Supporting Information
Luminescent Coordination Polymers Based on Ca2+ and Octahedral Cluster Anions [{M6Cli8}Cla6]2– (M = Mo, W): Thermal Synthesis and Stability Studies Darya V. Evtushok,a,b Natalya A. Vorotnikova,a,b Vladimir A. Logvinenko,a,c Anton I. Smolentsev,a,c Konstantin A. Brylev,a,b,c Pavel E. Plyusnin,a,c Denis P. Pishchur,a Noboru Kitamura,d Yuri V. Mironov,a,b,c Anastasiya O. Solovieva,b Olga A. Efremovae* and Michael A. Shestopalova,b,c*
aNikolaev
Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Prospect, 630090 Novosibirsk, Russia, E-mail:
[email protected]; Tel: +73833309253. bResearch Institute of Clinical and Experimental Lymphology – Branch of the ICG SB RAS, 2 Timakova Str., 630060 Novosibirsk, Russia. cNovosibirsk State University, 2 Pirogova st., 630090 Novosibirsk, Russia. dDepartment of Chemistry, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan. eSchool of Mathematics and Physical Sciences, University of Hull, Cottingham Road, HU6 7RX, Hull, UK. E-mail:
[email protected]; Tel: +44 (0)1482 465417
Content Crystallographic data and selected interatomic distances for compounds 1, 2 and 4 ....... 3 FTIR-spectra of 1-4 ........................................................................................................... 5 The solid-phase transformation ......................................................................................... 6 X-ray powder diffraction patterns ..................................................................................... 7 Thermal and kinetic analysis ............................................................................................. 8 Defuse reflectance spectra ............................................................................................... 15
2
Crystallographic data and selected interatomic distances for compounds 1, 2 and 4 Table S1. Crystallographic data, data collection and structure refinement details for 1, 2 and 4. 1
2
Empirical formula
C76H70CaCl14Mo6N2O6P4
C76H70CaCl14N2O6P4W6
C72H60CaCl14O4P4W6
Formula weight
2343.24
2870.70
2752.56
Crystal system
Monoclinic
Monoclinic
Monoclinic
Space group
C2/c
C2/c
C2/c
a, Å
23.021(5)
22.955(5)
25.3726(10)
b, Å
16.305(3)
16.219(3)
14.1362(6)
c, Å
24.931(5)
24.818(5)
24.2685(11)
β, º
108.69(3)
108.58(3)
113.2120(10)
V, Å3
8864(3)
8758(3)
7999.8(6)
Z
4
4
4
ρcalc, g cm–3
1.756
2.174
2.285
μ, mm–1
1.425
8.457
9.251
Crystal size, mm3
0.28 0.26 0.17
0.50 0.50 0.40
0.20 0.20 0.15
θ range, º
1.56–32.52 –34 ≤ h ≤ 34 –24 ≤ k ≤ 24 –37 ≤ l ≤ 18
3.05–27.48 –23 ≤ h ≤ 29 –20 ≤ k ≤ 20 –29 ≤ l ≤ 32
1.83–27.51 –32 ≤ h ≤ 32 –18 ≤ k ≤ 18 –31 ≤ l ≤ 31
40747
30487
26998
15414 (0.0263)
9576 (0.0740)
9037 (0.0496)
10680
6739
6061
499
499
458
R1[F2 > 2σ(F2)]
0.0331
0.0616
0.0367
wR2(F2)
0.0829
0.1471
0.0818
GOOF on F2
1.023
0.985
0.980
Δρmax, Δρmin, eÅ–3
0.755, –0.450
4.578, –3.327
1.522, –2.081
h, k, l ranges Reflections collected Independent reflections (Rint) Observed reflections [I > 2σ(I)] Parameters refined
4
3
Table S2. Selected interatomic distances (Å) for 1 – 4. Bond length
1
2
3a
4
M–M
2.6018(9)–2.6125(6)
2.6170(8)–2.6240(7)
2.5919(4)–2.6043(4)
2.5984(4)–2.6173(4)
M–Cli
2.4684(8)–2.4818(8)
2.490(3)–2.517(2)
2.453(1)–2.479(1)
2.487(2)–2.516(2)
M–Cla
2.425(1)–2.4542(7)
2.425(3)–2.448(3)
2.402(1)–2.464(1)
2.403(2)–2.452(2)
Ca–Cla
—
—
2.794(2)–2,831(2)
2.776(3)–2.783(3)
Ca–OH2O
2.409(2)
2.378(8)
—
—
Ca–OOPPh3
2.260(2)–2.337(2)
2.273(7)–2.335(6)
2.252(2)–2.257(2)
2.266(4)–2.275(4)
a
Z. S. Kozhomuratova, Y. V. Mironov, M. A. Shestopalov, Y. M. Gaifulin, N. V. Kurat'eva, E. M. Uskov and V. E. Fedorov, Russ. J. Coord. Chem., 2007, 33, 1-6.
4
FTIR-spectra of 1-4
1
3
3500
3000
2500
2000
1500
Wavenumber, cm
1000
500
-1
Figure S1. FTIR-spectra of [cis-Ca(OPPh3)4(H2O)2][{Mo6Cli8}Cla6]∙2CH3CN (1), trans[{Ca(OPPh3)4}{{Mo6Cli8}Cla6}] (3).
2
4
3500
3000
2500
2000
1500
Wavenumber, cm
1000
500
-1
Figure S2. FTIR-spectra of [cis-Ca(OPPh3)4(H2O)2][{W6Cli8}Cla6]∙2CH3CN (2), trans[{Ca(OPPh3)4}{{W6Cli8}Cla6}] (4).
5
The solid-phase transformation
Figure S3. Crystals of 1 and 2 before and after heating at 110 °C for 10 min (i.e. after phase transition to 3 and 4).
6
X-ray powder diffraction patterns
3 3 theor
5
10
25
20
15
30
2° Figure S4. Experimental and simulated X-ray powder diffraction and theoretical diffraction patterns of trans-[{Ca(OPPh3)4}{{Mo6Cli8}Cla6}] (3).
4 4 theor
5
10
15
20
25
30
2° Figure S5. Experimental X-ray powder diffraction and theoretical diffraction patterns of trans-[{Ca(OPPh3)4}{{W6Cli8}Cla6}] (4).
7
2 2'
1 1'
5
10
15
20
25
30
5
10
15
2 , °
20
10
15
30
25
30
2 , ° 4 4'
3 3'
5
25
20
25
30
5
10
15
2 , °
20
2 , °
Figure S6. X-ray powder diffraction of compounds 1-4 fresh and after 1 week at ambient conditions (1’-4’). Thermal and kinetic analysis 100
TG DTG
0
80 70 -5
60 50
DTG (%/min)
Weight Loss (%)
90
40 -10 30 20 100
200
300
400
500
600
700
800
o
Temperature ( C)
Figure S7. TGA/DTG curves of [cis-Ca(OPPh3)4(H2O)2][{Mo6Cli8}Cla6]∙2CH3CN (1).
8
TG
100
DTG
0
80 -2 70
DTG (%/min)
Weight Loss (%)
90
60 -4 50 100
200
300
400
500
600
700
800
o Temperature ( C)
Figure S8. TGA/DTG curves of [cis-Ca(OPPh3)4(H2O)2][{W6Cli8}Cla6]∙2CH3CN (2).
Figure S9. The thermal decomposition of 1 studied by STA at heating rate 20 K min-1: black is the TG curve; red is the DSC curve; green and cyan are the curves of acetonitrile gas evolution, navy blue is the curve of water evolution.
9
Figure S10. The thermal decomposition of 2 studied by STA at heating rate 20 K min-1: black is the TG curve; red is the DSC curve; green and cyan are the curves of acetonitrile gas evolution, navy blue is the curve of water evolution.
10
Figure S11. Friedman analysis of 1 thermal decomposition: activation energies depending on the degree of conversion .
Figure S12. Friedman analysis of 2 thermal decomposition: activation energies depending on the degree of conversion . 11
Figure S13. Data processing for 1 thermal decomposition. TG curve fitting of nonlinear regression, simulated with two consecutive reactions (the first one is An, the second one is Fn). The points are the experimental data; the lines are the calculated data. The heating rates were 5 (a), 10 (b), 20 (c) °С min–1.
Figure S14. Data processing for 2 thermal decomposition. TG curve fitting of nonlinear regression, simulated with two consecutive reactions (both equations are An). The points are the experimental data; the lines are the calculated data. The heating rates were 5 (a), 10 (b), 20 (c) °С min–1. 12
Figure S15. DSC analysis of 1.
Figure S16. DSC analysis of 2.
13
Scheme S1. The schematic representation of energy diagram for conversion of compound 1 to compound 3.
Scheme S2. The schematic representation of energy diagram for conversion of compound 2 to compound 4.
14
Defuse reflectance spectra
7 6
Kubelka-Munk
5 4 3
(Bu4N)2[{Mo6Cl8}Cl6]
2
1 3
1
2.50
2.75
0 1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Energy, eV
Figure S17. The defuse reflectance spectra of (Bu4N)2[{Mo6Cl8}Cl6], 1 and 3 represented in Kubelka-Munk units. The corresponding values of the optical band gaps obtained from Kubelka-Munk theory are shown in bold.
12
Kubelka-Munk
10
8
6
4
(Bu4N)2[{W6Cl8}Cl6] 2 4
2
2.63 2.63
0 1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Energy, eV
Figure S18. The defuse reflectance spectra of (Bu4N)2[{W6Cl8}Cl6], 2 and 4 represented in Kubelka-Munk units. The corresponding values of the optical band gaps obtained from Kubelka-Munk theory are shown in bold.
15