 1 โˆ’ 2t โˆ’ t 2 ,

n =0

which represents a generating function for Pell-Lucas numbers [5]. Replacing ๐‘ก๐‘ก by (โˆ’๐‘ก๐‘ก) in (3.4) and (3.6), we have the following theorems. Theorem 4. We have the following a new generating function of the ๐‘˜๐‘˜ -Fibonacci numbers at negative indices as โˆž

1

โˆ‘ Fk ,โˆ’nt n = t 2 โˆ’ kt โˆ’ 1 .

n =0

Proof. The ordinary generating function associated is defined by

G ( Fk , n , t ) =

โˆž

โˆ‘ Fk , nt n .

n =0

โˆ‘ Fk , nt n =

Fk , 0t 0 + Fk ,1t +

โˆž

โˆ‘ Fk , nt n

= n 0= n 2 โˆž โˆž =1 + kt + kFk , n โˆ’1t n + Fk , n โˆ’ 2t n . = n 2= n 2

Proposition 2. [10,12] The relations 1) Fk ,โˆ’ n =

(3.6)

n =0

โˆž

2) The generating function of the Lucas numbers

2โˆ’t

2 โˆ’ kt

โˆ‘ Lk ,nt n = 1 โˆ’ kt โˆ’ t 2 .

Using the initial conditions, we get

n =0

โˆž

(3.5)

n =0

white the right-hand side can be expressed as:

p12 (1 +

(3.4)

โˆž

p1 โˆ’ [โˆ’ p2 ] โˆž

,

โˆ‘

Consider that written by

โˆ‘

j= n โˆ’ 2 and p= n โˆ’ 1 . Then can be โˆž

โˆž

=1 + kt + t โˆ‘kFk , n t n + t 2 โˆ‘ Fk , n t n

= n 1 =j 0 โˆž

โˆž

=1 + kt + kt โˆ‘ Fk , n t n โˆ’ kt + t 2 โˆ‘ Fk , n t n ,

= p 0=j 0

124

Turkish Journal of Analysis and Number Theory

which is equivalent to

(

1 โˆ’ kt โˆ’ t 2

Proof. The ordinary generating function associated is defined by

โˆž

) nโˆ‘=0Fk , nt n =1

โ‡’

G ( Ln ( x), t ) =

โˆž

1

. โˆ‘ Fk , nt n = 1 โˆ’ kt โˆ’ t 2

โˆž

Replacing t by (โˆ’t ) , we have

โˆ‘ Ln ( x)t n

= n 0= n 2 โˆž

=2 + xt +

โˆž

=2 + xt + x โˆ‘ Ln โˆ’1 ( x)t n +

n

1

โˆž

โˆž

This completes the proof. Theorem 5. We have the following a new generating function of the k -Lucas numbers at negative indices as

2 + kt

โˆ‘ Lk ,โˆ’nt n = 1 + kt โˆ’ t 2 .

(3.7)

โˆ‘Qโˆ’nt

n =0

=

1 + 2t โˆ’ t 2

,

โˆž

โˆž

=2 + xt + xt โˆ‘ L p ( x)t p โˆ’ 2 xt + t 2 โˆ‘ L j ( x)t j ,

โˆž

1

(3.8)

n =0

which represents a generating function of the Fibonacci polynomials

n =0

โˆž

โ‡’

x+t , โˆ‘ hn+1 ( p1,[โˆ’ p2 ]) t n = 1 โˆ’ xt โˆ’ kt 2 n =0

(3.9)

which represents a new generatings functions. โ€ข Multiplying the equation (3.8) by (2 + ๐‘ฅ๐‘ฅ 2 ) and subtract it from (3.9) by (๐‘ฅ๐‘ฅ) , we obtain

)

โˆ‘ [ x2 + 2 hn ( p1,[โˆ’ p2 ]) โˆ’ xhn+1 ( p1,[โˆ’ p2 ])]t n

2 โˆ’ xt

. โˆ‘ Ln ( x)t n = 1 โˆ’ xt โˆ’ t 2

n =0

This completes the proof. Replacing ๐‘ก๐‘ก by (โˆ’๐‘ก๐‘ก) in (3.8) and (3.10), we have the following theorems. Theorem 7. We have the following a new generating function of the Fibonacci polynomials at negative coefficient as โˆž

โˆž

1 โˆ’ xt โˆ’ t 2

โˆž

(1 โˆ’ xt โˆ’ t 2 ) โˆ‘ Ln ( x)t n =2 โˆ’ xt

โˆ‘ Fn ( x)t n = 1 โˆ’ xt โˆ’ t 2 ,

2 โˆ’ xt

โˆž

=2 + xt + xt ( โˆ‘ L p ( x)t p โˆ’ L0 ( x)) + t 2 โˆ‘ L j ( x)t j

which is equivalent to

which represents a generating function for Pell-Lucas numbers at negative indices [3]. ๐‘๐‘ ๐‘๐‘ = 1 and Choosing ๐‘๐‘1 and ๐‘๐‘2 such that ๏ฟฝ 1 2 ๐‘๐‘1 โˆ’ ๐‘๐‘2 = ๐‘ฅ๐‘ฅ substituting in (3.2) and (3.3) we end up with โˆž

= p 1 =j 0

= p 0=j 0

โ€ข Put k = 2 in the relationship (3.7) we have

2 + 2t

โˆž

=2 + xt + x( โˆ‘ L p ( x)t p +1 ) + t 2 โˆ‘ L j ( x)t j

= p 0=j 0

n =0

n

j= n โˆ’ 2 and p= n โˆ’ 1 . Then can be

Consider that written by

1 โ‡’ โˆ‘ Fk ,โˆ’ n t = . 2 t โˆ’ kt โˆ’ 1 n =0

โˆž

โˆž

โˆ‘ Lnโˆ’2 ( x)t n .

= n 2= n 2

n

โˆž

โˆ‘ ( xLnโˆ’1 ( x) + Lnโˆ’2 ( x))t n

n=2 โˆž

n =0

=

โˆž

1 , โˆ‘ (โˆ’1) Fk , nt = 1 + kt โˆ’ t 2 n =0 n

โˆ‘ (โˆ’1)n+1 Fk , nt n = t 2 โˆ’ kt โˆ’ 1

( n =0

n =0

โˆ‘ Ln ( x)t n = L0 ( x)t 0 + L1 ( x)t +

therefore

โˆž

โˆ‘ Ln ( x)t n .

Using the initial conditions, we get

n =0

โˆž

โˆž

1

. โˆ‘ Fn (โˆ’ x)t n = 1 + xt โˆ’ t 2

n =0

Theorem 8. We have the following a new generating function of the Lucas polynomials at negative coefficient as โˆž

2 + xt

. โˆ‘ Ln (โˆ’ x)t n = 1 + xt โˆ’ t 2

n =0

.

4. Conclusion

Thus we get the following theorem. Theorem 6. We have the following a generating function of the Lucas polynomials as โˆž

2 โˆ’ xt

โˆ‘ n=0 Ln ( x)t n = 1 โˆ’ xt โˆ’ t 2 .

(3.10)

In this paper, a new theorem has been proposed in order to determine the generating functions. The proposed theorem is based on the symmetric functions. The obtained results agree with the results obtained in some previous works.

Turkish Journal of Analysis and Number Theory

Acknowledgments

[6] [7]

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

[8]

References

[9]

[1]

[10]

[2] [3] [4] [5]

A. Abderrezzak, Gรฉnรฉralisation de la transformation d'Euler d'une sรฉrie formelle, Adv. Math. 103, 1994, 180-195. A. Abderrezzak, M. Kerada, A. Boussayoud, Generalization of Some Hadamard Product, Commun. Appl. Anal. 20(3), 301-306, (2016). A. Boussayoud, M. Boulyer, M. Kerada, On Some Identities and Symmetric Functions for Lucas and Pell Numbers, Electron .J.Math. AnalysisAppl. 5, 2017, 202-207. A. Boussayoud, N. Harrouche, Complete Symmetric Functions and ๐‘˜๐‘˜ - Fibonacci Numbers, Commun. Appl. Anal. 20(4), 2016, 457-467. A. Boussayoud, M. Kerada, M. Boulyer, A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math.108, 2016, 503-511.

[11] [12] [13] [14] [15]

125

A. Boussayoud, A. Abderrezzak, M. Kerada, Some applications of symmetric functions, Integers. 15, A#48, 2015, 1-7. A. Boussayoud, M. Kerada, A. Abderrezzak, A Generalization of Some Orthogonal Polynomials, Springer Proc. Math. Stat. 41, 2013, 229-235. M. Merca, A Generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math. 45, 2014, 75-89. S. Falcon, A. Plaza, On the Fibonacci k - numbers, Chaos, Sulutions & Fractals. 32, 2007, 1615-1624. S. Falcon, On the ๐‘˜๐‘˜ -Lucas Numbers of Arithmetic Indexes, Appl. Math. 3, 2012, 1202-1206. S. Falcon, On the k-Lucas numbers, J.Math.Comput.Sci. 2, 2012, 425-434. S. Falcon, On the complex k-Fibonacci numbers, Cogent Math. 3, 2016, 1-9. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001. Y. K.Gupta, V. H. Badshah, M. Singh, K. Sisodiya, Some Identities of Tribonacci Polynomials, Turkish Journal of Analysis and Number Theory. 4, 2016, 20-22. Y. K.Gupta, V. H. Badshah, M. Singh, K. Sisodiya, Diagonal Function of k-Lucas Polynomials, Turkish Journal of Analysis and Number Theory. 3, 2015, 49-52.