9 by Springer-Vedag 1977. Marine Diatoms Grown in Chemostats under Silicate or Ammonium. Limitation. III. Cellular Chemical Composition and Morphology of.
Marine Biology 43, 19-31 (1977)
MARINE BIOLOGY 9 by Springer-Vedag 1977
Marine Diatoms Grown in Chemostats under Silicate or Ammonium Limitation. III. Cellular Chemical Composition and Morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida* P.J. I-larrbon, H.L. Conway**, R.W. Holmes*** and C.O. Davis**** Depertmem of Oceanography, Unlvertlty of WBzhington;Seattle, Wadzington, USA
Ab~
T h r e e m a r i n e diatoms, Skeletonema costatum, Chaetoceros debilis, and Thalassiosira g r a ~ d a w e r e g r o w n u n d e r no l i m i t a t i o n and a m m o n i u m or s i l i c a t e l i m i t a t i o n or starvation. C h a n g e s in cell m o r p h o l o g y w e r e d o c u m e n t e d w i t h p h o t o m i c r o g r a p h s of a m m o n i u m and s i l i c a t e - l i m i t e d and n o n - l i m i t e d cells, and c o r r e l a t e d w i t h o b s e r v e d changes in c h e m i c a l c o m p o s i t i o n . C u l t u r e s g r o w n u n d e r s i l i c a t e s t a r v a t i o n or l i m i t a t i o n s h o w e d an i n c r e a s e in p a r t i c u l a t e carbon, n i t r o g e n and p h o s p h o r u s and c h l o r o p h y l l a per unit cell v o l u m e c o m p a r e d to n o n - l i m i t e d cells; p a r t i c u l a t e s i l i c a per cell v o l u m e d e c r e a s e d . S i - s t a r v e d cells w e r e d i f f e r e n t from S i - l i m i t e d cells in that the former c o n t a i n e d m o r e p a r t i c u l a t e c a r b o n and s i l i c a per cell volume. The m o s t sens i t i v e i n d i c a t o r of s i l i c a t e l i m i t a t i o n or s t a r v a t i o n was the r a t i o C:Si, being 3 to 5 times h i g h e r than the values for n o n - l i m i t e d c e l l s . T h e r a t i o s S i : c h l o r o p h y l l a and S:P w e r e lower and N:Si was h i g h e r than n o n - l i m i t e d cells by a f a c t o r of 2 to 3. The o t h e r ratios, C:N, C:P, C : c h l o r o p h y l l a, N : c h l o r o p h y l l a, P : c h l o r o p h y l l a and N:P w e r e c o n s i d e r e d not to be s e n s i t i v e i n d i c a t o r s of s i l i c a t e l i m i t a t i o n or s t a r v a t i o n . C h l o r o p h y l l a, and p a r t i c u l a t e n i t r o g e n per unit cell v o l u m e d e c r e a s e d u n d e r a m m o n i u m l i m i t a t i o n and s t a r v a t i o n . N H 4 - s t a r v e d cells c o n t a i n e d m o r e chlorop h y l l a, carbon, nitrogen, silica, and p h o s p h o r u s per cell v o l u m e t h a n N H 4 - 1 i m i t e d cells. N : S i was the m o s t s e n s i t i v e ratio to a m m o n i u m l i m i t a t i o n or s t a r v a t i o n , b e i n g 2 to 3 times lower t h a n n o n - l i m i t e d cells. S i : c h l o r o p h y l l a, P : c h l o r o p h y l l a and N:P w e r e less s e n s i t i v e , w h i l e the ratios C:N, C : c h l o r o p h y l l a, N : c h l o r o p h y l l a, C:Si, C:P and Si:P w e r e the least sensitive. L i m i t e d cells had less of the l i m i t i n g n u t r i e n t per unit cell v o l u m e than s t a r v e d cells and m o r e of the n o n - l i m i t i n g nut r i e n t s (i.e., s i l i c a and p h o s p h o r u s for N H 4 - 1 i m i t e d cells). This s u g g e s t s that n u t r l e n t - l i m i t e d cells r a t h e r than n u t r i e n t - s t a r v e d cells s h o u l d be used along w i t h n o n - l i m i t e d cells to m e a s u r e the full r a n g e of p o t e n t i a l c h a n g e in c e l l u l a r chemical c o m p o s i t i o n for one s p e c i e s u n d e r n u t r i e n t limitation.
l,~o4u~,
ents are w i t h d r a w n from the w a t e r in the p r o p o r t i o n s r e q u i r e d for g r o w t h (RedP h y t o p l a n k t o n g r o w t h r e q u i r e s the assimfield et al., 1963). F u r t h e r studies have i l a t i o n of i n o r g a n i c n u t r i e n t s from the s h o w n that the n u t r i e n t u p t a k e r a t i o or w a t e r in w h i c h they are growing. G e n e r a l - c e l l u l a r c h e m i c a l c o m p o s i t i o n can be ly, it is c o n s i d e r e d t h a t t h e s e n u t r i a l t e r e d by: b i o l o g i c a l factors such as cell size (Paasche, 1973b) and age of *Contribution No. 943 from the Department of c u l t u r e (Pugh, 1975); p h y s i c a l f a c t o r s Oceanography, University of Washington, such as light (intensity and p h o t o p e r i o d , Seattle, Washington 98195, USA. Collos and Lewin, 1976; Davis, 1976) and **Present address: Radiological and Environt e m p e r a t u r e (J~rgensen, 1968; Harrison, mental Research Division, Argonne National 1974); c h e m i c a l f a c t o r s such as s a l i n i t y Laboratory, Argonne, Illinois 60439, USA. (Pugh, 1975) s o u r c e of n i t r o g e n (nitrate ***Present address: Department of Marine Scior ammonium, S t r i c k l a n d et al., 1969) and ences, University of California, Santa Barn u t r i e n t l i m i t a t i o n . This study is conbara, California 93106, USA. c e r n e d e n t i r e l y w i t h the latter factor. ****Present address: Great Lakes Research DiviM u c h of the e a r l y w o r k on c h e m i c a l sion, The University of Michigan, Ann Arbor, c o m p o s i t i o n of m a r i n e p h y t o p l a n k t o n beMichigan 48109, USA. gan w i t h the e l e m e n t s n i t r o g e n and p h o s -
20
P.J. Harrison et al. : Chemical Composition and Morphology of Diatoms
p h o r u s b e c a u s e it was t h o u g h t that t h e s e two e l e m e n t s w e r e m o s t l i k e l y to limit p h y t o p l a n k t o n g r o w t h in the n a t u r a l env i r o n m e n t . E a r l y s t u d i e s by K e t c h u m and R e d f i e l d (1949) s h o w e d that d e f i c i e n c i e s of n i t r o g e n or p h o s p h o r u s in c u l t u r e m e d i u m c o u l d d e c r e a s e the N:P ratio in Chlorella pyrenoidosa by a factor of 2 for n i t r o g e n d e f i c i e n c y and i n c r e a s e the r a t i o by a f a c t o r of 5 for p h o s p h o r u s deficiency. B a t c h c u l t u r e s can be used to m e a s u r e the c h e m i c a l c o m p o s i t i o n of l o g a r i t h m i cally g r o w i n g (non-limited) cells and s t a r v e d cells, w h i c h are a s s u m e d to repr e s e n t the e x t r e m e s in the p o s s i b l e degrees of n u t r i e n t l i m i t a t i o n . H o w e v e r , at i n t e r m e d i a t e d e g r e e s of l i m i t a t i o n , and at lower c o n c e n t r a t i o n s of the limiting n u t r i e n t , the c h e m i c a l e n v i r o n m e n t c h a n g e s so q u i c k l y that the d e g r e e of l i m i t a t i o n can n e v e r be p r e c i s e l y known. Some w o r k e r s (Kilham, 1975; P a a s c h e , 1975) h a v e u s e d v e r y low cell c o n c e n t r a tions at low s u b s t r a t e c o n c e n t r a t i o n s so that the c h a n g e in the s u b s t r a t e c o n c e n t r a t i o n w o u l d be slower. H o w e v e r , it is d i f f i c u l t to c o n d u c t c h e m i c a l c o m p o s i t i o n m e a s u r e m e n t s at these low cell densities. This p r o b l e m in u s i n g b a t c h c u l t u r e s can be o v e r c o m e t h r o u g h the use of cont i n u o u s c u l t u r e t e c h n i q u e s , w h e r e the c u l t u r e can be m a i n t a i n e d at s t e a d y s t a t e at a s p e c i f i c g r o w t h rate and a s p e c i f i c d e g r e e of n u t r i e n t l i m i t a t i o n . C h a n g e s in c h e m i c a l c o m p o s i t i o n of mar i n e p h y t o p l a n k t o n in c o n t i n u o u s c u l t u r e have b e e n s t u d i e d for v a r i o u s l i m i t i n g nutrients including nitrogen limitation (Caperon and Meyer, 1972; T h o m a s and Dodson, 1972; Conway, 1974; E p p l e y and Renger, 1974), p h o s p h o r u s l i m i t a t i o n (Fuhs, 1969; Fuhs et al., 1972; Droop, 1974; Perry, 1976), and s i l i c a t e l i m i t a tion (Paasche, 1973a; Davis, 1976; H a r r i s o n et al., 1976). In the a b o v e studies, l i t t l e a t t e m p t has b e e n m a d e to c o r r e l a t e the m o r p h o l o g i c a l c h a n g e s that a c c o m p a n y the c h a n g e s in c h e m i c a l c o m p o s i t i o n . Only P a a s c h e (1973a) has d o c u m e n t e d the m o r p h o l o g i c a l c h a n g e s that o c c u r in c o n t i n u ous c u l t u r e and a few s t u d i e s have b e e n c o n d u c t e d on s t a r v e d cells g r o w n in b a t c h c u l t u r e (Braruud, 1948; Holmes, 1966). P a a s c h e ' s p h o t o m i c r o g r a p h s show e x t e n s i v e m o d i f i c a t i o n s in the f r u s t u l e of Thalassiosira pseudonana w h e n it was grown under silicate limitation. This p a p e r p r e s e n t s d a t a on the cellular c h e m i c a l c o m p o s i t i o n and m o r p h o l o gy of t h r e e m a r i n e d i a t o m s that w e r e g r o w n in c h e m o s t a t s u n d e r s i l i c a t e or a m m o n i u m l i m i t a t i o n and s e m i - c o n t i n u o u s ly u n d e r u n l i m i t e d and n u t r i e n t - s t a r v e d
c o n d i t i o n s . The n u t r i e n t u p t a k e k i n e t i c s of t h e s e t h r e e species w i l l be p r e s e n t e d in a s u b s e q u e n t p a p e r (Conway and H a r r i s o n , 1977). Materials and Methods
T h r e e m a r i n e c e n t r i c d i a t o m s w e r e used in this study. The s o u r c e of Skeletonema costatum has b e e n p r e v i o u s l y d e s c r i b e d (Davis et al., 1973). Chaetoceros debilis Cleve was i s o l a t e d at F r i d a y Harbor, W a s h i n g t o n , in 1970 by Dr. J. L e w i n (Univ e r s i t y of W a s h i n g t o n ) . Thalassiosira gravida C l e v e was o b t a i n e d from the U n i v e r s i ty of C a l i f o r n i a c u l t u r e c o l l e c t i o n , S a n t a B a r b a r a (USA); it o r i g i n a t e d form e r l y f r o m the S c r i p p s I n s t i t u t e of Oceanography culture collection. The c h e m o s t a t s y s t e m was the same as that d e s c r i b e d p r e v i o u s l y (Davis et al., 1973; C o n w a y et al., 1976), except that the l i g h t i n g s y s t e m was changed. T h e n e w s y s t e m c o n s i s t e d of three, 110 W, daylight, f l u o r e s c e n t bulbs h e l d in a p a r a b o l i c r e f l e c t o r . A sheet of blue P l e x i glas (No. 2069, R o h m and Haas) 0.3 cm thick, was u s e d to m o d i f y the s p e c t r u m and m a k e it c o m p a r a b l e to 5 m u n d e r w a t e r light for c o a s t a l c o n d i t i o n s (described as J e r l o v t y p e 3 in Holmes, 1957). Cont i n u o u s light w a s u s e d and the i n t e n s i t y was 0.08 ly/min. The c u l t u r e s w e r e g r o w n at 18oc in a r t i f i c i a l s e a w a t e r (Davis e t a l . , 1973). N u t r i e n t s and v i t a m i n s w e r e a d d e d in the p r o p o r t i o n s of m e d i u m f (Guillard and Ryther, 1962). T h e c o n c e n t r a t i o n of the l i m i t i n g n u t r i e n t was about 8 to 10 ~gat/l -I in the i n f l o w m e d i u m , and the other n u t r i e n t s , t r a c e m e t a l s and vitamins w e r e c o n s i d e r e d to be s a t u r a t i n g at a p p r o x i m a t e l y f / 5 0 levels. The d i l u t i o n rates for the n u t r i e n t l i m i t e d c u l t u r e s w e r e c h o s e n from the region w h e r e t h e r e was little or no c h a n g e in e f f l u e n t s u b s t r a t e c o n c e n t r a t i o n over a r a n g e of d i l u t i o n rates (defined as r e g i o n 2, H a r r i s o n et al., 1976). It was felt that d i l u t i o n rates from this region (generally D ~ I/3 to I/2 bmax) produced representative nutrient-limited cultures. Thalassiosira g r a ~ d a grows m o r e s l o w l y than the o t h e r two s p e c i e s and, t h e r e f o r e , it was g r o w n at a lower dilution rate in o r d e r to o b t a i n c h e m i c a l c o m p o s i t i o n d a t a from a c o m p a r a b l e reg i o n of the g r o w t h curve (region 2). Unl i m i t e d cells w e r e o b t a i n e d f r o m semic o n t i n u o u s c u l t u r e s (daily d i l u t i o n s of b a t c h cultures) in w h i c h cells w e r e g r o w ing l o g a r i t h m i c a l l y and n u t r i e n t s w e r e s a t u r a t i n g . S t a r v e d cells w e r e o b t a i n e d by a l l o w i n g t h e s e s e m i - c o n t i n u o u s cult u r e s of l o g a r i t h m i c a l l y g r o w i n g cells to d e p l e t e the l i m i t i n g n u t r i e n t (ammo-
P.J. Harrison et al. : Chemical Composition and Morphology of Diatoms
n i u m or silicate) in the m e d i u m w h i l e other n u t r i e n t s w e r e m a i n t a i n e d at satu r a t i n g levels. The s t a r v a t i o n p e r i o d lasted 72 h. At the end of this p e r i o d the cells w e r e still c a p a b l e of t a k i n g up the l i m i t i n g n u t r i e n t , i n d i c a t i n g that they w e r e still v i a b l e (Conway and H a r r i s o n , 1977). R e c o g n i t i o n of v i a b l e looking cells was f a c i l i t a t e d by counting live, r a t h e r than p r e s e r v e d samples. W h e n c u l t u r e s g r o w i n g in the chemostat r e a c h e d s t e a d y state, w h i c h was det e r m i n e d by no t r e n d in cell n u m b e r s or f l u o r e s c e n c e over s e v e r a l days, e f f l u e n t n u t r i e n t c o n c e n t r a t i o n s , cell n u m b e r s and v o l u m e s w e r e m e a s u r e d . S a m p l e s for p a r t i c u l a t e carbon, n i t r o g e n and s i l i c a w e r e o b t a i n e d by f i l t e r i n g about 1OO ml of the e f f l u e n t culture. N u t r i e n t analyses, f l u o r e s c e n c e meas u r e m e n t s and cell c o u n t i n g t e c h n i q u e s were the same as in p r e v i o u s studies (Davis et a l . , 1 9 7 3 ) . T h e c h l o r o p h y l l a det e r m i n a t i o n was s i m i l a r to the S C O R U N E S C O m e t h o d (Blasco, 1973); the m a i n m o d i f i c a t i o n was that the g l a s s - f i b e r f i l t e r s w e r e put d i r e c t l y into 90% acetone and a l l o w e d to e x t r a c t in the dark in a r e f r i g e r a t o r for 3 to 20 h. P a r t i c u l a t e s i l i c a (PSi) was a n a l y z e d by the s o d i u m f u s i o n p r o c e d u r e of B u s b y and Lewin (1967). P a r t i c u l a t e n i t r o g e n (PN) and c a r b o n (PC) w e r e a n a l y z e d w i t h a Carlo E r b a CHN a n a l y z e r (Model 1100). Cell v o l u m e s w e r e c a l c u l a t e d from m i c r o s c o p i c a l m e a s u r e m e n t s of cell diameter and length. T h e cells w e r e t a k e n to be c y l i n d r i c a l in shape, e x c e p t for Chaetoceros debilis w h i c h was a s s u m e d to be e l l i p t i c a l w i t h s e m i - a x e s of a and b = 3/4 a. T h e m e a n cell v o l u m e r e p o r t e d is from a m e a s u r e m e n t of 50 cells. P h o t o m i c r o g r a p h s w e r e t a k e n of live material under phase contrast using a Zeiss c o m p o u n d m i c r o s c o p e . E s t i m a t e s of p a r t i c u l a t e n i t r o g e n and s i l i c a w e r e m a d e by d i r e c t a n a l y s i s and by mass b a l a n c e (inflow m i n u s o u t f l o w n u t r i e n t c o n c e n t r a t i o n s ) . D i r e c t analyses w e r e f o u n d to be m o r e v a r i a b l e (Harrison et al., 1976) and t h e r e f o r e part i c u l a t e silica, n i t r o g e n and P h O s p h o r u s w e r e m e a s u r e d by m a s s b a l a n c e in this study. H i g h e r v a r i a b i l i t y in the d i r e c t a n a l y s i s was also o b s e r v e d by C a p e r o n and M e y e r (1972). The mass b a l a n c e m e t h od a s s u m e s that a n e g l i g i b l e a m o u n t of the i n o r g a n i c n u t r i e n t in the i n f l o w m e d i u m is c o n v e r t e d into d i s s o l v e d organic compounds. R ~
Cell Morphology
D i s t i n c t d i f f e r e n c e s in cell m o r p h o l o g y of a s p e c i e s r e s u l t e d from g r o w t h u n d e r
21
s i l i c a t e - l i m i t e d (Si-limited), a m m o n i u m l i m i t e d (NH4-1imited), and n o n - l i m i t e d nutrient conditions. These differences for the t h r e e s p e c i e s are shown in the p h o t o m i c r o g r a p h s (Fig. 1). T h e m o r p h o logical c h a n g e s in s t a r v e d cells w e r e not as s t r i k i n g as in limited cells, but o t h e r w i s e they w e r e similar. P h o t o m i c r o g r a p h s of s t a r v e d cells have not been included. A c o m p a r i s o n of S i - l i m i t e d , nonlimited, and N H 4 - 1 i m i t e d cells of Skeletonema costatum is m a d e in Fig. IA, B and C, r e s p e c t i v e l y . The n u m b e r of cells/ chain was g e n e r a l l y g r e a t e r than 10 for n o n - l i m i t e d cells, g r e a t e r than 6 for N H 4 - 1 i m i t e d cells and less than 4 for S i - l i m i t e d cells. The length of the conn e c t i n g rods b e t w e e n cells was n o r m a l (3 ~um) for n o n - l i m i t e d and N H 4 - 1 i m i t e d cells and almost zero for S i - l i m i t e d cells. M a n y S i - l i m i t e d cells a p p e a r e d to have more or larger c h r o m a t o p h o r e s than n o n - l i m i t e d or N H 4 - 1 i m i t e d cells. The largest cell v a c u o l e was o b s e r v e d for N H 4 - 1 i m i t e d cells. Si- and N H 4 - 1 i m i t e d cells w e r e u s u a l l y v e r y long and narrow, t y p i c a l l y about 1 2 ~m x 3 ~m. The c h a n g e s
in m o r p h o l o g y of Chaetoces h o w n in Fig. ID, E and F. A g a i n the n~nlber of c e l l s / c h a i n was less (-4) u n d e r s i l i c a t e l i m i t a t i o n than under no l i m i t a t i o n (-10) or a m m o n i u m limi t a t i o n (-10). The l e n g t h of the p r o j e c t ing setae was n o r m a l u n d e r no l i m i t a t i o n and a m m o n i u m limitation, but setae w e r e s h o r t e r or a b s e n t u n d e r s i l i c a t e limitation. U s u a l l y t h e r e w e r e two c h r o m a t o phores r a t h e r t h a n one, u n d e r s i l i c a t e limitation. The size of the v a c u o l e in r e l a t i o n to the rest of the cell was d i f f i c u l t to estimate. ros debilis are
Changes
in the m o r p h o l o g y of Thalassiow e r e s i m i l a r to the other two species (Fig. IG, H and I). The n u m b e r of c e l l s / c h a i n was lowest u n d e r s i l i c a t e l i m i t a t i o n (10) g e n e r a t i o n s b e f o r e a s t e a d y s t a t e is o b t a i n e d and m o d i f i c a t i o n in c h e m i c a l c o m p o s i t i o n is complete. T h e r e f o r e , in l a b o r a t o r y s t u d i e s to det e r m i n e the full r a n g e of c h e m i c a l comp o s i t i o n for o n e s p e c i e s u n d e r one nutrient limitation, nutrient-limited r a t h e r than n u t r i e n t - s t a r v e d cells s h o u l d be used, a l o n g w i t h n o n - l i m i t e d cells.
Ecological
Significance
In a d d i t i o n to c o n f o u n d i n g t a x o n o m i c studies, c h a n g e s in m o r p h o l o g y i n d u c e d by s i l i c a t e or a m m o n i u m l i m i t a t i o n m a y also i n c r e a s e s i n k i n g rates. The r e d u c t i o n in the l e n g t h of the setae in Chaetoceros debilis and in the l e n g t h of the rods j o i n i n g the cells of Skeletonema costatum that o c c u r r e d u n d e r s i l i c a t e limitat i o n have p r e v i o u s l y b e e n s h o w n to inc r e a s e s i n k i n g r a t e s (Smayda and Boleyn, 1966; Smayda, 1970). T h e s e o b s e r v a t i o n s s u g g e s t that the s i n k i n g rate of cells u n d e r s i l i c a t e l i m i t a t i o n m a y be h i g h e r t h a n u n d e r a m m o n i u m l i m i t a t i o n , due to the s u b s t a n t i a l m o d i f i c a t i o n and r e d u c t i o n in e x t e n s i o n s of the f r u s t u l e that do n o t o c c u r u n d e r a m m o n i u m limitation. F u t u r e i n v e s t i g a t i o n s in this d i r e c t i o n are needed. The p h o t o m i c r o g r a p h s of the cells (Fig. I) s u g g e s t that it is p o s s i b l e to v i s u a l l y a s s e s s the n u t r i t i o n a l status of m a r i n e d i a t o m s by c o r r e l a t i n g v i s u a l s y m p t o m s i n d u c e d by l i m i t a t i o n or s t a r v a t i o n w i t h the p a r t i c u l a r e l e m e n t in s h o r t s u p p l y such as n i t r o g e n or silicon. The u s e f u l n e s s of this a p p r o a c h in f i e l d s t u d i e s w i l l d e p e n d p a r t i a l l y on the m a g n i t u d e of the s i n k i n g rates and the d e p t h of the t h e r m o c l i n e . T i t m a n and K i l h a m (1976) h a v e s h o w n that s i n k i n g rate increases substantially, shortly after the o n - s e t of p h o s p h a t e s t a r v a t i o n , and it b e g i n s to d e c r e a s e a b o u t 12 h a f t e r p h o s p h a t e e n r i c h m e n t . Due to this r e a s o n a b l y r a p i d a d j u s t m e n t of s i n k i n g r a t e by cells, it is p o s s i b l e that cells c o u l d q u i c k l y sink into h i g h - n u t r i e n t , d e e p w a t e r (where r e c o v e r y f r o m l i m i t a tion w o u l d begin) b e f o r e n u t r i e n t d e f i c i e n t s y m p t o m s are w e l l d e v e l o p e d . The c h e m i c a l c o m p o s i t i o n of Thalassiosira p s e u d o n a n a g r o w n in a c h e m o s t a t u n d e r p h o s p h o r u s or n i t r o g e n l i m i t a t i o n has been c o m p a r e d and the e f f e c t on r a t i o s e v a l u a t e d (Perry, 1976). P e r r y s u g g e s t e d
29
that r a t i o s w h i c h d i f f e r e d by a f a c t o r of 5 or m o r e could be c o n s i d e r e d u s e f u l d i a g n o s t i c p a r a m e t e r s in d e t e r m i n i n g nut r i t i o n a l status of p h y t o p l a n k t o n . Based on this c r i t e r i o n , o n l y one ratio, N:Si, w o u l d be u s e f u l in d i s t i n g u i s h i n g bet w e e n Si- and N - l i m i t e d p h y t o p l a n k t o n . This r a t i o was s i m i l a r for all t h r e e species, w i t h an a v e r a g e v a l u e of 5.1 for S i - s t a r v e d or limited, 2.0 for nonlimited, and 0.8 for N H 4 - s t a r v e d or limited. O t h e r r a t i o s i n c l u d i n g C:Si, N:P, Si:P and S i : c h l o r o p h y l l a w e r e d i f f e r e n t by a factor of at least 2. T h e 5 r a t i o s that w o u l d be least u s e f u l in d i s t i n g u i s h i n g b e t w e e n s i l i c a t e or n i t r o g e n l i m i t a t i o n w e r e C:N, C:P, C : c h l o r o p h y l l a, N : c h l o r o p h y l l a and P : c h l o r o p h y l l a. G e n e r a l l y , t h e s e r a t i o s i n c r e a s e d for b o t h s i l i c a t e and a m m o n i u m l i m i t a t i o n , but for d i f f e r e n t reasons. (The N : c h l o rophyll a ratio under ammonium limitat i o n was an exception.) In all cases, the c h a n g e in t h e s e 5 ratios was small and could not be e a s i l y d e t e c t e d u s i n g natural phytoplankton populations. Due to the p r o b l e m s of m e a s u r i n g the c h e m i c a l c o m p o s i t i o n of living p h y t o p l a n k t o n in the ocean, the n u t r i t i o n a l status of p h y t o p l a n k t o n in the f i e l d is b e s t s t u d i e d by c o m b i n i n g a n u m b e r of a p p r o a c h e s . T h e s e are: m e a s u r i n g one or two of the m o r e s e n s i t i v e c h e m i c a l comp o s i t i o n ratios, v i s u a l l y e x a m i n i n g the cells for s y m p t o m s of c e r t a i n n u t r i e n t d e f i c i e n c i e s , and m e a s u r i n g u p t a k e kin e t i c s on a t i m e - s e r i e s basis.
Acknowledgements. This research was supported by National Science Foundation Grants GB 6394, GA 31093 and GB 20182. The AutoAnalyzer~ was maintained by G. Friederich, and D. Harmon assisted in data analysis and sampling. The CHN analyzer was maintained by R. Feller and J. Vidal.
t ~ m
C~sd
Belcher, J.H., E.M.F. Swale and J. Heron: Ecological and morphological observations on a population of Cyclotella p s e u d o s t e l l i g e r a Hustedt. J. Ecol. 54, 335-340 (1966) Bienfang, P.K.: Steady state analysis of nitrateammonium assimilation by phytoplankton. Limnol. Oceanogr. 20, 402-411 (1975) Blasco, D.: Estudio de las variaciones de la relaci~n fluorescencia in vivo/chlorofila a, y su aplicaciSn en oceanografia. Influencia de la limitacion de diferentes nutrientes, efecto del dia y noche y dependencia de la especie estudiada. InvestigatiSn pesq. 37, 533-536 (1973) Braarud, T.: On variations in form of Sceletonema costatum and their bearing on the supply
30
P.J.
Harrison et al.: Chemical Composition and Morphology of Diatoms
of silica in cultures of diatoms. Nytt Mag. Naturvid. (B) 86, 31-44 (1948) Busby, W.F. and J. Lewin: Silicate uptake and s i l i c a shell formation by synchronously dividing cells of the diatom Navicula pelliculosa (Br~b.) Hilse. J. Phycol. 3, 127-131 (1967) Caperon, J. and J. Meyer: Nitrogen-limited growth of marine phytoplankton. I. Changes in population characteristics with steady-state growth rate. Deep-Sea Res. 19, 601-618 (1972) Collos, Y. and J. Lewin: Blooms of surf-zone diatoms along the coast of the Olympic Peninsula, Washington. 7. Variations of the carbonto-nitrogen ratio in field samples and laboratory cultures of Chaetoceros armatum. Limnol. Oceanogr. 21, 219-225 (1976) Conover, S.A.M.: Partitioning of nitrogen and carbon in cultures of the marine diatom Thalassiosira fluviatilis supplied with nitrate, ammonium or urea. Mar. Biol. 32, 231246 (1975) Conway, H.L.: The uptake and assimilation of inorganic nitrogen by Skeletonema costatum (Grev.) Cleve, 125 pp. Ph.D. dissertation, University of Washington, Seattle 1974 and P.J. Harrison: Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Mar. Biol. 43, 33-43 (1977) - and C.O. Davis: Marine diatoms grown in chemostats under silicate or ammonium limitation. II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient. Mar. Biol. 35, 187-199 (1976) Coombs, J., W.M. Darley, O. Holm-Hansen and B.E. Volcani: Studies of the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon-starvation synchrony. PI. Physiol., Lancaster 42, 1601-1606 (1967) Corner, E.D.S. and A.G. Davies: Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Adv. mar. Biol. 9, 101-204 (1971) Davis, C.O.: Effects of changes in light intensity and photoperiod on the silicate-limited continuous culture of the marine diatom Skeletonema costatum (Grey.) Cleve, 122 pp. Ph.D. dissertation, University of Washington, Seattle 1973 - Continuous culture of marine diatoms under silicate limitation. II. Effect of light intensity on growth and nutrient uptake of Skeletonema costatum. J. Phycol. 12, 291-3OO (1976) -, P.J. Harrison and R.C. Dugdale: Continuous culture of marine diatoms under silicate limitation. I. Synchronized life cycle of Skeletonema costatum. J. Phycol. 9, 175-180 (1973) Droop, M.R.: The nutrient status of algal cells in continuous culture. J. mar. biol. Ass. U.K. 54, 825-855 (1974) Eppley, R.W. and E.H. Renger: Nitrogen assimilation of an oceanic diatom in nitrogen-limited -
-
continuous culture. J. Phycol. 10, 15-23 (1974) Findlay, I.W.O.: Effects of external factors and cell size on the cell division rate of a marine diatom Coscinodiscus pavillardii Forti. Int. Revue ges. Hydrobiol. 57, 523-533 (1972) Fuhs, G.W.: Phosphorus content and rate of growth in the diatoms Cyclotella nana and Thalassiosira fluviatilis. J. Phycol. 5, 312321 (1969) -, S.D. Demmerle, E. Canelli and M. Chen: Characterization of phosphorus-limited algae. In: Nutrients and eutrophication, pp 113-132. Ed. by G.E~ Likens. Lawrence, Kansas: Allen Press Inc. (Spec. Symp. Am. Soc. Limmol. Oceanogr., No. i) 1972 Guillard, R.R.L. rine plankton (Hustedt) and Gran. Can. J.
and J.H. Ryther: Studies of madiatoms. I. Cyclotella nana Detonula confervacea (Cleve). Microbiol. 8, 229-239 (1962)
Harrison, P.J.: Continuous culture of the marine diatom Skeletonema costatum (Grev.) Cleve, under silicate limitation, 140 pp. Ph.D. dissertation, University of Washington, Seattle 1974 -, H.L. Conway and R.C. Dugdale: Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady-state growth kinetics of Skeletonema costatum. Mar. Biol. 35, 177-186 (1976) Healey, P., J. Coombs and B.E. Volcani: Changes in pigment content of Navicula pelliculosa in silicon-starvation synchrony. Arch. Mikrobiol. 59, 131-142 (1967) Hobson, L.A. and R.J. Pariser: The effect of inorganic nitrogen on macromolecular synthesis by Thalassiosira fluviatilis Hustedt and Cyclotella nana Eustedt grown in batch culture. J. exp. mar. Biol. Ecol. 6, 71-78 (1971) Holmes, R.W.: Solar radiation, submarine daylight and photosynthesis. In: Treatise on marine ecology and paleoecology. Vol. i. Ecology, pp 109-128. Ed. by J.W. Eedgpeth. New York: Geological Society of America 1957. (Mem. geol. Soc. Am. No. 67) Light microscope observations on cytological manifestations of nitrate, phosphate, and silicate deficiency in four marine centric diatoms. J. Phycol. 2, 136-140 (1966) Eolm-Hansen, 0., W.E. Sutcliffe (Jr.) and J. Sharp: Measurement of deoxyribonucleic acid in the ocean and its ecological significance. Limnol. Oceanogr. 13, 507-514 (1968) J~rgensen, E.G.: The adaptation of plankton algae. II. Aspects of the temperature adaptation of Skeletonema costatum. Physiologia PI. 21, 423-427 (1968) Ketchum, B.H. and A.C. Redfield: Some physical and chemical characteristics of algae growth in mass culture. J. cell. comp. Physiol. 33, 281-299 (1949) Kilham, S.S.: Kinetics of silicon-limited growth in the freshwater diatom Asterionella formosa. J. Phycol. 11, 396-399 (1975)
P.J.
Harrison et al.: Chemical Composition and Morphology of Diatoms
Lorenzen, C.J.: Carbon/chlorophyll relationships in an upwelling area. Limnol. Oceanogr. 13, 202-204 (1967) Margalef, R.: Perspectives in ecological theory, iii pp. Chicago: The University of Chicago Press 1968 Paasche, E.: Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Mar. Biol. 19, 117-126 (1973a) The influence of cell size on growth rate, silica content and some other properties of four marine diatom species. Norw. J. Bot. 20, 197-204 (1973b) Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silicate concentrations. J. exp. mar. Biol. Ecol. 18, 173183 (1975) Parsons, T.R., K. Stephens and J.D.H. Strickland: On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Bd Can. 18, 1OO1-1016 (1961) Perry, M.J.: Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central north Pacific. Limnol. Oceanogr. 21, 88-107 (1976) Pugh, P.R.: Variations in the biochemical composition of the diatom Coscinodiscus eccentricus with culture age and salinity. Mar. Biol. 33, 195-205 (1975) Redfield, A.C., B.H. Ketchum and F.A. Richards: The influence of organisms on the composition of sea-water. In: The sea, Vol. 2. pp -
-
Date of final manuscript
acceptance:
April
31
26-77. Ed. by M.N. Bill. New York: Wiley Interscience 1963 Smayda, T.J.: The suspension and sinking of phytoplankton in the sea. Oceanogr. mar. biol. A. Rev. 8, 353-414 (1970) and B.J. Boleyn: Experimental observations on the flotation of marine diatoms. II. Skeletonema costatum and Rhizosolenia setigera. Limnol. Oceanogr. ii, 18-34 (1966) Strickland, J.D.H., O. Holm-Hansen, R.W. Eppley and R.J.Linn: The use of a deep tank in plankton ecology. I. Studies on the growth and composition of phytoplankton crops at low nutrient levels. Limnol. Oceanogr. 14, 23-34 (1969) Thomas, W.H. and A.N. Dodson: On nitrogen deficiency in tropical Pacific oceanic plankton. II. Photosynthetic and cellular characteristics of a chemostat grown diatom. Limnol. Oceanogr. 17, 515-523 (1972) Titman, D. and P. Kilham: Sinking in freshwater phytoplankton: some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanogr. 21, 409-417 (1976) Werner, D.: Die Kiesels~ure im Stoffwechsel yon Cyclotella cryptica, Reiman, Lewin and Guillard. Arch. Mikrobiol. 55, 278-308 (1966) -
Dr. Paul J. Harrison Institute of Oceanography and Department of Botany University of British Columbia Vancouver V6T IW5, British Columbia Canada
15, 1977. Communicated by M.R. Tripp, Newark