Mathematical Assessment of PWM Control of A Induction Motor -

113 downloads 0 Views 1MB Size Report
This project aims to develop P M based schemes to control single phase AC induction to operate at different rotational speed with optimized motor performanceΒ ...
Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Mathematical Assessment of PWM Control of A Induction Motor Z. A. Aziz, C. S. Bohun, K. W. Chung, H. H. Dai, Y. H. Hao, D. Ho, H. X. Huang, F. F. Wang, J. Wang, Y. B. Wang

December 11, 2009

Mathematical assessment of PWM control of a induction motor

1 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

1

Motivations

2

Simple single coil AC motor model

3

Three Phase Induction Motor Model and Simulation

4

Sensorless control

Mathematical assessment of PWM control of a induction motor

2 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Motivations

This project aims to develop PWM based schemes to control single phase AC induction to operate at different rotational speed with optimized motor performance in terms of: High torque output, particularly during start-up; High energy efficiency; Shortest spin-up time.

Mathematical assessment of PWM control of a induction motor

3 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Basic scheme of field orientated control for 3-phase AC-motors

Mathematical assessment of PWM control of a induction motor

4 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Simple single coil AC motor model Voltage

Coil

ea(t) ea(t) = La ia'(t) + Ra ia(t) + eb(t),

(1)

-

(2)

J w' (t) = tm(t)

La

ia(t) Resistance

Ra

Back emf

eb(t)

Mathematical assessment of PWM control of a induction motor

tL,

eb(t) = Kb w(t),

(3)

tm(t) = Ki ia(t) .

(4)

5 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Governing equation and general solution From (1)-(4) and by eliminating πœ”(𝑑), 𝑒𝑏 (𝑑) and πœπ‘š (𝑑), we obtain π‘–β€²β€²π‘Ž (𝑑) +

𝐾𝑖 𝐾𝑏 𝑒′ (𝑑) 𝐾𝑏 𝜏𝐿 π‘…π‘Ž β€² π‘–π‘Ž (𝑑) + π‘–π‘Ž (𝑑) = π‘Ž βˆ’ = 𝑓 (𝑑), πΏπ‘Ž πΏπ‘Ž 𝐽 πΏπ‘Ž πΏπ‘Ž 𝐽

(5)

The general solution of equation (5) is π‘–π‘Ž (𝑑) = 𝐢1 π‘’πœ†1 𝑑 + 𝐢2 π‘’πœ†2 𝑑 +

π‘’πœ†2 𝑑 πœ†2 βˆ’ πœ†1

∫

𝑑

0

π‘’βˆ’πœ†2 𝑠 𝑓 (𝑠)𝑑𝑠 βˆ’

π‘’πœ†1 𝑑 πœ†2 βˆ’ πœ†1

∫

𝑑

π‘’βˆ’πœ†1 𝑠 𝑓 (𝑠)𝑑𝑠.

0

(6)

At time 𝑑 = 0, we have π‘–π‘Ž (0) = 0,

π‘–β€²π‘Ž (0) = 𝐢1 πœ†1 + 𝐢2 πœ†2 .

Mathematical assessment of PWM control of a induction motor

(7)

6 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Control objectives Find the optimized voltage input π‘’π‘œπ‘Ž (𝑑), s.t., ∫

𝑇

(π‘–π‘œπ‘Ž (𝑑)

βˆ’ Β―π‘–π‘Ž )2 𝑑𝑑 = min

π‘’π‘Ž (𝑑)

0

∫

𝑇

(π‘–π‘Ž (𝑑) βˆ’ Β―π‘–π‘Ž )2 𝑑𝑑.

(8)

0

The following constraint condition is satisfied ∫

𝑇

π‘’π‘Ž (𝑑)π‘–π‘Ž (𝑑)𝑑𝑑 ≀ 𝛼0 .

(9)

0

We consider the Fourier series expansion form of π‘’π‘Ž (𝑑): ∞

π‘Ž0 βˆ‘ 2πœ‹π‘› 2πœ‹π‘› π‘’π‘Ž (𝑑) = + [π‘Žπ‘› cos( 𝑑) + 𝑏𝑛 sin( 𝑑)]. 2 𝑑 𝑑𝑝 𝑝 𝑛=1 Mathematical assessment of PWM control of a induction motor

(10)

7 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Simulation results (1) is a HtL t -2.5 -5 -7.5 -10 -12.5 -15

1

2

3

4

5

6

7

io a HtL t -2.5 -5 -7.5 -10 -12.5 -15

2

4

6

8

10

Eo a HtL 0.2 0.1 t -0.1 -0.2

2

4

6

8

10

Fig 2. Simulation results with π‘…π‘Ž = 0.1Ξ©, πΏπ‘Ž = 10βˆ’4 H, 𝐽 = 9 Γ— 10βˆ’5 Kg β‹…m2 , 𝐾𝑖 = 𝐾𝑏 = 0.02, 𝜏𝐿 = 0.3 Nβ‹…m. Mathematical assessment of PWM control of a induction motor

8 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Simulation results (2) s ia HtL

t -1 -2 -3 -4 -5

2

4

6

8

10

2

4

6

8

10

io a HtL t -1 -2 -3 -4

Eoa HtL 0.015 0.01 0.005 t -0.005

2

4

6

8

10

Fig 3. Simulation results with π‘…π‘Ž = 0.142Ξ©, πΏπ‘Ž = 1.1 Γ— 10βˆ’3 H, 𝐽 = 0.088 Kg β‹…m2 , 𝐾𝑖 = 𝐾𝑏 = 0.628, 𝜏𝐿 = 3 Nβ‹…m. Mathematical assessment of PWM control of a induction motor

9 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

1

Current of stator and rotor in d- and q-coordinate: 𝑖𝑑𝑆 , π‘–π‘žπ‘† , 𝑖𝑑𝑅 , π‘–π‘žπ‘… ;

2

Flux-linkage of stator and rotor in d- and q-coordinate: πœ†π‘‘π‘† , πœ†π‘žπ‘† , πœ†π‘‘π‘… , πœ†π‘žπ‘… ;

3

Resistance of stator and rotor: π‘Ÿπ‘† , π‘Ÿπ‘… ;

4

Self-inductance of stator and rotor: 𝐿𝑆 , 𝐿𝑅 ;

5

Magnetizing inductance: 𝑀 .

Mathematical assessment of PWM control of a induction motor

10 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Flux-current relationships are

The voltage equations are

Mathematical assessment of PWM control of a induction motor

The balance of the torques is

11 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

𝑦1 = πœ†π‘‘π‘† ,

𝑦2 = πœ†π‘‘π‘… , 𝑦3 = πœ†π‘žπ‘† , 𝑦4 = πœ†π‘žπ‘… , 𝑦5 = πœ”π‘š . (11) ⎧ 𝑑𝑦1   = βˆ’π‘1 𝑦1 βˆ’ 𝑐2 𝑦2 + πœ”π‘¦3 + 𝑣𝑑𝑆 ,   𝑑𝑑     𝑑𝑦2   = βˆ’π‘3 𝑦1 βˆ’ 𝑐4 𝑦2 + πœ”π‘¦4 βˆ’ 𝑝𝑦4 𝑦5 ,    ⎨ 𝑑𝑑 𝑑𝑦3 (12) = βˆ’πœ”π‘¦1 βˆ’ 𝑐1 𝑦3 βˆ’ 𝑐2 𝑦4 + π‘£π‘žπ‘† ,  𝑑𝑑    𝑑𝑦4   = βˆ’πœ”π‘¦2 βˆ’ 𝑐3 𝑦3 βˆ’ 𝑐4 𝑦4 + 𝑝𝑦2 𝑦5 ,    𝑑𝑑     ⎩ 𝑑𝑦5 = 𝑐5 𝑦1 𝑦4 βˆ’ 𝑐5 𝑦2 𝑦3 + 𝑐6 . 𝑑𝑑

Mathematical assessment of PWM control of a induction motor

12 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

0.3

0.03

0.2

0.02 0.01

0

Ξ»dR

Ξ»dS

0.1

βˆ’0.1

βˆ’0.02

βˆ’0.3 βˆ’0.4

0 βˆ’0.01

βˆ’0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

βˆ’0.03

0.5

0

0.05

0.1

0.15

0.2

t 0.03

0.2

0.02

0.1

0.35

0.4

0.45

0.5

0.3

0.35

0.4

0.45

0.5

0.01

0

Ξ»qS

Ξ»qS

0.3

t

0.3

βˆ’0.1

0 βˆ’0.01

βˆ’0.2

βˆ’0.02

βˆ’0.3 βˆ’0.4

0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

βˆ’0.03

0

0.05

0.1

0.15

0.2

0.25

t

t 50

Ο‰m

0

βˆ’50

βˆ’100

βˆ’150

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Mathematical assessment of PWM control of a induction motor

13 / 21

150

150

100

100

50

50

i dR

i dS

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

0 βˆ’50 βˆ’100 βˆ’150

0 βˆ’50 βˆ’100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

βˆ’150

0.5

0

0.05

0.1

0.15

0.2

t 150

100

100

0.3

0.35

0.4

0.45

0.5

0.3

0.35

0.4

0.45

0.5

50

0

i qR

iqS

50

βˆ’50

0 βˆ’50

βˆ’100

βˆ’100

βˆ’150 βˆ’200

0.25

t

150

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

βˆ’150

0

0.05

0.1

0.15

0.2

0.25

t

100

Te

50

0

βˆ’50

βˆ’100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Mathematical assessment of PWM control of a induction motor

14 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Sensorless control

Main ingredients: motion of the rotor induces a current back into the voltage of the stator this signal can be recovered by sampling the stator voltage the phase of this signal depends on the position of the rotor this signal can be used in place of the position detector circuitry that industry would like to remove

Mathematical assessment of PWM control of a induction motor

15 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Position dependent mutual inductance Single applied stator voltage

π‘šπ‘ 1 (𝛿) =

∫ 𝛿+πœ‹/2 π›Ώβˆ’πœ‹/2

Induced magnetic field

π‘™π΅π‘Ž (πœƒ) π‘‘πœƒ

Mathematical assessment of PWM control of a induction motor

16 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Induced voltage in the stator π‘Ž Induced voltage π‘’π‘ π‘Ž = π‘™πœŽπ‘Ž 𝑑𝑖 π‘‘πœ One rotor bar

( π‘™πœŽπ‘Ž = 𝑙𝑠 1 βˆ’

π‘š2π‘Ž1 𝑙𝑠 𝑙1

)

Two rotor bars

( π‘™πœŽπ‘Ž = 𝑙𝑠 1 βˆ’

π‘š2π‘Ž1 +π‘š2π‘Ž2 𝑙𝑠 𝑙1

)

𝑙1 = 𝑙2 , π‘š12 = 0 Mathematical assessment of PWM control of a induction motor

17 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Switching of the voltage to the stator The voltage differences are functions of these position dependent mutual inductances (4) π‘’πœŽ = π‘’π‘Ž + 𝑒𝑏 + 𝑒𝑐 , 𝑒(1) 𝜎 βˆ’ π‘’πœŽ = 2π‘ˆπ‘‘

Mathematical assessment of PWM control of a induction motor

π‘™πœŽπ‘Ž π‘™πœŽπ‘ + π‘™πœŽπ‘Ž π‘™πœŽπ‘ βˆ’ 2π‘™πœŽπ‘ π‘™πœŽπ‘ π‘™πœŽπ‘Ž π‘™πœŽπ‘ + π‘™πœŽπ‘Ž π‘™πœŽπ‘ + π‘™πœŽπ‘ π‘™πœŽπ‘

18 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Construction of the position estimate

(4) π‘π‘Ž = 𝑒(1) 𝜎 βˆ’ π‘’πœŽ ,

(6) 𝑝𝑏 = 𝑒(3) 𝜎 βˆ’ π‘’πœŽ ,

(2) 𝑝𝑐 = 𝑒(5) 𝜎 βˆ’ π‘’πœŽ

𝑝𝛼 + 𝑗𝑝𝛽 = π‘π‘Ž + 𝑒2πœ‹π‘—/3 𝑝𝑏 + π‘’βˆ’2πœ‹π‘—/3 𝑝𝑐

Mathematical assessment of PWM control of a induction motor

19 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

References

M. W. Degner and R. D. Lorenz, Using Multiple Saliencies for the Estimation of Flux, Position and Velocity in AC Machines, IEEE Transactions on Industry Applications, Vol, 34, No. 5, Sept/Oct. 1998, PP. 1097-1104. J.-I. Ha and S.-K. Sul, Sensorless Field-Oriented Control of an Induction Machine by High-Frequency Signal Injection, IEEE Transactions on Industry Applications, Vol, 35, No. 1, Jan/Feb. 1999, PP. 45-51. J. Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, Vol. 90, No. 8, Aug. 2002, pp. 1359-1394. M. Linke, R. Kennel, and J. Holtz, Sensorless Speed and Position Control of Permanent Magnet Synchronous Machines, IECON, 28th Annual Conf. of the IEEE Industrial Electronics Society, Sevilla/Spain, 2002, on CD ROM. M. Schroedl, Sensorless Control of AC Machines at Low Speed and Standstill based on the Inform Method, IEEE Industry Applications Society Annual Meeting, Pittsburgh, Sept. 30 - Oct. 4, 1996, pp. 270-277.

Mathematical assessment of PWM control of a induction motor

20 / 21

Outline Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

Thank you!

Mathematical assessment of PWM control of a induction motor

21 / 21