MAssive Computation methodology for Reactor Operation ... - NRG

0 downloads 0 Views 791KB Size Report
ARJAN KONING, DIMITRI ROCHMAN. Nuclear ... HANS HENRIKSSON ... The plan is to use a method proposed by Koning and Rochman [2] to investigate the ...
MASSIVE COMPUTATION METHODOLOGY FOR REACTOR OPERATION (MACRO) CECILIA GUSTAVSSON, STEPHAN POMP,  HENRIK SJÖSTRAND, GUSTAV WALLIN, MICHAEL ÖSTERLUND

Division of applied nuclear physics, Department of physics and astronomy, Uppsala University,  Lägerhyddsvägen 1, 751 20 Uppsala – Sweden

ARJAN KONING, DIMITRI ROCHMAN Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten – The Netherlands

KLAES­HÅKAN BEJMER Vattenfall Nuclear Fuel AB 

Jämtlandsgatan 99, Vällingby – Sweden

HANS HENRIKSSON Vattenfall Research and Development AB Jämtlandsgatan 99, Vällingby – Sweden  

ABSTRACT Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties.   The plan is to use a method proposed by Koning and Rochman [2] to investigate the propagation of nuclear   data   uncertainties   into   reactor   physics   codes   and   macroscopic   parameters.   A   project (acronym   MACRO)   has   started   at   Uppsala   University   in   collaboration   with   A.   Koning   and   with financial   support   from   Vattenfall   AB   and   the   Swedish   Research   Council   within   the   GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross­section data. Given the probability distribution in the model parameters a large set of random, complete ENDF­formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries   and   the   variation   of   the   final   results   will   be   regarded   as  a   systematic   uncertainty   in   the investigated reactor parameter.  

The   understanding   of   these   systematic   uncertainties   is   especially   important   for   the   design   and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged.

1.

Introduction

While  experimentally   obtained   nuclear   data  is  published   together   with  their  uncertainties, which are not handled in a consistent manner in nuclear data libraries, and standard reactor core simulation  codes do not make use  of them.  Thus,  it is not possible   to assign,  in a rational way, uncertainties to the calculated macroscopic reactor parameters.  For safety and economical reasons, the handling of uncertainties in the underlying nuclear physics data and their covariances is a key issue, especially for the design and comparison of new reactors  concepts such as Gen IV. The questions of uncertainty propagation and which   nuclear   data   measurements   are   of   highest   priority   have   been   addressed   by   the CANDIDE [10] project and the NEA SG­26 working group. The FP7 project ANDES (under preparation) will follow the recommendations of SG­26 and CANDIDE.  The   goal   of   the   MACRO   project   is   to   assign   uncertainties   to   macroscopic   reactor parameters, as well as calculating their sensitivity to uncertainties in specific cross­sections and the model parameters resulting in those cross­sections. This will be done using a brute force computational approach based on the TALYS [1] code developed at NRG. The project is based at Uppsala University, and will receive funding from Vattenfall AB and the Swedish Research Council due to being part of the GENIUS (GENeration IV research In Universities of Sweden) project.

2.

The total Monte Carlo approach

The proposed concept used within MACRO can be divided into several steps [2]: 1) Theoretical considerations and comparisons of nuclear model results with experimental reaction data yield a specific a priori uncertainty of each nuclear model parameter. In this way parameter ranges for all nuclear models can be determined and one is left with 20 to 30 parameters that cover nuclear reactions up to 20 MeV. The probability distributions for these parameters will be, at least as a starting point, assumed Gaussian. In addition, resonance parameters and their uncertainties are available, allowing the results to cover the entire energy range. 2) In this step, the TALYS code will be used. The TALYS code can calculate parameters such as cross­sections, energy spectra and angular distributions for reactions

involving neutrons, gammas, protons, deuterons, tritons, 3He and alpha particles, in the 10­5 eV to 200 MeV energy range. This is done based on a limited set of model parameters. All nuclear quantities necessary for the creation of ENDF­6 files are calculated with the TALYS code a large number of times. For each run, all elements of the input parameter vector are randomly sampled from a normal distribution with a specific width for each parameter (see step 1). A similar action is performed for the resonance parameters using experimentally derived uncertainties as widths. 3) Correlations between the nuclear model parameters are introduced by a binary reject/accept method; only if all predicted results fall within the uncertainty ranges of experimental data, is the TALYS run accepted. Thus, only certain combinations of model parameters survive, and the parameter distribution is automatically determined numerically by experimental data, without having to resort to an a priori distribution. Every individual run produces a complete nuclear data library containing all cross­ sections, angular distributions, etc. By this, a large set of random, complete ENDF­ formatted nuclear data libraries for the resolved and unresolved resonance range and the fast neutron range is created. The libraries are all mutually different for all reaction channels and energies. As a bonus, after enough runs all statistical information to fill a full covariance matrix for the calculated data and the nuclear model parameters become available. Note however, that although all models, parameters, data, etc., are intrinsically correlated, explicit covariance matrices are no longer required since all information is simply available in the large set of Monte Carlo results. This is one of the key ideas; processing of covariance data files and perturbation codes is no longer necessary. 4) The generated nuclear data libraries are processed with NJOY [3] and then used in a transport code like MCNP [4] to calculate macroscopic reactor parameters. For this, a model of a reactor system with proper geometry, elements, etc., is used. This is done for all the “random” data libraries and the variations of the final results can be studied. These variations are due to a) the statistical uncertainties in to the Monte Carlo transport process and b) the differences in the nuclear data libraries. The latter can be regarded as systematic uncertainties that result from the variation in the nuclear model and resonance parameters, and the basic experimental data. In sum, only the basic nuclear physics model and the experimental data in the input side and the   macroscopic   quantities   on   the   output   side   are   considered.   The   path   in­between   is straight­forward   and   the   entire   route   of   data   evaluation,   formatting,   processing,   etc.,   is automated. Manual covariance analysis becomes obsolete using computer power. Through brute force computations,  the influence of a certain  model  or resonance  parameter  on a macroscopic quantity can be studied.

3.

The MACRO project

The MACRO effort will be started at two fronts in parallel. On the one hand, the “production line” will be developed. This will be a semi­automatic computational chain starting from the randomised   sampling   of   TALYS   input   parameters   and   ending   with   macroscopic   reactor parameters,   for   example   the   neutron   multiplication   factor  keff  and   the   effective   delayed neutron fraction  eff. The calculations will be based on TALYS, TEFAL [5], NJOY and MCNP. On the other hand uncertainties of a limited parameter set will be studied, i.e., optical model and   level   density   parameters,   on   a   likewise   limited   set   of  Na,  Fe  and  Pb  isotopes.   The choice of these elements is due to their importance in Gen IV reactors (Na  and  Pb) and since they are well studied in integral benchmarks (Fe). In this area, the collaboration with A. Koning   at   NRG   will   be   a   significant   factor.   The   results   from   this   effort   will   be   statistical distributions of nuclear model parameters. Points will be sampled from these distributions and used as input data to TALYS in the computational chain. Once   the   computational   chain   is   completed,   and   enough   information   about   prioritised nuclear model parameters for prioritised isotopes has been obtained, the two efforts will be combined. To get reasonably good sampling of the nuclear model parameter uncertainties, about 5000 data libraries per isotope will be produced. On a one processor machine, the creation of a full ENDF­6 file up to 20 MeV takes about 5 minutes, the data processing about 1 minute and the MCNP calculation about 15 minutes [2]. This indicates that, while the final mass production has to be run on a computer cluster, a standard desktop computer can be used for the initial studies.  Finally,   the   obtained   reactor   parameter   data   will   be   linked   back   to   the   input   model parameters and the sensitivity of the end result on the nuclear model parameters can be determined.   This   will   allow   the   assigning   of   uncertainties   to   the   macroscopic   reactor parameters, based on the uncertainties in the nuclear model parameters. The cases used as basis for the first large­scale runs will be selected in such a way that they give good indications of where future efforts within MACRO should be focused. This can mean which isotopes should be studies, or which reactor types are of the most interest. The   final   results   of   MACRO   will   give   indications   of   where   future   experimental   research should   be   concentrated.   For   example,   knowing   that   a   certain   cross­section   contributes significantly to the uncertainty  of a critical parameter  for a given application would highly suggest concentrating efforts on obtaining more accurate values for that cross­section. In extension this will of course also apply to the base model parameters. If that cross­section has a high dependency on a given model parameter, increasing the accuracy with which that model   parameter   is   known   will   allow   more   accurate   values   of   the   mentioned   critical parameter in simulations.

This will lead to the ability to conduct more accurate studies on current and future reactor designs,   allowing   for   better   knowledge   of   e.g.   the   safety   parameters   of   a   given   design. Having more accurate knowledge of safety parameters can allow more optimizations to be performed without compromising safety.

4.

References

[1] Koning, A.J., Hilaire, S., Duijvestijn, M., “Talys­1.0”, in: Bersillon, O., Gunsing, F., Bauge, E.,   Jacqmin,   R.,   Leray,   S.(Eds.),   Proceedings   of   the   International   Conference   on Nuclear   Data   for   Science   and   Technology,   22­27   April   2007,   Nice,   France,   EDP Sciences (2008), 211­214. [2] Koning, A.J., Rochman, D., “Towards sustainable nuclear energy: Putting nuclear physics to work”, Ann. Nucl. Energy 35 (2008) 2024­30. [3]   Macfarlane,   R.E.,   “NJOY99   –   code   system   for   producing   pointwise   and   multigroup neutron and photon cross­sections from ENDF/B Data”, RSIC PSR­480 (2000). [4]   Briesmeister,   J.F.   (Ed.),   “MCNP   –   a   general   Monte   Carlo   n­particle   transport   code”, version 4C, Los Alamos Laboratory, Report LA­13709­M. [5] Koning, A.J., “Tefal­1.05”, unreleased code. [6]   International   Handbook   of   evaluated   Criticality   Safety   Benchmark   Experiments, NEA/NSC/DOC(95)03/I (2004). [7]   Fast   Reactor   Database:   2006   Update,   IAEA   Report   IAEA­TECDOC­1531,   December 2006. [8] Tucek, K., Carlsson, J., Wider, H., Nucl. Eng. Des 236 (2006) 1589. [9]   Rochman,   D.,   Koning,   A.J.,   “Pb   and   Bi   neutron   data   libraries   with   full   covariance evaluation and improved integral tests”, Nucl. Instr. Meth. Phys. Res. A 589 (2008) 85­108. [10] Koning, A.J., Blomgren, J., Jacqmin, R., Plompen, A.J.M., Mills, R., Rimpault, G., Bauge, E., Cano Ott, D., Czifrus, S., Dahlbacka, K., Goncalves, I., Henriksson, H., Lecarpentier, D., Malumbu Mbala, E., Stary, V., Trakas, C., Zimmerman, C., “Nuclear data for sustainable nuclear energy – Coordinated action on nuclear data for industrial development in Europe (CANDIDE)”

Suggest Documents