m - csdms

3 downloads 389 Views 4MB Size Report
lowermost Mississippi. River & sand delivery to the river mouth. Water-surface profile for the Mississippi. River at low water discharge. •RK160. •RK367. •RK487 .
Connecting the Flow and Sediment-Transport in Coastal Rivers to Short- and Long-Term Patterns of Delta Sedimentation RK487 RK367 RK160

RK0 

D. Mohrig; J. Nittrouer; K. Straub1; J. Shaw; & M. Allison Jackson School of Geosciences, Univ. of Texas at Austin, Austin, TX, USA 1. Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA National Center for Earth-surface Dynamics, a NSF STC

Connecting hydraulics to sediment transport in the lowermost Mississippi River & sand delivery to the river mouth

RK487 RK367 RK160

Water‐surface profile for the Mississippi  River at low water discharge

RK0 

60

water surface elevation at 5000‐10000 m3/s

50 40

river bottom profile

Backwater Zone defined by a divergence of water surface and bed slopes.

Elevation (m)

30 20 10 0 ‐10

river bottom profile

‐20 ‐30 ‐40 0

100

200

300

400

500

600

700

800

Mississippi River Kilometer

900 1000 1100

Control of Mississippi River Backwater on Flooding

3 x low flow 6 x low flow 9 x low flow

[Significant flooding above RK400, almost no flooding at RK 0] 60

100 200 300 400 500 600 700 Mississippi River Kilometer

Water‐surface profiles for  the Mississippi River at low,  intermediate and high water  discharge

Elevation (m)

0

water surface elevation at 5000‐10000 m3/s 50 water surface elevation at 15000‐20000 m3/s water surface elevation at 30000‐35000 m3/s 40 river bottom profile 800 1000 1100 30 900

m

Rise is Water Surface Elevation (m)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

20 10 0 ‐10 ‐20 ‐30 ‐40 0

100

200

300

400

500

600

700

800

Mississippi River Kilometer

900 1000 1100

3

2008 flood of Upper Mississippi River

April 2008 flood of Mississippi River at RK 47

< 1m

Flood April Velocity Profile (RK 47)

Low Flow January Velocity Profile (RK 47) (Nittrouer, Mohrig & Allison, in prep)

Down river water‐surface slopes at low, intermediate  and high water discharge

Water‐Surface Slope

0.0001

> 10X change in slope

0.00001 water‐surface slope at 5000‐10000 m3/s water‐surface slope at 15000‐20000 m3/s water‐surface slope at 30000‐35000 m3/s 0.000001 0

100 200 300 400 500 600 700 800 900 1000 1100 Mississippi River Kilometer

How does a time varying backwater condition influence  sediment transport in this coastal river?

6

(J. Nittrouer et al., 2008)

What about bed‐material load in lower Mississippi River?

Estimating Bed‐Material Load from Dune Tracking High water discharge: 34000 m3/s Water Depth (m)

24 26 28

t=0hr t=8hr

30

Water Depth (m)

32 24 0

100

200

300 400 500 600 700 Application of 8‐m translation

800

900

1000

1100

Downstream Distance (m)

26 28

t=0hr t=8hr

30 32 0

100

200

300

400

500

600

700

800

900

1000

1100

Downstream Distance (m)

qs   b C

 8m  4.1m  2  0 . 7    1.4 m hr 2  8hr  2 

H

1.4 m 2 hr  700m  1005 m 3 hr

Water Depth (m)Water Depth (m) Water Depth (m)

Estimating Bed‐Material Load from Dune Tracking Low water discharge: 6000 m3/s 16.7 16.9 17.1 17.3 17.5 17.7 17.9 18.1

t=0hr t=24hr

16.7 20 16.9 17.1 17.3 17.5 17.7 17.9 18.1

20

40Application of 2.5‐m translation 60 80 100

120 t=0hr140

160

120

160

Downstream Distance (m) t=24hr

40

60

80

100

140

Downstream Distance (m) H  2.5m  0.47 m  2 2 qs   b C  0. 7    1.7 10 m hr 2  24hr  2  1.7 10 2 m 2 hr  700m  12 m 3 hr

Bedmaterial Discharge (m3/hr)

Water Discharge (m3/s) N. Loup R.

8.8

8 10m

DAY 1

10m Dashed lines connect the same points in each mosaic.

Dunes move ~2.5m/hr Bars move ~10m/day. DAY 3

(Mohrig & Smith, 1996)

Punctuated transport of sand through the lower river, RK 40  During 2008 flood: ~40 % of sand transport as bed‐ material load, ~60 % measured in  suspension At low flow all sand transport as bed‐ material load

Empire Reach (RK40)

Water  Discharge 

Sand  Discharge 

(m3/s)

(m3/hr)

April 2008

41,000 January 2008 10,000

3960 32.4

Distance Below Water Surface Flow Depth

Essentially all of the sand delivery to  river mouth happens during floods Suspended Sand

April 2008

(J.Nittrouer, 2010)

Channel Radius of Curvature/Channel Width

Punctuated Sand  Transport and Minimal  Storage in Lower  Mississippi River:  Mixed Bedrock‐Alluvial  Channel

500 m

~RK 160, 2003

= Exposed  Pleistocene  substrate

(J. Nittrouer et al., accepted)

Visit J. Nittrouer poster, T-12, to view the spatial accelerations during flood that minimize alluvial cover of river bed.

Punctuated sand transport drives growth of Mississippi River delta & others in GOM by channels that erode their beds & aggrade B their margins.

~ RK150

(J. Nittrouer et al., accepted)

A

Rip-up clasts of channel substrate in bed-material load

B A

13

Growth of Wax Lake Delta, Louisiana, by channels that erode their beds and aggrade their margins.

Pre-delta substrate

Visit J. Shaw poster, T-14, on Tuesday.

Moving from evaluation of Topographic Source-to-Sink System to Geologic Source-to-Sink System: Extraction of sediment tied to net subsidence Delta Lobes & Channel Avulsion of delta surface. Dynamic delta top is constructed via sedimentation tied to “active” channels. Subsurface preserves sufficient number of delta lobes and channels to constrain space-time-rate distributions of delta-building elements.

(Day et al., 2007)

Visit A. Petter poster, T-31, & K. Straub poster, T-27, on Tuesday.

To what degree is delta lobe sedimentation distinct from depositional patterns of  other depositional systems?

t1

z x

t2

y

sedimentation pattern

t3

subsidence pattern

z y The transport  system must  rearrange itself in  order to fill space  produced by  subsidence.  (following method  of Sheets et al,  2002; Lyons, 2004;  Straub et al, 2009)

Sedimentation versus subsidence along cross‐section  Fit between sedimentation and subsidence patterns can be measured by standard deviation in the following ratio…..

r (T ; x, y )  Sedimentation rate at a point for given time increment rˆ( x, y )  Long-term sedimentation rate at that same point

x, y = horizontal coordinates; A = area

Seismic Volume & Well Data Provide Best Possible Resolution of: 1) Spatially Varying Subsidence Field 2) Long-term Subsidence Rates 3) Arrangement of Channel-Fills

WesternGeco seismic survey Quantifying depositional process on delta by comparing short-term sedimentation patterns (B & C) against long-term pattern (A).

(Straub et al., 2009)

Depositional stacking patterns for Mississippi Delta and other sedimentary environments Depositional Systems

(Straub et al., 2009)

Deposit Thickness Decay in the standard deviation of sedimentation/subsidence collapses onto a single power-law trend when the measurement window is standardized by the mean channel depth of each system.

Thickness

 deposit thickness    ss  0.33  channel depth 

 0.75

Visit K. Straub poster, T-27.

Final Points on Modern Delta System (Topographic source-to-sink): 1. Transport in the MRD cannot be accurately predicted without proper treatment of the river plume and marine boundary condition. 2. Spatial changes in cross-sectional area of transporting flows drive sediment-transport patterns that cannot be accurately characterized using water discharge or contributing area. 60

water surface elevation at 5000‐10000 m3/s water surface elevation at 15000‐20000 m3/s water surface elevation at 30000‐35000 m3/s river bottom profile

50 40

m Elevation (m)

30 20 10 0 ‐10 ‐20 ‐30 ‐40

2008

0

100

200

300

400

500

600

700

800

900 1000 1100

Mississippi River Kilometer

Final Points on Geologic Delta System (Mass extraction Source-to-sink): 3. Power-law collapse in deposit-stacking data suggests that a stacking behavior ~midway between purely random & prefect compensation in a good starting point for any channelized depositional system. J. Nittrouer poster, T-12, M.Lamb poster, T-28, & K. Straub poster, T27.