Turkish Journal of Analysis and Number Theory, 2017, Vol. 5, No. 4, 121-125 Available online at http://pubs.sciepub.com/tjant/5/4/1 ยฉScience and Education Publishing DOI:10.12691/tjant-5-4-1
On the ๐๐ -Lucas Numbers and Lucas Polynomials Ali Boussayoud1,*, Mohamed Kerada1, Nesrine Harrouche2
1
LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria 2 Department of Mathematics, University of Jordan, Amman 11942, Jordan *Corresponding author:
[email protected]
Received December 23, 2016; Revised May 11, 2017; Accepted June 07, 2017
Abstract In this paper, we introduce an operator in order to derive some new symmetric properties of ๐๐-Lucas numbers and Lucas polynomials. By making use of the operator defined in this paper, we give some new generating functions for ๐๐ -Lucas numbers and Lucas polynomials. Keywords: k-Lucas numbers, Lucas polynomials, generating functions
Cite This Article: Ali Boussayoud, Mohamed Kerada, and Nesrine Harrouche, โOn the ๐๐ -Lucas Numbers and Lucas Polynomials.โ Turkish Journal of Analysis and Number Theory, vol. 5, no. 4 (2017): 121-125. doi: 10.12691/tjant-5-4-1. ek = ( x1 , x2 ,โฆ, xn )
1. Introduction Fibonacci and Lucas numbers have been studied by many researchers for a long time to get intrinsic theory and applications of these numbers in many research areas as Physics, Engineering, Architecture, Nature and Art. For example, the ratio of two consecutive numbers converges
1+ 5 which was thoroughly 2 interested in [13]. We should recall that, for kโ โ+ , and k-Lucas k-Fibonacci Lk ,n Fk,n to the Golden ratio ฮฑ =
{
}nโ๏
{
}nโ๏
sequences have been defined by the recursive equations [9,10]; = F k , n + 2 kFk , n +1 + Fk , n , L= k , n + 2 kLk , n +1 + Lk , n ,
with initial conditions Fk ,0 = 1, Fk ,1 = k and Lk ,0 = 2,
Lk ,1 = k , respectively. For the special case k=1, it is clear that these two sequences are simplified to the well-known Fibonacci and Lucas sequences, respectively. In this contribution, we shall define a new useful operator
โ
x11 x22 โฆ xnin , 0 โค k โค n.
With ๐๐1 , ๐๐2 , โฆ , ๐๐๐๐ = 0 or 1,
x11 x22 โฆ xnin , 0 โค k โค n.
hk = ( x1 , x2 ,โฆ, xn )
i1 +i2 +โฆ+in = k
โ
i1 +i2 +โฆ+in = k
i
i
i
i
With ๐๐1 , ๐๐2 , โฆ , ๐๐๐๐ โฅ 0, First, we set ๐๐0 (๐ฅ๐ฅ1 , ๐ฅ๐ฅ2 , โฆ , ๐ฅ๐ฅ๐๐ ) = 1 and โ0 (๐ฅ๐ฅ1 , ๐ฅ๐ฅ2 , โฆ , ๐ฅ๐ฅ๐๐ ) = 1 (by convention). For ๐๐ > ๐๐ or k < 0 , we set
ek ( x1 , x= = 2 , โฆ, xn ) 0 and hk ( x1 , x 2 , โฆ, xn ) 0.
Definition 1. [1] Let ๐ต๐ต and ๐๐ be any two alphabets, then we give ๐๐๐๐ (๐ต๐ต โ ๐๐) by the following form:
โ pโP(1 โ pt ) โ = โ Sn ( B โ P ) t n , โ bโB(1 โ bt ) n=0
with the condition ๐๐๐๐ (๐ต๐ต โ ๐๐) = 0 for ๐๐ < 0.
Definition 2. [2] Let ๐๐ be any function on R n , then we consider the divided difference operator as the following form
๏ฃฎ g ( x1 , โฆ, xi , xi +1 , โฆ, xn ) ๏ฃน denoted by ฮด pk p for which we can formulate, extend and 1 2 ๏ฃฏ ๏ฃบ ๏ฃฏ โ g ( x1 , โฆ xi โ1 , xi +1 , xi , โฆ, xn ) ๏ฃป๏ฃบ ๏ฃฐ prove new results based on our previous ones [4,5,6]. In โ xi , xi +1 ( g ) = . order to determine generating functions for k-Fibonacci xi โ xi +1 numbers, ๐๐ -Lucas numbers and Lucas polynomials, we Definition 3. [7] The symmetrizing operator ๐ฟ๐ฟ๐๐๐๐1 ๐๐ 2 is combine between our indicated past techniques and these defined by presented polishing approaches. Let ๐๐ and ๐๐ be two positive integers and {๐ฅ๐ฅ1 , ๐ฅ๐ฅ2 , โฆ , ๐ฅ๐ฅ๐๐ } p1k g ( p1 ) โ p2k g ( p2 ) are set of given variables, recall [8] that = the ๐๐ -th ฮด pk p g ( p1 ) for all k โ ๏. 1 2 p1 โ p2 elementary symmetric function ๐๐๐๐ (๐ฅ๐ฅ1 , ๐ฅ๐ฅ2 , โฆ , ๐ฅ๐ฅ๐๐ ) and the ๐๐ -th complete homogeneous symmetric function Remark 1. Let ๐๐ = {๐๐1 , ๐๐2 } an alphabet, we have โ๐๐ (๐ฅ๐ฅ1 , ๐ฅ๐ฅ2 , โฆ , ๐ฅ๐ฅ๐๐ ) are defined respectively by
122
Turkish Journal of Analysis and Number Theory
hk ( p1 , p2 )= Sk ( p1 + p2 )= ฮด pk p ( p1 ) . 1 2
lim
= ฯ r.
n โโ Lk , n
2. The ๐๐-Lucas Numbers and Properties
The ๐๐ -Lucas numbers have been defined in [11] for any number ๐๐ as follows. Definition 4. [11] For any positive real number, the ๐๐ -Lucas numbers, say ๏ฟฝ๐ฟ๐ฟ๐๐,๐๐ ๏ฟฝ๐๐โโ is defined recurrently by
Lk ,n +1 =+ kLk ,n Lk ,n โ1 for n โฅ 1,
Lk ,n + r
(2.1)
with initial conditions ๐ฟ๐ฟ๐๐ ,0 = 2, ๐ฟ๐ฟ๐๐,1 = ๐๐. Note that if ๐๐ is a real variable ๐ฅ๐ฅ then ๐ฟ๐ฟ๐๐ ,๐๐ = ๐ฟ๐ฟ๐ฅ๐ฅ ,๐๐ and they correspond to the Lucas polynomials defined by
๏ฃฑ2 if n = 0 ๏ฃด if n 1 . Ln +1 ( x ) ๏ฃฒ= x = ๏ฃด xL x + L ๏ฃณ n ( ) n โ1 ( x ) if n > 1
In addition, the general term of the ๐๐ -Lucas numbers may be obtained by the formula [10]:
= Lk ,n kFk ,n โ1 + Fk ,n +1.
3. On the Symmetric Functions of Some Numbers and Polynomails Theorem 1. [4] Let ๐๐ and ๐ต๐ต be two alphabets, respectively, {๐๐1 , ๐๐2 } and {๐๐1 , ๐๐2 , ๐๐3 } , then we have โ
โ hn (b1, b2 , b3 )hn ( p1, p2 ) t n
n =0
๏ฃซ 1 โ p1 p2 e2 ( b1 , b2 , b3 ) t 2 ๏ฃถ ๏ฃฌ ๏ฃท ๏ฃฌ โ p p e (b , b , b ) h ( p , p ) t3 ๏ฃท ๏ฃญ 1 2 2 1 2 3 1 1 2 ๏ฃธ
(3.1)
= . Particular cases of the ๐๐ -Lucas numbers are โ โ n n n n e ( b , b , b ) p t e ( b , b , b ) p t โ n 0= โn 0 n 1 2 3 2 n 1 2 3 1 โข If ๐๐ = 1, the classical Lucas numbers is obtained: =
)(
(
L0 2,= L1 1, and =
In the case ๐ต๐ต = {1} based on Theorem 1, we deduce the following Lemmas. Lemma 1. Given an alphabet ๐๐ = {๐๐1 , โ๐๐2 }, we have
Ln +1 = Ln + Ln โ1 for n โฅ 1:
= {Ln }nโ๏
{2,1,3, 4, 7,โฆ} .
โ
โ hn ( p1,[โ p2 ]) t n = 1โ p โ p
โข If ๐๐ = 2, the Pell-Lucas numbers appears:
Qn +1 = 2Qn + Qn โ1 for n โฅ 1
such that
The well-known Binet's formula in the Lucas numbers theory allows us to express the ๐๐ -Lucas number in function of the roots ๐๐1 and ๐๐2 of the characteristic equation, associated to the recurrence relation (2.1): (2.2)
Proposition 1. (Binet's formula) The nth ๐๐ -Lucas number is given by Lk ,n
r n โ r2n , = 1 r1 โ r2
where ๐๐1 , ๐๐2 are the roots of the characteristic equation (2.2) and ๐๐1 > ๐๐2 . Proof . The roots of the characteristic equation (2.2) are
k โ k2 + 4 k + k2 + 4 and r2 = . 2 2 Note that, since ๐๐ > 0, the ๐๐2 < 0 < ๐๐1 and |๐๐2 | < |๐๐1 |, ๐๐1 + ๐๐2 = ๐๐ and ๐๐1 . ๐๐2 = โ1, ๐๐1 โ ๐๐2 = โ๐๐ 2 + 4. If ๐๐ denotes the positive root of the characteristic equation, the general term may be written in the form [10] r1 =
Lk ,n =
ฯ n โ ฯ โn ฯ +ฯ
2
) t โ p1 p2t 2
. (3.2)
โ
formula (3.2) can be written as: โ
n n p โ โ 0= p1n t n โ p2 โ โ n 0[ โ p2 ] t p1 โ [โ p2 ]
n n 1 n ฮด p1[ โ p2 ] โ p= 1t = n =0
= =
โ
โ
n =0 โ
p1n +1 โ [โ p2 ]n +1 n t p1 โ [โ p2 ]
โ hn ( p1,[โ p2 ])t n .
n =0
white the right -hand side can be expressed as
p1 1โ1p t โ [โ p2 ] 1โ[ โ1p ]t 1 1 2 ฮด p1[ โ p2 ] = 1 โ p1t p1 โ [โ p2 ] = = =
โ1
and the limit of the quotient of two terms is
1
1
โ nโฅ0 p1t n and (1 โ p1t ) be two sequences โ โ nโฅ0 p1nt n = 1 โ1p1t , the left-hand side of the
Proof. Let
{2, 2, 6,14,34,โฆ} .
r 2= kr + 1.
(
n =0
= Q0 2,= Q1 2, and
= {Qn }nโ๏
)
=
p1 1โ1p t โ [โ p2 ] 1+ 1p
2t
1
p1 โ [โ p2 ] p1 (1 + p2t ) + p2 (1 โ p1t ) ( p1 + p2 )(1 โ p1t )(1 + p2t ) p1 + p2 ( p1 + p2 )(1 โ ( p1 โ p2 )t โ p1 p2t 2 ) 1 1 โ ( p1 โ p2 )t โ p1 p2t 2
Turkish Journal of Analysis and Number Theory
This completes the proof. Lemma 2. Given an alphabet ๐๐ = {๐๐1 , โ๐๐2 } , we have
โ
โ hn ( p1,[โ p2 ]) t n=
โ
1
โ Fk ,nt n=
1 โ kt โ t 2
= n 0= n 0
โ
p โ p + p1 p2t . (3.3) ( 1 2 ) t โ p1 p2t 2
1 2 โ hn+1 ( p1,[โ p2 ]) t n = 1โ p โ p
n =0
Proof. Let
123
โ
โ nโฅ0 p1t n
and (1 โ p1t ) be two sequences
โ pnt n nโฅ0 1
such that โ = 1 , the left-hand side of the 1 โ p1t formula (3.3) can be written as: โ
ฮด 2 p1[ โ p2 ] โ p1n t n = n =0
n n p12 โ โ n =0 p1 t p1 โ [โ p2 ]
โ = =
[โ p2 ]
2
โ
n =0 โ
n n โโ n =0[ โ p2 ] t
p1n + 2 โ [โ p2 ]n + 2 n t p1 โ [โ p2 ]
โ hn+1 ( p1,[โ p2 ])t n .
n =0
which represents a generatings functions for ๐๐ -Fibonacci numbers (with ๐๐1 = ๐๐1 ๐๐๐๐๐๐ [โ๐๐2 ] = ๐๐2 ). โ
k +t
, โ hn+1 ( p1,[โ p2 ]) t n = 1 โ kt โ kt 2
p12 1โ1p t โ [โ p2 ]2 1โ[ โ1p ]t 1 1 2 ฮด p1[ โ p2 ] = 1 โ p1t p1 โ [โ p2 ] 2
p2t ) โ = ( p1 + p2 )(1 โ p1t )(1 + p2t )
p22 (1 โ p1t )
p12 + p12 p2t โ p22 + p22 p1t = ( p1 + p2 )(1 โ ( p1 โ p2 )t โ p1 p2t 2 ) =
p12 โ p22 + p1 p2 ( p1 + p2 )t ( p1 + p2 )(1 โ ( p1 โ p2 )t โ p1 p2t 2 )
=
p1 โ p2 + p1 p2t . 1 โ ( p1 โ p2 )t โ p1 p2t 2
This completes the proof. Taking ๐๐1 โ ๐๐2 = 1 and ๐๐1 ๐๐2 = 1 in (3.2) and (3.3), we obtain the generating functions given by Boussayoud et al [5] which arises 1) The generating function of the Fibonacci numbers โ
1
โ Fnt n = 1 โ t โ t 2 .
which represents a new generatings functions. โข Multiplying the equation (3.4) by (2 + ๐๐ 2 ) and subtract it from (3.5) by (๐๐) , we obtain
โ [( 2 + k 2 ) hn ( p1,[โ p2 ]) โ khn+1 ( p1,[โ p2 ])]t n
n =0
=
2 โ kt 1 โ kt โ t 2
,
from which we have the following theorem. Theorem 3. For n โ โ , the generating function of the ๐๐ -Lucas numbers is given by โ
โ Lnt n = 1 โ t โ t 2 .
n =0
( โ1)n+1 Fk ,n ,
2) Lk ,โ n =
( โ1)n Lk ,n
hold for all ๐๐ โฅ 0.
๐๐1 ๐๐2 = 1 and ๐๐1 โ ๐๐2 = ๐๐ substituting in (3.2) and (3.3) we end up with Choosing ๐๐1 and ๐๐2 such that ๏ฟฝ
โข Put ๐๐ = 2 in the relationship (3.6) we have โ
2 โ 2t
โQnt n = 1 โ 2t โ t 2 ,
n =0
which represents a generating function for Pell-Lucas numbers [5]. Replacing ๐ก๐ก by (โ๐ก๐ก) in (3.4) and (3.6), we have the following theorems. Theorem 4. We have the following a new generating function of the ๐๐ -Fibonacci numbers at negative indices as โ
1
โ Fk ,โnt n = t 2 โ kt โ 1 .
n =0
Proof. The ordinary generating function associated is defined by
G ( Fk , n , t ) =
โ
โ Fk , nt n .
n =0
โ Fk , nt n =
Fk , 0t 0 + Fk ,1t +
โ
โ Fk , nt n
= n 0= n 2 โ โ =1 + kt + kFk , n โ1t n + Fk , n โ 2t n . = n 2= n 2
Proposition 2. [10,12] The relations 1) Fk ,โ n =
(3.6)
n =0
โ
2) The generating function of the Lucas numbers
2โt
2 โ kt
โ Lk ,nt n = 1 โ kt โ t 2 .
Using the initial conditions, we get
n =0
โ
(3.5)
n =0
white the right-hand side can be expressed as:
p12 (1 +
(3.4)
โ
p1 โ [โ p2 ] โ
,
โ
Consider that written by
โ
j= n โ 2 and p= n โ 1 . Then can be โ
โ
=1 + kt + t โkFk , n t n + t 2 โ Fk , n t n
= n 1 =j 0 โ
โ
=1 + kt + kt โ Fk , n t n โ kt + t 2 โ Fk , n t n ,
= p 0=j 0
124
Turkish Journal of Analysis and Number Theory
which is equivalent to
(
1 โ kt โ t 2
Proof. The ordinary generating function associated is defined by
โ
) nโ=0Fk , nt n =1
โ
G ( Ln ( x), t ) =
โ
1
. โ Fk , nt n = 1 โ kt โ t 2
โ
Replacing t by (โt ) , we have
โ Ln ( x)t n
= n 0= n 2 โ
=2 + xt +
โ
=2 + xt + x โ Ln โ1 ( x)t n +
n
1
โ
โ
This completes the proof. Theorem 5. We have the following a new generating function of the k -Lucas numbers at negative indices as
2 + kt
โ Lk ,โnt n = 1 + kt โ t 2 .
(3.7)
โQโnt
n =0
=
1 + 2t โ t 2
,
โ
โ
=2 + xt + xt โ L p ( x)t p โ 2 xt + t 2 โ L j ( x)t j ,
โ
1
(3.8)
n =0
which represents a generating function of the Fibonacci polynomials
n =0
โ
โ
x+t , โ hn+1 ( p1,[โ p2 ]) t n = 1 โ xt โ kt 2 n =0
(3.9)
which represents a new generatings functions. โข Multiplying the equation (3.8) by (2 + ๐ฅ๐ฅ 2 ) and subtract it from (3.9) by (๐ฅ๐ฅ) , we obtain
)
โ [ x2 + 2 hn ( p1,[โ p2 ]) โ xhn+1 ( p1,[โ p2 ])]t n
2 โ xt
. โ Ln ( x)t n = 1 โ xt โ t 2
n =0
This completes the proof. Replacing ๐ก๐ก by (โ๐ก๐ก) in (3.8) and (3.10), we have the following theorems. Theorem 7. We have the following a new generating function of the Fibonacci polynomials at negative coefficient as โ
โ
1 โ xt โ t 2
โ
(1 โ xt โ t 2 ) โ Ln ( x)t n =2 โ xt
โ Fn ( x)t n = 1 โ xt โ t 2 ,
2 โ xt
โ
=2 + xt + xt ( โ L p ( x)t p โ L0 ( x)) + t 2 โ L j ( x)t j
which is equivalent to
which represents a generating function for Pell-Lucas numbers at negative indices [3]. ๐๐ ๐๐ = 1 and Choosing ๐๐1 and ๐๐2 such that ๏ฟฝ 1 2 ๐๐1 โ ๐๐2 = ๐ฅ๐ฅ substituting in (3.2) and (3.3) we end up with โ
= p 1 =j 0
= p 0=j 0
โข Put k = 2 in the relationship (3.7) we have
2 + 2t
โ
=2 + xt + x( โ L p ( x)t p +1 ) + t 2 โ L j ( x)t j
= p 0=j 0
n =0
n
j= n โ 2 and p= n โ 1 . Then can be
Consider that written by
1 โ โ Fk ,โ n t = . 2 t โ kt โ 1 n =0
โ
โ
โ Lnโ2 ( x)t n .
= n 2= n 2
n
โ
โ ( xLnโ1 ( x) + Lnโ2 ( x))t n
n=2 โ
n =0
=
โ
1 , โ (โ1) Fk , nt = 1 + kt โ t 2 n =0 n
โ (โ1)n+1 Fk , nt n = t 2 โ kt โ 1
( n =0
n =0
โ Ln ( x)t n = L0 ( x)t 0 + L1 ( x)t +
therefore
โ
โ Ln ( x)t n .
Using the initial conditions, we get
n =0
โ
โ
1
. โ Fn (โ x)t n = 1 + xt โ t 2
n =0
Theorem 8. We have the following a new generating function of the Lucas polynomials at negative coefficient as โ
2 + xt
. โ Ln (โ x)t n = 1 + xt โ t 2
n =0
.
4. Conclusion
Thus we get the following theorem. Theorem 6. We have the following a generating function of the Lucas polynomials as โ
2 โ xt
โ n=0 Ln ( x)t n = 1 โ xt โ t 2 .
(3.10)
In this paper, a new theorem has been proposed in order to determine the generating functions. The proposed theorem is based on the symmetric functions. The obtained results agree with the results obtained in some previous works.
Turkish Journal of Analysis and Number Theory
Acknowledgments
[6] [7]
The authors would like to thank the anonymous referees for their valuable comments and suggestions.
[8]
References
[9]
[1]
[10]
[2] [3] [4] [5]
A. Abderrezzak, Gรฉnรฉralisation de la transformation d'Euler d'une sรฉrie formelle, Adv. Math. 103, 1994, 180-195. A. Abderrezzak, M. Kerada, A. Boussayoud, Generalization of Some Hadamard Product, Commun. Appl. Anal. 20(3), 301-306, (2016). A. Boussayoud, M. Boulyer, M. Kerada, On Some Identities and Symmetric Functions for Lucas and Pell Numbers, Electron .J.Math. AnalysisAppl. 5, 2017, 202-207. A. Boussayoud, N. Harrouche, Complete Symmetric Functions and ๐๐ - Fibonacci Numbers, Commun. Appl. Anal. 20(4), 2016, 457-467. A. Boussayoud, M. Kerada, M. Boulyer, A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math.108, 2016, 503-511.
[11] [12] [13] [14] [15]
125
A. Boussayoud, A. Abderrezzak, M. Kerada, Some applications of symmetric functions, Integers. 15, A#48, 2015, 1-7. A. Boussayoud, M. Kerada, A. Abderrezzak, A Generalization of Some Orthogonal Polynomials, Springer Proc. Math. Stat. 41, 2013, 229-235. M. Merca, A Generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math. 45, 2014, 75-89. S. Falcon, A. Plaza, On the Fibonacci k - numbers, Chaos, Sulutions & Fractals. 32, 2007, 1615-1624. S. Falcon, On the ๐๐ -Lucas Numbers of Arithmetic Indexes, Appl. Math. 3, 2012, 1202-1206. S. Falcon, On the k-Lucas numbers, J.Math.Comput.Sci. 2, 2012, 425-434. S. Falcon, On the complex k-Fibonacci numbers, Cogent Math. 3, 2016, 1-9. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001. Y. K.Gupta, V. H. Badshah, M. Singh, K. Sisodiya, Some Identities of Tribonacci Polynomials, Turkish Journal of Analysis and Number Theory. 4, 2016, 20-22. Y. K.Gupta, V. H. Badshah, M. Singh, K. Sisodiya, Diagonal Function of k-Lucas Polynomials, Turkish Journal of Analysis and Number Theory. 3, 2015, 49-52.