MCAD MA Final Thesis Paper (FINAL LIBRARY COPY) Stefanie ...

6 downloads 7475 Views 7MB Size Report
methodologies to design a more sustainable system for distilling water using solar energy. MA thesis. Minneapolis College of Art and Design,. Minneapolis ...
           

SolDrop Solar Still THE  PRACTICE  AND  APPLICATION  OF  BIOMIMICRY  METHODOLGIES     TO  DESIGN  A  MORE  SUSTAINABLE  SYSTEM  FOR  DISTILLING     WATER  USING  SOLAR  ENERGY    

     

Stefanie  Koehler   Master  of  Arts  Candidate   MA  in  Sustainable  Design  Program     Minneapolis  College  of  Art  and  Design     Minneapolis,  MN,  USA     Thesis  Advisor:  Denise  DeLuca   Committee  Members:  Dawn  Danby  and  Curt  McNamara   Committee  Chair:  Cindy  Gilbert       May  14  2013              

     

     

Recommended  Citation:     -­‐

Koehler,  Stefanie.  SolDrop  Solar  Still:  the  practice  and  application  of  Biomimicry   methodologies  to  design  a  more  sustainable  system  for  distilling  water   using  solar  energy.  MA  thesis.  Minneapolis  College  of  Art  and  Design,   Minneapolis,  2013.        

   

 

 

2  

Abstract    

  Contaminated  water  the  world’s  biggest  health   risk  (NRDC,  2012).  The  use  of  solar  stills  for   purifying  contaminated  water  holds  great   opportunity;  however,  this  simple  and  clean   technology  is  under-­‐utilized  because  productivity   is  limited  with  current  designs.    Biomimicry  has   been  forwarded  as  a  method  for  creating  more   innovative  and  sustainable  design  solutions   (Biomimicry  3.8,  2012)  by  emulating  models  and   strategies  found  in  Nature.       The  goals  of  this  thesis  project  are  to  use   Biomimicry  methodologies  to  design  a  more   innovative,  more  sustainable,  and  more   productive  solar  still,  and  then  to  assess  the   usefulness  of  Biomimicry  as  a  sustainable     design  tool.     The  resulting  biomimetic  design  was  the   “SolDrop”  solar  still  product  concept  that  purifies   water  in  a  self-­‐contained,  seed-­‐like  structure  that   can  be  used  as  a  singular  device  or  collectively   with  multiple  units  adapting  to  various  situations.   This  design  was  a  successful  finalist  in  Round  1  (of   two)  of  the  2012-­‐2013  Biomimicry  Student  Design   Challenge  (Biomimicry  3.8,  2012),  which  suggests   that  the  Biomimicry  methodology  resulted  in  a   more  resilient,  robust,  and  innovative  design  idea   for  a  modular  solar  still.         The  experience  of  applying  the  Biomimicry   methodology  resulted  in  an  evolution  in  my   sustainable  design  thinking;  however,  other  tools   and  methodologies  will  be  required  to  move  the   design  from  idea  to  reality  as  well  as  to  make  it   contextually  relevant  and  appropriate.    

             

3  

Contents    

01  

  Introduction  ........................................................................................................  5   Thesis  Statement  ............................................................................................  6   Project  Objectives  ...........................................................................................  7  

02  

Opportunities  ......................................................................................................  8   Providing  Clean  Water  with  Less  Impact  ........................................................  8   Biomimicry  as  a  Sustainable  Design  Tool  ........................................................  9  

03  

The  Biomimicry  Approach  .................................................................................  10  

04  

Design  Process  ::  Using  Biomimicry  for  SolDrop  ..............................................  12  

05     06       -­‐  

 

07   08    

Life’s  Principles   .............................................................................................  10   Biomimicry  Design  Spirals  .............................................................................  11  

Visiting  Each  Step  in  the  Spiral  ......................................................................  13   Taking  laps  around  the  Spiral  ........................................................................  17   Design  Idea  ::  Explaining  the  SolDrop  Concept  ................................................  20   The  Pod  ::  Single  SolDrop  Solar  Still  ..............................................................  21   The  Collection  ::  Multiple  Solar  Still  Pods  Assembled  Together  ...................  25   The  System  ::  SolDrop  in  Context  ..................................................................  28   Conclusions  ........................................................................................................  31   Design  Outcomes  ..........................................................................................  31   Evaluating  the  Sustainability  of  SolDrop  ..................................................  31   Results  ::  BSDC,  Round  1  ..........................................................................  35   Broad  Lessons  ...............................................................................................  35   Following  the  Biomimicry  Approach  ........................................................  35   Using  Biomimicry  Methodology  ...............................................................  37   Evolution  of  my  Biomimicry  Thinking  ......................................................  40    Biomimicry  within  the  context  of  Sustainable  Design  .............................  42   Next  Steps  .....................................................................................................  44   BSDC,  Round  2  and  beyond  ......................................................................  44   References  .........................................................................................................  47   Appendix  ...........................................................................................................  49   BSDC  Round  1  Entry  ......................................................................................  49  

4  

 

01  

Introduction     Water  Around  the  World  

Water  is  a  basic  necessity  for  life  on  Earth;  however,  there  is  very  little  water  available  that  is   safe  to  drink  without  being  purified  (Natural  Resources  Defense  Council  (NRDC),  2012).  Only  1%   of  Earth's  water  is  in  a  fresh,  liquid  state  usable  by  humans  (United  States  Geological  Survey,   2012).  Of  this  1%  of  usable  water,  nearly  all  of  it  is  polluted  by  diseases,  toxic  chemicals,  and   debris,  making  contaminated  water  the  world’s  biggest  health  risk  (NRDC,  2012).  In  addition,   water  is  finite  -­‐-­‐  The  water  we  use  now  is  the  same  water  that  the  human  race  started  with,   thus  our  need  to  manage  and  purify  water  will  always  exist.       Many  methods  of  water  purification  exist;  however,  most  are  costly  and  involve  infrastructure   that  is  not  economically  feasible  in  many  parts  of  the  world  (World  Health  Organization  (WHO),   2009).  In  addition,  many  of  these  water  purification  infrastructures  are  powered  by  fossil  fuels,   which  in  turn  damage  the  health  of  the  environment.  Other  more  cost-­‐effect  methods  of   purifying  water  are  limited  by  their  inability  to  remove  all  contaminants  or  by  their  dependence   on  chemicals  which  can  cause  further  contamination  by  overdosing  (Zieke,  2011).  For  these   reasons,  creating  more  innovative  and  sustainable  methods  for  purifying  water  is  increasingly   important.         One  of  nature’s  many  water-­‐management  strategies  is  repeatedly  purifying  water  through  the   hydrological  cycle  (Al-­‐Hayeka,  2004).  Earth’s  process  of  water  distillation  is  a  cycle  of   evaporation,  condensation,  precipitation,  run-­‐off,  infiltration,  and  transpiration,  all  driven  using   the  clean  and  freely  available  energy  of  the  sun  (See  Figure  1).        

                                           

   

 

Figure  1.  Hydrological  cycle          

   

 

 

                 Figure  2.  Standard  solar  still  designs                                    

5  

Humans  have  mimicked  the  hydrological  cycle  process  with  the  use  of  solar  stills  for  centuries   (Al-­‐Hayeka,  2004).  The  first  recorded  large-­‐scale  solar  still  dates  back  to  1551  when  one  was   used  to  supply  fresh  water  to  a  whole  mining  community  in  Chile  (Al-­‐Hayeka,  2004).  In-­‐ground   solar  stills  have  made  their  way  into  survival  guides  as  means  of  obtaining  water  in  the   wilderness,  while  other  designs  on  the  consumer  market  primarily  fall  into  two  categories;   slanted  solar  stills  and  greenhouse  or  cone  solar  stills  (See  Figure  2).  Both  types  hold  water  in  a   basin  at  the  bottom  and  collect  condensed  water  into  troughs  for  use  (Coffrin,  et.al,  2008).   These  designs  have  not  changed  much  over  time  leaving  room  for  innovative  solutions  to   emerge.       The  use  of  solar  stills  hold  great  opportunity,  as  they  represent  a  clean,  small-­‐scale,   decentralized  technology  that  can  be  easily  adapted  to  particularities  of  various  regions.  This   simple  and  clean  technology  is  currently  under-­‐utilized  because  productivity  is  limited  with   current  designs  (Coffrin,  et.al,  2008).  If  a  better  design  were  created  would  solar  stills  be  used   more  globally?         Biomimicry  is  the  practice  of  emulating  strategies,  principles,  and  metaphorical  lessons  from   nature  in  order  to  create  more  innovative  and  sustainable  design  solutions  (Biomimicry  3.8,   2012).    Amongst  the  various  methods  and  tools  we  can  use  as  sustainability-­‐minded  industrial   designers,  Biomimicry  has  much  deeper  links  to  whole  systems  sustainability  by  looking  to   nature  as  a  ‘mentor,  model,  and  measure’  (Benyus,  2011).  Along  with  other  pioneers  of  design   and  sustainability,  Janine  Benyus  brings  to  light  the  wisdom  nature  and  “the  intricate  interliving   that  characterizes  whole  systems”  that  are  able  to  maintain  dynamic  stability  while   continuously  manage  resources  without  waste  (Little  Green  Seed,  2011).      

  Thesis  Statement     The  intention  of  my  thesis  project  is  to  design  a  more  innovative,  more  sustainable,  and   (ideally)  more  productive  solar  still  for  purifying  contaminated  water  by  using  Biomimicry   methodologies.  I  am  calling  this  evolving  design  solution  ‘SolDrop’  solar  still;  ‘sol’  meaning  sun,   and  ‘drop’  to  reflect  the  process  of  distillation.         This  thesis  paper  will  serve  as  a  narrative  of  my  design  process  and  experience,  and  then   present  my  reflections  on  the  usefulness  of  Biomimicry  as  a  sustainable  design  tool.          

 

6  

Project  Objectives         Scope     This  thesis  paper  presents  background  information  and  context  for  water  issues  and  solar   distillation,  discusses  Biomimicry  methods  for  sustainable  design,  presents  the  results  of  my   thesis  design  project,  and  reflects  upon  the  process  of  using  Biomimicry  as  a  design  tool  to   design  a  biomimetic  solar  still.    I  will  outline  my  design  solution  (thesis  project)  and  discuss  the   successes  and  limitations  of  the  proposed  design  idea  and  Biomimicry  as  a  sustainable  design   tool.       The  scope  of  the  thesis  project  involves  using  Biomimicry  for  research  and  initial  development   of  the  SolDrop  solar  still  product  concept.  This  beginning  phase  of  the  product  design  was   completed  in  the  context  of  Round  1  of  the  2012-­‐2013  Biomimicry  Student  Design  Challenge   (BSDC),  addressing  water  issues  (Biomimicry  3.8,  2012).       Biomimicry  will  serve  as  the  primary  framework  and  sustainable  design  process  tool  for  this   initial  idea  exploration  (thesis  project),  while  other  tools/frameworks  will  be  incorporated  as   the  design  is  refined  for  a  chosen  market  (beyond  thesis  project).       The  initial  design  idea  resulting  from  this  thesis  work  was  submitted  to  the  BSDC,  Round  1  (See   Appendix),  and  was  selected  as  a  finalist  for  Round  2.  Additional  development  of  the  design   idea  (beyond  this  thesis)  will  be  completed  in  the  context  of  the  BSDC,  Round  2,  which   addresses  real-­‐world  perspectives  for  the  chosen  target  market  (refer  to  Next  Steps  section).       Summary   This  thesis  project  serves  as  the  initial  design  explorations  for  the  SolDrop  product  by  practicing   the  use  of  Biomimicry  methods  as  my  primary  design  framework,  while  the  thesis  paper  serves   as  a  narrative  of  the  project  as  well  as  a  reflection  on  Biomimicry  as  a  sustainable  design  tool.       The  thesis  paper  is  structured  into  three  parts:       Introduction  and  opportunities:     -­‐ discuss  a  brief  introduction  of  solar  distillation  and  solar  still  designs,  and     -­‐ an  overview  of  Biomimicry  methodologies  as  a  design  process  for  sustainable  product   design     Biomimicry  design  process  and  SolDrop  product  design:     -­‐ initial  development  of  the  SolDrop  solar  still  concept  designed  using  Biomimicry  (and   submitted  to  the  Biomimicry  3.8  Institute’s  2012-­‐2013  BSDC),    

 

7  

  Conclusions  of  Biomimicry  process  and  SolDrop  product  design:     -­‐ summaries  of  using  Biomimicry  methodology  for  the  SolDrop  solar  still,     -­‐ personal  reflections  on  employing  Biomimicry  methods  for  sustainable  design,  and     -­‐ a  brief  conclusion  on  the  next  steps  of  product  design  and  system  development  

Opportunities      

02  

Providing  Clean  Water  with  Less  Impact   Solar  distillation  is  an  economical  way  to  provide  potable   water,  especially  for  locations  where  solar  intensity  is  high   and  there  is  scarcity  of  fresh  water  (Coffrin,  et.al,  2008).     A  solar  still  works  by  enclosing  a  water  source  that,  when   heated  by  the  sun,  evaporates  into  the  air  as  a  gas,  leaving   behind  any  contaminates.  The  water  vapor  condenses  back   into  a  liquid  once  it  hits  the  cooler  enclosure  surface,  yielding     Figure  3.  How  a  solar  still  works   clean  water  that  can  be  collected  and  stored  for  human   consumption  (National  Geographic,  1996;  See  Figure  3).  Various  contaminates,  including  salt,   bacteria,  high  levels  of  minerals,  etc.,  are  separated  from  the  water  molecules  as  they  vaporize   –  yielding  safe  drinking  through  the  simple  process  of  distillation  (Zieke,  2011).     If  you  live  in  a  place  where  clean  drinking  water  is  taken  for  granted,  like  here  in  the  United   States,  it  can  be  difficult  to  grasp  the  scarcity  of  clean  water  and  water/waste  management   issues.  According  to  Water.org,  there  are  1  in  5  people  on  Earth  that  have  no  access  to  safe   drinking  water,  resulting  in  5,000  child  deaths  every  day  (Water.org,  2012).       Children  are  particularly  vulnerable  to  waterborne  disease  causing  a  cascade  of  additional   challenges  for  impoverished  families.  When  children  are  sick  mothers  or  siblings  are  forced  to   stay  home  and  take  care  of  them  keeping  them  from  going  to  school  or  attending  work   (Water.org,  2012).  With  perpetual  illness,  families  are  stuck  in  a  cycle  of  poverty  and  limited   opportunities.         There  are  many  communities  around  the  world  with  ample  access  to  water  and  sunlight,  yet   have  no  water  purification  system  (WHO,  2009).  Due  to  the  often  energy  intensive  and  costly   infrastructure  typically  required  by  conventional  community-­‐wide  purification  systems,  this  is   an  unattainable  solution  for  much  of  the  developing  world.  This  is  why  there  is  such  a  high   concentration  of  deaths  in  developing  regions  annually  (WHO,  2009).        

8  

The  technology  behind  solar  stills  is  not  only  capable  of  removing  water  from  a  variety  of   contaminants  in  just  one  step,  but  is  simple,  cost-­‐effective,  and  uses  environmentally-­‐friendly   solar  energy.  Solar  stills  technology  lends  itself  to  various  applications  in  both  the  developed   and  developing  world.  As  populations  grow  so  does  scarcity  of  water,  making  the  need  for  a   more  efficient  solar  still  evident  (WHO,  2009).  Decentralized  methods  of  purifying  water  will  be   a  critical  component  for  addressing  the  global  water  issues.         Using  Biomimicry  as  a  sustainable  design  tool,  I  aim  to  create  a  design  idea  that  is  innovation,   resilient,  and  sustainable  (like  nature)  with  viability  in  multiple  markets.  This  design  concept   may  be  applied  in  the  United  States  to  reduce  dependence  on  centralized  water  systems  or  in   markets  where  the  greatest  benefit  would  be  realized:  where  people  have  limited  access  to   clean  water  and  limited  financial  resources.  

  Biomimicry  as  a  Sustainable  Design  Tool  

 

  Humans  have  been  using  ideas  from  nature  since  our  existence  on  the  planet,  but  the   systematic  use  of  core  concepts  assembled  from  nature  have  been  hit-­‐or-­‐miss,  until   Buckminster  Fuller  presented  these  ideas  in  understandable  and  inspiring  ways  leading  to   modern  Biomimicry  (Fuller,  1999).  Biomimicry,  as  it  is  known  today,  is  about  being  “inspired  by   and  transforming  the  principles  of  nature  into  successful  design  strategies”  (Faludi,  2011).       Janine  Benyus,  co-­‐founder  of  the  Biomimicry  3.8  Institute,  says  Biomimicry  is  unique  in  that  it  is   about  learning  from  nature’s  materials,  forms,  processes,  models,  and  systems  and  emulating   nature’s  strategies  and  principles  in  our  human-­‐designed  environments,  products,  and  systems   (Benyus,  2002).  Biomimicry  provides  both  a  framework  and  tools  that  allow  designers  to  reflect   actual  mechanical  strategies,  functional  solutions,  principles,  and  metaphorical  lessons  found   within  nature.  Benyus  describes  how  Biomimicry  is  being  achieved  by  viewing  nature  in  the   following  three  ways  (Benyus,  2002):     • Nature  as  a  Model  ::  imitating  or  taking  inspiration  from  nature’s  models  to  solve  human   problems   • Nature  as  a  Measure  ::  using  an  ecological  standard  to  judge  the  ‘rightness’   (sustainability)  of    innovations,  as  nature  knows  what  works,  what  is  appropriate  and   what  lasts   • Nature  as  a  Mentor  ::  valuing  nature  for  what  we  can  learn  from  it,  rather  than  what  we   can  extract  from  it.      

 

9  

This  makes  Biomimicry  a  potentially  great  tool  for  finding  natural  inspirations  to  use  as  models   for  design  ideas,  whose  level  of  sustainability  can  be  measured  by  nature’s  ethics,  all  while   learning  from  a  3.8  billion  year  mentor  that  produces  no  waste  (Benyus,  2002).    

The  Biomimicry  Approach    

03  

The  Biomimicry  3.8  Institute,  in  collaboration  with  a  group  of  biologists,  engineers,  designers,   and  others,  developed  a  framework  and  set  of  tools  for  applying  teachings  from  nature  to  the   design  process  (Biomimicry  Group,  2011).  The  primary  framework  of  Biomimicry  is  called  “Life’s   Principles”  and  the  tools  to  guide  the  process  are  called  the  “Biomimicry  Design  Spirals”.  This   section  of  my  thesis  covers  basics  of  the  Life’s  Principles  framework  and  introduces  the  design   spirals.    

Life’s  Principles       Life’s  Principles  act  as  the  evaluative  framework  for  Biomimicry.  These  principles  explain  how   life  has  managed  to  continuously  survive  on  Earth  since  life  first  appeared  over  3  billion  years   ago.  Life’s  Principles  are  extracted  lessons  from  nature’s  ability  to  continually  maintain  life   within  the  ‘operating  conditions’  found  on  Earth  (Biomimicry  Group,  2011;  See  Figure  4).       They  are  divided  into  six  main  areas  (Biomimicry  Group,  2011):    Evolve  to  Survive    Be  Resource  (Materials  and  Energy)  Efficient    Use  Life-­‐friendly  Chemistry    Adapt  to  Changing  Conditions    Integrate  Development  with  Growth    Be  Locally  Attuned  and  Responsive     Life’s  Principles  (Figure  4)  are  embedded  as  the  Evaluate  step  in  both  of  the  design  spirals   (Figure  5).  In  the  Biomimicry  approach,  Life’s  Principles  are  used  to  evaluate  the  sustainability   of  a  design,  which  I  will  discuss  in  more  detail  during  the  evaluation  of  my  concept  in  the  Design   Idea  section  below.  

 

10  

Figure  4.  Life’s  Principles:  Design  Lessons  from  Nature.  Biomimicry  Group,  2011    

 

Biomimicry  Design  Spirals     The  Biomimicry  Design  Spirals  (BDS)  give  designers  a  process  for  looking  to  nature  for  design   inspiration  and  then  emulating  nature’s  strategies  in  their  design  solution  (Biomimicry  3.8   Institute,  2012).  For  the  SolDrop  design,  I  used  the  ‘Challenge  to  Biology’  (C2B)  BDS.  I  will  limit   my  discussion  of  the  spirals  to  this  specific  BDS.  The  C2B  BDS  describes  a  process  that  includes   the  steps:  Identify,  Define,  Biologize,  Discover,  Abstract,  Emulate,  Evaluate,  and  then  back  to   the  Identify,  and  so  on  (Biomimicry  3.8,  2012;  See  Figure  5).

 

11  

Figure  5.  Biomimicry  Design  Spirals  (BDS):  Biology  to  Design  and  Challenge  to  Biology  (C2B).  Biomimicry   Guild,  2011  

 

  The  first  two  steps  of  the  C2B  BDS  (Identify  and  Define)  serve  to  clarify  the  functions  that  the   design  must  perform  in  order  to  set  up  the  situation  and  design  brief  to  then  look  to  nature  for   design  ideas.  The  next  two  steps  (Biologize  and  Discover)  help  to  reframe  the  design  functions   into  questions  that  can  be  asked  of  nature  by  researching  potential  biological  strategies.  The   next  two  steps  (Abstract  and  Emulate)  guide  the  user  to  abstract  lessons  from  biological   strategies  (be  they  organisms  and/or  ecosystems)  and  to  consciously  emulate  the  specific   functional  design  concept(s)  observed  in  the  biological  inspiration(s)  into  design  ideas.  To  test   the  sustainability  of  the  concepts,  designs  are  evaluated  against  Life’s  Principles  in  the  final  step   (Evaluate).  Life’s  Principles  should  also  be  incorporated  at  the  beginning  of  the  BDS  process   when  developing  the  design  brief  and  throughout  the  process.  Keeping  an  eye  on  “lessons  from   nature”  will  help  avoid  ideas  that  are  biomimetic  but  potentially  harmful  (Biomimicry  3.8,   2011).    

Design  Process  ::  Using  Biomimicry  for  SolDrop   Working  through  the  Challenge  to  Biology  Biomimicry  Design  Spiral    

04  

The  SolDrop  solar  still  concept  was  developed  within  the  context  of  entering  the  2012-­‐2013   Biomimicry  Student  Design  Challenge  (BSDC).  This  opportunity  gave  me  access  to  additional   tutorials  and  more  detailed  materials  and  information  than  is  provided  by  the  Biomimicry  3.8   website.  For  this  project,  I  worked  through  numerous  “laps”  of  the  C2B  BDS,  creating  many   iterations  of  the  design  (See  Figure  6).  In  this  section  I  will  describe  each  step  in  more  detail  as  I   discuss  the  process  used  for  designing  this  solar  still  concept.    

Challenge  to  Biology  (C2B)  Biomimicry  Design  Spiral  (BDS)   Step  1  ::  IDENTIFY  Function     Step  2  ::  DEFINE  Context     Step  3  ::  BIOLOGIZE  Challenge     Step  4  ::  DISCOVER  Natural  Models     Step  5  ::  ABSTRACT  Design  Principles     Step  6  ::  EMULATE  Nature’s  Strategies     Step  7  ::  EVALUATE  Against  Life’s  Principles   Step  8  +  ::  RE-­‐IDENTIFY,RE-­‐DEFINE,  etc.   Note:  Descriptions  of  all  the  C2B  BDS  steps  (denoted  in  blue  text  below)  are  excerpts  from  the   ‘Challenge  to  Biology  Methodology’  worksheet  provided  during  the  BSDC,  and  are  materials  produced   by  Biomimicry  3.8  published  in  2011.  

  Visiting  Each  Step  in  the  Spiral     Step  1  ::  IDENTIFY  the  function  and  the  real  challenge.  Find  the  core  of  the  situation  and  the   design  problem  by  asking,  “what  do  you  want  your  design  to  do?”,  rather  than,  “what  do  you   want  to  design?”     The  Identify  step  involves  clarifying  the  specific  design  challenge  by  creating  a  list  of  functions   that  the  design  is  intended  to  perform.  Refining  the  list  until  core  functions  are  outlined,  allows   the  designer  to  understand  what  the  design  truly  needs  to  achieve,  rather  than  immediately   jumping  to  a  design  solution  based  on  a  pre-­‐conceived  form  and  system.  “This  is  attempting  to   avoid  the  traditional  ‘top  down’  approach  which  enforces  a  preconceived  concept  of  a  solution   (a  design)  onto  the  problem”  (LittleGreenSeed,  2012).       The  Identify  step  was  one  of  the  most  crucial  steps  for  me  in  changing  the  way  I  was   approaching  the  challenge  as  a  designer.  Although  I  was  looking  at  the  designs  of  existing  and   historical  solar  stills  (“what”  I  wanted  to  design),  this  step  guided  me  to  explore  and  identify  the   many  individual  functions  that  contribute  to  the  overall  process  of  removing  contaminants  from   water  using  energy  from  the  sun  (by  way  of  distillation;  a  model  found  in  many  natural  systems)   on  both  an  object  and  a  system  level.  I  found  many  other  methods  beyond  solar  distillation  to   purify  water  during  my  research,  some  of  which  may  be  more  viable  than  solar  stills.  I  decided   to  use  solar  distillation  for  my  SolDrop  design  concept  because  this  process  is  widely  used  in   nature  and  provides  an  effective  yet  simple  way  to  purify  99.5%  of  contaminants  from  water,   including  arsenic,  fluorides,  bacteria,  and  viruses  (Zieke,  2011).     I  found  the  fact  that  solar-­‐powered  water  distillation  is  an  underutilized  process  in  human   water  purification  systems  as  an  opportunity  and  interesting  design  challenge.  Are  humans’    

13  

current  methods  of  solar  distillation  (the  use  of  conventional  solar  stills)  unable  to  produce   clean  water  in  large  quantities  because  they  are  not  designed  in  a  way  that  nature  would   accomplish  this  process?  This  scoping  phase  of  the  BDS  process  continues  in  the  next  two  steps   with  defining  the  context  (Define  step)  and  reframing  the  design  challenge  (Biologize  step).   Step  2  ::  DEFINE  the  context  and  situation.  Define  the  habitat/location  more  specifically.   The  Define  step  involved  outlining  the  context  of  the  specific  challenge.  In  other  words,  where   the  problem  exists,  and  in  turn,  what  situation  the  design  solution  will  need  to  operate  within.   Defining  the  context  aids  in  the  development  of  a  design  brief  by  listing  the  conditions  in  which   the  future  design  will  operate.  The  operating  conditions  include,  but  are  not  limited  to:  climate   (solar  radiance,  temperature),  social  (competitive/cooperative,  local/global),  and  temporal   (growing,  seasonal,  static)  conditions.  ‘Nutrient’  availability  (i.e.,  materials,  money,  labor,  etc.)   is  also  considered  when  forming  the  design  brief  (Biomimicry  3.8,  2011).   I  found  that  the  Identify  step  alone  was  insufficient  for  adequately  defining  the  context,  but   was  a  good  starting  point  for  defining  a  broad  situation  or  scenario  for  the  design  to  operate   within.  I  also  incorporated  Life’s  Principles  into  my  design  brief  at  this  stage.  “By  deciding  up   front  that  each  of  Life’s  Principles  is  important,  subsequent  efforts  are  more  likely  to  result  in   sustainable  solutions”  (Biomimicry  3.8,  2011).   Step  3  ::  BIOLOGIZE  the  challenge/problem  by  asking,  “How  does  nature  accomplish  the   function?”  as  well  as,  “How  does  nature  NOT  do  this  function?”     ‘Biologize’  is  a  term  coined  by  the  Biomimicry  3.8  Institute  that  refers  to  taking  the  human  need   and  rephrasing  it  into  a  question  whose  answer  can  be  found  in  biology  (Biomimicry  3.8,  2012).   Reframing  the  problem  makes  it  possible  for  designers  to  search  for  natural  strategies  that   perform  the  functions  identified  during  the  Identify  step  of  the  C2B  design  spiral.  For  example,   “How  does  nature  purify  water?”  is  a  “biologized”  question.  By  reframing  the  problem  from  a   human  perspective,  it  makes  it  easier  for  designers  to  look  to  nature  for  the  various  ways   organisms  and/or  ecosystems  perform  specific  functions  in  highly  complex  and  sustainable   systems.  “This  biologizing  of  the  question  instills  a  greater  chance  for  the  outcome  to  be   ecologically  sustainable”  (LittleGreenSeed,  2012).     How  to  Biologize  a  Challenge  (Biomimicry  3.8,  2011):         1.  Identify  functions  (role,  purpose,  use  of  design)  by  revisiting  the  list  already  created  during   the  Identify  and  Define  steps  of  the  C2B  BDS.   2.  Ask  yourself,  “How  does  nature  meet  this  function  or  solve  this  problem?”  as  well  as,  “How   does  Nature  NOT  do  this  function?”   3.  Look  at  the  operating  parameters  and  ask  yourself,  “How  does  nature  meet  that  function  in  

 

14  

these  specific  conditions?”       4.  Reframe  the  questions  with  additional  keywords  to  be  more  specific?     For  the  solar  still,  I  asked  myself  obvious  questions  such  as,  “How  does  nature  purify  water?”   and,  “How  does  nature  move,  direct,  harvest,  and  store  water?”  I  also  asked  myself  less  obvious   questions  including,  “How  does  nature  conserve  space  and  self-­‐regulate  temperature?”  These   questions  helped  to  lead  to  more  specific  questions  such  as,  “How  does  nature  cool  off?”,  and,   “How  does  nature  heat  up?”   Step  4  ::  DISCOVER  natural  models.  Find  the  most  appropriate  natural  models  to  answer/solve   design  challenge(s).  Find  “champion  adapters”  by  asking,  “Whose  survival  depends  on  this?”   Consider  literal  and  metaphorical  models.   The  Discover  step  is  the  point  at  which  the  designer  explores  nature  for  strategies  and  models   that  exemplify  solutions  to  the  biologized  challenge.     In  my  process,  I  explored  several  avenues  to  find  biological  inspirations  for  each  function  that  I   identified.  The  first  way  I  approached  the  Discover  step  (and  one  of  the  most  fun  ways  to   conduct  design  research),  was  to  go  outside  and  actually  explore  the  natural  world  around  me.   This  is  one  of  the  benefits  of  biomimicry  for  designers—not  just  for  fun  but  also  to  be  in  nature   and  gain  a  better  sense  of  designing  with  and  for  nature.  I  found  that  walking  through  the   woods  and  looking  amongst  the  trees  was  not  enough.  Instead,  it  required  that  I  got   (respectfully)  ‘up  close  and  personal’  with  nature;  this  was  key  for  me  to  really  discover  the  vast   amounts  of  interconnected  strategies  that  we  can  learn  from,  often  from  right  under  our  noses.   I  found  it  was  important  to  observe  closely  and  attend  to  details  such  as,  how  a  particular  leaf   has  water  beaded  and  running  off  its  surface  or  how  a  few  organisms  are  collaborating  or   competing  in  an  ecosystem.  Often  looking  at  local  organisms  and  models  can  clue  designers   into  how  they  might  be  able  to  solve  local  problems  because  the  human  need  or  challenge  and   the  natural  solution  (evolution)  is  working  under  some  of  the  same  operation  parameters  (i.e.,   climate,  geography,  etc.).   The  second  way  I  approached  the  Discover  step  was  by  researching  the  literature.  By  reading   through  books,  online  resources,  and  research  publications,  it  brought  to  light  the  enormous   number  of  solutions  nature  has  been  forming  for  3.8  Billion  years  to  manage  life  on  Earth.  To   help  designers  avoid  getting  lost  in  the  vast  amount  of  biological  information  available,   Biomimicry  3.8  has  created  the  website  AskNature  (www.asknature.org).  This  site  is  a  database   that  helps  designers  find  natural  models  and  learn  from  functions  being  performed.  I  used   AskNature  heavily,  especially  when  researching  many  different  organisms  and  systems,  to  learn   from  them  along  the  way  and  seeing  patterns  with  similar  functions  across  many  models.  

 

15  

The  final  way  I  approached  the  Discover  step  was  to  work  with  a  biologist  or  Biomimicry   professional.  This  is  recommended  at  this  stage  to  provide  in-­‐depth  biological  knowledge  to  the   designer,  although  it  is  not  a  requirement  (Biomimicry  3.8,  2011).  Finding  the  best  natural   models  for  my  SolDrop  concept  did  not  happen  right  away  and  it  took  several  rounds  of   research  and  meaningful  bouts  of  “listening  and  discovering”  rather  than  “hunting  and   searching”  to  get  to  an  iteration  of  the  design  that  satisfied  each  of  the  six  main  Life’s   Principles.  This  will  be  discussed  further  in  Step  7,  during  the  Evaluate  step  of  the  C2B  BDS.     Step  5  ::  ABSTRACT  design  concepts.  Find  the  repeating  patterns  and  processes  within  nature   that  successfully  achieve  the  desired  function.   The  Abstract  step  involves  a  process  of  abstraction  that  is  used  to  clarify  the  essence  of  the   biological  strategy  without  “forfeiting  its  complexity”  (Biomimicry  3.8,  2012).  “It  allows   concepts  and  solutions  to  be  communicated  without  specific  details  which  may  convolute  them   and  therefore  be  transferred  multi-­‐disciplinarily”  (LittleGreenSeed,  2012).     This  was  the  point  where  I  was  able  to  identify  the  core  strategies  used  by  each  of  the  natural   models  I  discovered  for  accomplishing  an  identified  function.  To  abstract  the  design  concept,  I   tried  to  describe  the  concept  without  using  biological  terms  that  I  could  then  apply  when   sketching  new  ideas  (See  ‘Abstract’  section  of  Appendix).   Step  6  ::  EMULATE  abstractions  by  playfully  brainstorming  solutions  that  apply  these  lessons   from  nature  as  deeply  as  possible  into  your  design,  mimicking  form,  mimicking  function,   mimicking  ecosystem,  and  most  importantly,  how  each  are  working  in  tandem.   The  Emulate  step  “is  where  the  scale  of  the  solution  must  be  carefully  considered  and  it’s   interconnectedness  with  the  surrounding  environment  analyzed  to  ensure  ecological   sustainable  outcomes”  (LittleGreenSeed,  2012).    While  sketching  ideas,  Biomimicry  3.8  suggests   that  designers  ‘deepen  the  conversation’  by  asking  questions  on  structure,  process,  and  system   levels.  Each  time  the  solutions  are  created  they  should  get  closer  to  satisfying  more  of  Life’s   Principles  at  the  next  step  of  the  process.     The  Emulate  step  was  the  most  fun  for  me  because  it  involved  envisioning  practical  solutions  to   the  design  challenge  based  on  the  natural  models  and  strategies  identified  in  the  previous  step.   The  iterations  of  the  solar  still  design  process  evolved  as  I  refined  the  core  functions  and  found   more  biological  strategies  from  which  to  abstract  concepts  from.     Step  7  ::  EVALUATE  against  Life’s  Principles  to  see  how  solution  ideas  are  able  to  produce  (or   not  result  in)  ‘conditions  conducive  to  life’.  

 

16  

The  Evaluate  step  involves  thorough  evaluation  of  the  product  (or  process)  and  system  against   Life’s  Principles.  Asking  questions  such  as,  “Can  the  design  adapt  and  evolve?  Is  the  design   resilient  and  responsive?  Is  it  closed  loop?”  and  so  on,  makes  it  easier  to  critically  review   solutions  ensuring  a  more  sustainable  outcome  (LittleGreenSeed,  2012).  I  will  discuss  my   evaluation  against  Life’s  Principles  in  more  detail  under  the  description  of  the  refined  SolDrop   concept  (Design  Idea  section).     Step  8+  ::  RE-­‐IDENTIFY,  DEFINE…EVALUATE.    Develop  and  refine  design  brief  based  on  lessons   learned  from  the  evaluation  section,  and  repeat  the  process.                                 This  additional  step  is  the  point  at  which  the  cyclical  process  begins  again  with  the  Identify  step.   By  repeating  the  BDS  process,  the  designer  gains  a  deeper  understanding  of  the  problem  and   considers  the  issues  identified  in  the  previous  Evaluate  step.  This  aspect  of  the  tool  is  what   makes  it  an  iterative  process,  cycling  continuously  through  the  stages,  and  spiraling  towards  an   ever  more  specific,  innovative,  and  sustainable  design  solution.  This  process  is  itself  mimicking   nature  and  the  process  of  learning,  adaption,  and  evolution,  which  occurs  through  continual   feedback  loops.  This  final  step  will  be  discussed  in  the  next  section.    

Taking  laps  around  the  Spiral       The  SolDrop  design  process  required  working  through  each  step  of  the  C2B  BDS  multiple  times.     Each  “lap”  around  the  spiral  led  to  a  better  understanding  of  how  I  was  approaching  the   challenge  and  how  I  might  learn  from  natural  models.  However,  the  real  breakthrough  for     me  was  the  very  act  of  going  through  the  spiral  multiple  times.  Each  lap  resulted  in  various   iterations  of  the  design  that  evolved  the  design  closer  to  fulfilling  each  of  Life’s  Principles     (See  Figure  6).      

 

17  

Figure  6.  Iterations  of  the  SolDrop  concept  evolution  embedded    

 

  Using  the  Biomimicry  approach,  I  first  discovered  that  there  was  not  just  one  natural  mentor  that   was  using  a  unique  strategy  to  meet  a  given  function,  but  rather  a  large  number  of  organisms   that  were  using  the  essentially  same  strategy  to  perform  a  given  function.  The  strategy  employed   was  just  packaged  differently  for  each  organism  within  a  collection  of  functions  specific  to  local   survival,  in  other  words,  as  multifunctional  designs.  I  realized  that  there  was  a  common  pattern   underlying  these  common  strategies.    It  was  discovering  this  pattern  that  facilitated  abstraction   and  emulation.  For  example,  when  seeking  out  strategies  for  moving  water,  I  discovered  that  the   lotus  leaf,  the  Namibian  beetle,  and  the  pine  needle  all  share  the  common  strategy  -­‐-­‐  the  pattern   -­‐-­‐  of  using  surface  structure  to  direct  water  (Ask  Nature,  2013).    

18  

  Once  I  was  able  to  see  the  patterns  behind  common  strategies,  I  was  able  to  create  a  list  of   guiding  design  principles  abstracted  from  the  lessons  I  learned  from  nature.  I  then  developed  my   own  taxonomy,  a  classification  system  used  to  organize  how  (strategies)  organisms  meet   different  challenges  (functions)  for  this  project  (AskNature,  2013).  From  here  I  used  my  taxonomy   to  envision  potential  solar  still  design  solutions  by  consciously  emulating  the  design  strategies  I   had  learned  about  throughout  this  cyclical  process.  Below  is  a  reflection  of  my  experience   working  through  the  C2B  BDS  multiple  times:     First  lap  through  all  of  the  steps   During  my  design  process,  I  discovered  that  the  first  laps  around  the  design  spiral  was  about   developing  the  context,  sketching  out  an  initial  design  approach,  and  becoming  familiar  with  the   process.  The  first  few  steps  of  the  initial  lap  guided  me  to  ask  broad  questions  to  gain  a  better   understanding  of  the  scope  of  the  project,  figure  out  what  the  situation  was,  and  more  clearly   define  what  I  was  actually  trying  to  accomplish.  The  first  lap  served  as  a  platform  to  test  my   assumptions.  As  I  dove  deeper  in  to  the  design  spiral  and  became  more  acquainted  with  this   biological  problem-­‐solving  tool,  I  started  to  reframe  the  challenge  as  I  became  more  acquainted   with  this  biological  problem-­‐solving  tool.  Activities  such  as  taking  a  first  stab  at  listing  functions   and  evaluating  a  similar  product  against  Life’s  Principles  helped  me  to  get  acquainted  with  how   other  designs  faired  during  the  Evaluate  step.  These  initial  practice  runs  made  it  easier  for  me  to   see  where  the  SolDrop  concept  may  be  able  to  use  similar  strategies  or  principles,  or  have  more   sustainable  improvements  than  others.     Second  lap  through  all  of  the  steps   The  second  lap  around  the  spiral  generally  caused  me  to  break  down  my  assumptions  by   reworking  my  taxonomy  (list  of  strategies  and  functions)  and  better  incorporating  Life’s  Principles   into  the  design  brief.  I  worked  extensively  on  research  during  the  second  lap.  By  reworking  my   taxonomy  and  context  from  the  first  lap,  it  was  easier  for  me  to  find  better  biological  models  to   solve  the  design  challenge.  As  I  observed  patterns  forming  and  identified  those  with  potential,  it   was  easier  for  me  to  abstract  lessons  from  the  biological  strategies  that  could  be  applied  to  the   next  iteration  of  the  design.       Third  lap   The  third  lap  around  the  BDS  pushed  me  to  check  my  new  assumptions  from  the  second  lap  and   further  develop  the  SolDrop  design  concept  by  incorporating  more  of  Life’s  Principles.  The  closer   the  design  concept  was  to  satisfying  all  of  Life’s  Principles,  the  better  chance  it  had  of  being  a   viable  and  sustainable  solution  to  my  water  purification  and  distillation  challenge.    In  addition,  it   became  clear  that  my  design  would  be  a  far  more  innovative  solution.    

 

19  

Additional  laps  or  steps     After  the  initial  SolDrop  design  concept  was  complete,  I  found  it  very  useful  to  take  several   additional  laps  to  address  more  specific  object-­‐  or  system-­‐level  issues.  For  example,  after  several   laps,  I  felt  like  my  design  was  not  incorporating  the  Life’s  Principle,  ‘Adapt  to  Changing   Conditions’  well  enough  as  it  applied  to  the  collection  of  solar  stills.  This  led  me  to  think  about   how  the  frame  could  come  in  many  forms  depending  on  local  context.  At  times,  only  specific   steps  were  needed  rather  than  revisiting  all  the  steps  each  time;  however  I  often  experienced   that  I  would  still  end  up  revisiting  other  steps  once  I  was  influenced  by  revising  another.  As  I   continue  to  develop  the  SolDrop  design  beyond  my  MA  thesis,  I  will  revisit  the  C2B  frequently  to   stay  ‘biologically  attuned’  as  I  intend  to  introduce  other  sustainability  tools  and  frameworks  to   my  design  process.         Although  it  took  several  revolutions,  the  design  spirals  helped  me  to  strip  down  the  solar  still   into  basic  functions  that  I  could  research  and  understand  how  natural  models  are  meeting  (or   not  meeting)  the  same  functions.  One  of  the  big  takeaways  that  I  learned  from  discovering   natural  models  based  on  function  is  that  common  patterns  begin  to  emerge.  I  was  able  to  see   how  many  plants  or  animals  meet  the  same  function  using  different  strategies;  however,  many   of  these  different  strategies  were  based  on  a  common  underlying  pattern.  When  seeking  out  a   solution  for  effectively  communicating  information,  I  was  not  inspired  by  a  single  organism,  but   rather  how  numerous  organisms  throughout  nature  exhibit  the  same  underlying  pattern  using   color  to  communicate  (Ask  Nature,  2013).     Throughout  the  design  process,  I  cycled  through  functions,  natural  models,  and  the  lessons   learned  from  them  to  select  inspirations  that  could  be  emulated  to  yield  a  more  productive  and   sustainable  solar  still  design.  The  final  solar  still  design  used  a  collection  of  strategies  from   process  to  form  and  overall  system  models.  After  several  iterations,  I  moved  closer  to  a  design   idea  that  had  resiliency  and  potential  for  further  development.    

05  

Design  Idea  ::  Explaining  the  SolDrop  Concept      

SolDrop  Solar  Still:  The  Pod,  the  Collection,  and  the  System:  

 

 

The  SolDrop  solar  still  is  a  water  purification  device  that  mimics  the  hydrological  cycle  on  a   miniature  scale  inside  numerous  small  pods  that  can  be  nested  into  a  frame  to  function  as  a   collective  solar  still  unit.  Each  pod  works  individually  by  creating  a  microclimate  ideal  for  the   distillation  process  to  occur:  internal  heat  for  maximum  output  of  water  evaporation  with  a   cool  surface  for  condensation.  This  section  will  discuss  the  design  idea  in  relation  to  the    

20  

individual  pod  (the  product),  multiple  pods  used  together  as  a  solar  still  unit  (the  collection),   and  overall  global  environment  (the  system)  (See  Figure  7).    

 

 

Figure  7.  SolDrop  as  a  single  pod  (left),  collection  of  pods  (center),  and  larger  scale     unit  used  with  other  products  in  the  environment  for  the  overall  system  (right)    

The  Pod  ::  Single  SolDrop  Solar  Still     Nature  performs  several  small  tasks  many  times  to  accomplish  larger  tasks.   Following  this  nested,  nature-­‐inspired  design  principle,  I  designed  a  solar  still  unit   that  is  comprised  of  a  collection  of  individual  pods  that  simultaneously  distill  a   small  amount  of  water  to  create  conditions  that  yield  as  much  clean  water  as   possible  in  the  smallest  space  (dense,  spiral  packing  of  pods)  over  the  shortest  time  period.   Each  pod  works  individually  to  distill  water.  This  is  possible  because  each  pod  has  the  ideal   microclimate  for  the  distillation  process  to  occur:  internal  heat  for  maximum  output  of  water   evaporation  with  a  cool  surface  for  condensation.  As  the  design  idea  is  adapted  to  specific   materials,  prototypes  can  be  built  and  tested  to  determine  the  best  ways  of  achieve  these  ideal   conditions.       Each  individual  pod  was  designed  by  emulating  more  than  one  nature-­‐inspired  strategy.  To  best   describe  each  feature  of  the  refined  SolDrop  design  idea,  I  have  broken  my  design  concept  into   parts  that  serve  separate  functions  (see  Figure  8).  Like  Nature,  when  each  design  attribute   (form,  scale,  surface  texture,  etc.)  serves  a  function  that,  in  combination,  help  to  perform  the   process,  I  arrive  at  a  solution  that  optimizes  conditions  and  therefore  performance.  These   assumptions  will  be  tested  during  future  developments  (beyond  the  scope  of  the  thesis)     on  the  SolDrop  solar  still  system.    

 

21  

Figure  8.  Sketch  of  a  singular  SolDrop  solar  still  pod  with  corresponding  biological  inspirations  for  the   different  components  of  the  concept  

 

    SolDrop  solar  still  works  by  containing  the  distillation  process  within  each  small  pod  that   performs  five  water  management  functions:  draw,  heat,  cool,  direct,  and  collect  (See  Figure  8).     First,  using  capillary  action,  the  pod  draws  the  dirty  water  up  into  the  inner  water  basin  using  a   small  tube  with  a  one-­‐way  valve.  Solar  radiation  passes  through  the  top  cover  of  the  pod  and   heats  the  water  in  the  black  basin.  As  the  dirty  water  heats  up  it  evaporate  to  leave  behind  any   contaminants.  The  evaporated  water  rises  then  hits  the  top  cover  of  the  pod  where  it  cools  and   condenses  back  into  water  droplets.  The  vapor  condenses  into  liquid  because  of  the   temperature  difference  between  the  hot  water  vapor  and  pod’s  cooler  interior  cover  surface   (Coffrin,  et.al,  2008).  The  clean  water  droplets  run  off  the  top  and  are  directed  by  the  channels   in  the  body  of  the  pod.  The  form  of  the  body  further  directs  the  water  down  into  the  drain  tube   and  where  it  collects  in  a  clean  water  container.  The  water  will  run  through  this  process  in  a   self-­‐regulated  way  over  and  over,  like  a  small  hydrological  cycle,  within  each  pod.  The  way  each   of  these  functions  and  strategies  were  emulated  is  described  below.      

 

22  

Each  pod  unit  emulates  several  biological  strategies.  In  this  section,  I  will  describe  the   functionality  and  emulated  strategies  of  each  system  component  that  together,  perform  the   whole  process.       Capillary  Tubes   The  small  tubes,  found  at  the  base  of  every  pod,  contribute  to  the  self-­‐regulation  aspect  of   drawing  the  dirty  water  into  the  inner  water  basin.  Using  capillary  action,  like  that  of  a  tree,  the   tubes  draw  the  dirty  water  up  into  the  basin  by  holding  the  water  in  tension  (AskNature,  2013).   The  capillary  tubes  in  the  SolDrop  design  are  used  to  maintain  a  consistent  small  amount  of   input  (dirty)  water  in  the  basin  without  much  user  maintenance  which  is  an  improvement  to   currently  available  solar  stills  that  typically  require  the  user  refill  the  basin  manually.  Ideally,  the   tubes  would  be  color-­‐coded  to  signal  to  the  user  which  one  goes  into  the  dirty  water  container   and  which  one  goes  into  the  clean  water  collection  barrel.  Insulation  around  each  capillary  tube   may  be  beneficial  to  keeping  the  water  warm  as  it  moves  into  the  basin.       One-­‐Way  Valves     The  one-­‐way  valve  concept  is  based  on  how  human  veins  work.  Veins  are  our  bodies’   transporters  for  the  circulatory  system,  and  are  structurally  designed  to  allow  blood  to  flow  in   one  direction  (Fritz,  Schorn,  2013).  This  makes  a  similar  form  a  great  strategy  for  managing  the   flow  of  the  input  and  output  liquids  processed  inside  the  solar  still.  This  would  be  especially   useful  if  the  solar  still  pod  malfunctions  because  it  would  automatically  shut  down  the  flow  of   dirty  water  and  avoid  recontamination  of  the  clean  water  collected.  This  idea  could  also  be   used  the  tubing  itself  to  work  even  more  like  veins  by  having  the  one-­‐way  mechanism  molded   throughout  the  length  of  the  tube.         Inner  Water  Basin     The  function  of  the  inner  water  basin  design  is  to  aid  in  water  evaporation.  Biological  strategies   were  emulated  that  increase  the  temperature  of  the  water  while  self-­‐managing  liquid  inputs.   Nature  manages  water  by  having  self-­‐regulating  functions  that  only  process  a  certain  amount  of   liquid  at  a  time.  This  serves  the  function  of  accomplishing  a  larger  task  by  doing  one  or  more   smaller  tasks  many  times;  a  pattern  that  is  prevalent  in  nature.  For  example,  a  deciduous  tree   grows  hundreds  of  leaves  that  each  work  in  a  decentralized  manner  to  create  energy  and   manage  water  loss  for  the  tree.  The  idea  behind  having  the  small  cup  in  the  water  basin  is  that   only  a  small  and  shallow  amount  of  water  needs  to  be  heated  at  any  given  time.       Light  will  only  penetrate  the  surface  of  the  water  held  in  the  inner  water  basin  to  the  first  few   centimeters,  making  any  more  water  than  that  a  hindrance  to  the  process  (Coffrin,  et.al,  2008).   Additional  water  below  the  first  two  centimeters  becomes  a  source  of  cooling.  To  keep  the   water  in  the  basin  as  hot  as  possible  to  aid  evaporation,  each  SolDrop  pod  self-­‐regulates  a  

 

23  

constant  few-­‐centimeters  depth  of  water  in  the  inner  water  basin.  As  the  water  evaporates,  the   basin  refills  automatically,  unlike  current  solar  stills  that  require  water  in  the  basin  be   replenished  by  the  user.  As  I  move  into  building  a  prototype,  I  will  test  a  few  methods  (capillary   action,  gravity  fed)  to  figure  out  the  best  way  to  regulate  the  amount  of  water.  To  further   increase  evaporation,  the  inner  water  basin  will  be  back.  Like  the  rock  squirrel’s  black  fur,  the   black  water  basin  serves  to  increase  the  absorption  of  the  sun’s  heat  to  speed  up  the  water   heating  process.  Bumps  on  the  inside  surface  of  the  inner  water  basin  increase  the  surface  area   available  to  be  heated  by  the  sun.  More  surface  area  decreases  the  time  it  takes  to  heat  the   water  in  the  basin  and  leads  to  higher  evaporation  rates.  Self-­‐regulating  temperatures  by  using   form  –  increased  or  decreased  surface  area  –  is  a  pattern  repeatedly  found  in  nature   (AskNature,  2013).     Top  Cover   The  functions  of  the  top  cover  are  to  aid  in  condensation  by  maintaining  a  cooler  surface   temperature  than  that  of  the  air  inside.  The  cover  must  be  also  clear  for  maximum  solar   absorption.  The  rounded  form  of  the  cover  encourages  water  runoff  down  to  the  main  body,   like  the  curved  form  of  many  leaves  that  direct  water  either  to  or  away  from  a  plant’s  roots.   Ideally  the  cover  would  be  processed  with  a  surface  texture  that  mimics  a  hydrophobic  leaf   surface  (like  the  lotus  leaf).  If  the  top  cover  was  structured  with  microscopic  bumps  that  repel   water,  the  flow  of  water  would  be  improved  and  it  would  cause  increased  efficiency  in  the   distillation  process  (AskNature,  2013).  The  faster  the  condensate  can  move  off  the  lid,  the  more   clarity  for  solar  radiation  and  increased  evaporation.       Main  Body   The  functions  of  the  main  body  are  to  house  the  nested  components/assembled  parts,  and   facilitate  water  drainage.  The  idea  behind  the  main  body  form  is  to  have  corrugated  sides  in  a   spiral  pattern  that  create  channels  for  the  condensed  water  to  gather.  The  weight  of  gathered   droplets  will  help  move  the  liquid  down  these  channels  into  the  collection  tube.  These   assumptions  can  be  verified  with  further  testing,  beyond  the  scope  of  this  thesis  project.  Also,   the  corrugation  adds  strength  with  thin  materials  like  that  of  shells  in  Nature  (AskNature,  2013).   The  form  of  the  body  is  shaped  to  taper  down  toward  the  bottom  of  the  pod  for  drainage.     Drainage  Tube   The  drainage  tube  directs  the  freshly  distilled  water  down  into  a  clean  water  collection  bin.  As   Buckminster  Fuller  says,  “Don’t  fight  forces,  use  them”  (Fuller,  1999).  This  design  uses  gravity  as   free  energy  when  collecting  the  clean  water  distillate.  The  device  can  also  operate  without  this   tube  and  drain  directly  into  a  container.      

 

24  

Water  Bins/Barrels   The  water  tubes  and  bins  would  be  colored  coded,  emulating  the  way  flowers  use  color  to   signal  and  direct  their  desired  pollinators.  The  dirty  water  bin  and  tube  would  be  marked  with   red  or  black  (dark)  color  to  indicate  that  it’s  the  contaminated  water  and  to  help  absorb  heat   from  the  sun  to  ‘pre-­‐heat’  water  going  into  the  next  step  of  the  process.  The  clean  water  bin   would  ideally  be  blue  or  white,  indicating  it’s  the  consumable  drinking  water  container.  

  The  Collection  ::  Multiple  Solar  Still  Pods  Assembled  Together     The  SolDrop  solar  still  design  emulates  nature’s  pattern  of  doing  smaller  tasks   many  times  by  leveraging  the  collective  capacity  of  multiple  SolDrop  pods  in   concert  to  form  a  solar  still  unit.  Like  that  of  a  deciduous  tree,  each  leaf  is   working  on  a  process  (AskNature,  2013).  For  the  leaf,  the  individual  function     is  photosynthesis  for  energy  production;  for  the  SolDrop  pod,  the  individual   function  is  distillation.  When  the  leaves  are  leveraged  as  a  collection  by  the  tree,   it  optimizes  the  trees’  overall  functioning.  The  same  idea  applies  to  the  collection     of  SolDrop  pods.  Each  pods  works  independently  as  a  solar  still  yet  the  pods  may  also  be   collected  together  in  a  specific  arrangement  and  held  in  place  by  a  frame.     As  a  collection,  the  SolDrop  solar  still  unit  is  more  productive  and  more  resilient.  Further,     by  leveraging  the  space-­‐saving  and  orientation  form  of  the  ubiquitous  spiral  pattern  found   across  nature’s  models  at  both  small  and  large  scales,  SolDrop  is  able  to  perform  enhanced     self-­‐regulating  functions  (See  Figure  9).  

 

25  

Figure  9.  The  collection  of  multiple  SolDrop  pods  used  together  to  form  a  solar  still  unit  

 

  Frames   The  SolDrop’s  spiral  helix  dome  design  is  used  as  a  frame  to  hold  multiple  pods  and  was   inspired  by  organisms  that  exhibit  ‘phyllotaxis’  or  nature’s  golden  ratio,  such  as  sunflower  seed   heads,  strawberry  seeds  layouts,  nautical  shells,  the  growth  pattern  of  tree  branches,  and  many   more  (Dunning,  2012).  The  golden  ratio  is  a  unique  mathematical  and  geometrical  proportion;   when  found  in  nature,  it  functions  as  a  means  of  efficient  packing  (Dunning,  2012).  For   example,  “a  sunflower  has  seeds  packed  as  efficiently  as  possible  within  the  circular  head  of  the   flower,  no  matter  how  the  large  the  flower  gets.  This  type  of  packing  produces  visibly   crisscrossing  spiral  patterns  going  both  directions  around  the  head”  conserving  space  with   optimized  layout  (Dunning,  2012).  This  is  an  abstracted  design  concept  that  I  applied  to  the   design  of  a  SolDrop  frame.      

26  

The  spiral  form  of  the  SolDrop  design  not  only  permits  the  highest  density  of  pods  per  area,  it   also  helps  to  cool  the  exterior  surface  by  encouraging  wind  to  pass  around  the  whole  unit,   rather  than  only  across  the  top.  The  ridges  of  the  spiral  form  give  the  pods  a  cool  and  warm   side  to  further  the  temperature  regulation.  Drawing  inspiration  from  sunflower  seed  patterns,   SolDrop  uses  the  strategy  of  infinite  growth  to  have  differently  sized  pod  units  based  on  the   location  on  the  dome.  The  bottom  of  the  dome  has  larger  pods  than  the  top  allowing  for   location,  orientation,  and  size  to  always  have  units  that  optimize  solar  absorption.  This  strategy   of  optimizing  size  and  location  for  solar  absorption  is  shown  in  deciduous  trees’  leaf  layout  (also   based  on  nature’s  golden  ratio)  that  adjusts  leaf  orientation,  size,  and  form  to  facilitate  the   process  of  photosynthesis.  The  leaves  that  receive  most  of  solar  radiation  are  shaped   differently  than  the  tree’s  leaves  that  live  in  (AskNature,  2013).     SolDrop  is  comprised  of  decentralized  pod-­‐based  design  to  ensure  that  SolDrop  solar  still  units   can  be  adapted  to  various  frame  designs  based  on  the  location,  material  availability,  and   optimal  orientation  of  the  unit  for  the  given  space  and  exposure  to  the  sun  where  it  will   function  to  distill  water.  Although  the  spiral  frame  might  serve  additional  functions,  the  ability   to  adapt  to  different  frame  layouts  will  allow  for  an  even  more  locally  attuned  and  responsive   solution  (See  Figure  10).  

Figure  10.  Example  of  adaptable  frame  forms  (right)

 

  Adaptability:  Scaling  and  Various  Situations   The  SolDrop  design  idea  may  also  be  scaled  up  or  down  by  using  a  larger  or  smaller  frame  with   many  more  or  less  pods,  respectively.  The  size  of  the  single  still  pod  can  be  rescaled  or  the  number   of  pods  used  together  and  can  be  increased  or  decreased  depending  on  community  needs  (See   Figure  11).  The  collection  of  SolDrop  pods  could  adapt  for  use  directly  on  the  water  if  the  frame   included  a  floatation  element  (See  Figure  11).  This  would  be  especially  useful  for  flood  situations   where  there  is  a  lot  of  post-­‐storm  standing  water,  or  for  places  that  are  located  by  bodies  of  water   (i.e.  coastal  regions,  lakes,  surface  water),  where  there  is  plenty  of  water  but  it  is  not  safe  to  drink.          

 

27  

  Figure  11.  SolDrop  scaled  up  for  community  use  and  example  of  SolDrop  adapted  for  use  on  water

                                                                                                                                                                                                                                                                                                                                                                                                                                                   

The  System  ::  SolDrop  in  Context       As  a  whole  system,  the  SolDrop  concept  can  be  adapted  in  many  ways   depending  on  the  various  contexts  it  may  be  used  within.  The  specific   frame  layout,  scale,  materials  used,  etc.,  may  be  modified  to  best  suit   the  needs  of  the  specific  environmental  context  to  the  given  market  and   location  (see  Figure  12).  Ensuring  that  SolDrop  can  pair  with  existing  products  and  systems     will  be  key  in  achieving  meaningful  outcomes  and  a  truly  sustainable  design  solution.      

Figure  12.  SolDrop  as  a  system  used  in  conjunction  with  existing  products  (rainwater  collection  bins,   collection  containers),  adapting  to  various  local  materials  (plastic,  clay,  glass),  sizes  and  capacity  needs   (individual,  family,  or  community  scale),  and  context  (directly  on  water)  

 

 

28  

Collaboration  with  Other  Products     Currently  products  such  as  the  Hippo  Roller  are  used  to  transport  and  store  many  gallons  of   water;  this  is  a  life-­‐changing  intervention  for  villagers  that  have  to  retrieve  water  far  from  home   (Hippo  Water  Roller  Project,  2013).  SolDrop  solar  stills  could  be  used  in  conjunction  with  these   water  containers  by  including  a  modified  cap  that  allows  users  to  use  the  Hippo  Roller  with  the   tubes  of  the  SolDrop  water  purification  device  (See  Figure  12).  This  could  also  reduce  potential   recontamination  because  the  same  water  transport  and  storage  containers  can  be  used  with   the  SolDrop  system.  Because  the  SolDrop  solar  still  idea  has  the  ability  to  work  on  the  process   directly  at  the  source  of  the  inputs,  as  nature  does,  the  idea  could  be  adapted  to  work  directly   with  other  systems  like  rainwater  collection  bins  or  irrigation  water  trough  (See  Figure  12).       Adapting  Materials     As  the  design  is  adapted  to  various  contexts  and  environments  it  is  important  to  ensure  various   materials  could  also  be  used  to  support  its  potential  employment  in  new  regions.  Figure  13   depicts  a  prototype  that  I  made  of  the  SolDrop  design  that  shows  how  discarded  bottles  could   be  used  as  the  pods  that  would  make  the  design  even  more  adaptable.  With  more   development,  this  reused  water  bottle  version  could  be  implemented  in  developing  countries   using  a  readily  available  and  inexpensive  (or  free)  material  (see  Appendix  for  beginning  stages   of  prototyping  the  solar  still  made  of  bottles).    

  Figure  13.  Crude  model  of  the  SolDrop  idea  implemented  using  old  plastic  bottles  

 

The  reused  water  bottle  concept  could  go  even  further  by  incorporating  a  bottle  that  is   designed  on  the  front-­‐end  in  anticipation  that  it  will  be  used  for  a  solar  still  in  its  next  life.   Perhaps  the  shipping  container  that  holds  the  plastic  water  bottles,  sent  upon  initial  relief   efforts,  could  morph  into  the  frame  for  the  units  once  the  bottles  are  made  into  SolDrop  solar   stills.  The  design  idea  can  be  applied  to  a  self-­‐contained  unit  made  of  ceramic  material  if  other   materials  are  not  available  or  culturally  less  relevant  (See  Figure  14).        

29  

               

  Figure  14.  Example  of  SolDrop  idea  implemented  as  a  self-­‐contained  design,  potentially  made  of   ceramics  or  other  available  materials  

  SolDrop  as  an  Organization,  Accompanying  Service   Currently,  I  am  working  on  refining  the  SolDrop  design  to  be  used  specifically  in  developing   nations  where  access  to  clean  water  is  most  needed.  The  concept  would  evolve  into  a  design   service  rather  than  a  product  alone.  The  organization  would  be  two-­‐fold,  one  being  the  solar   still  product  and  evolving  design  information  and  the  other  being  an  educational  component.   Information  on  how  the  solar  still  is  built,  maintained,  and  used  is  transferred  from  community   to  community  along  with  a  more  comprehensive  educational  component  around  water  use  and   hygiene,  giving  them  the  tools  that  will  reduce  the  number  of  water-­‐related  illness  and  death  in   the  long  haul.  As  an  organization,  we  would  use  direct  feedback  from  local  community   members  and  SolDrop  users  to  constantly  improve  upon  the  SolDrop  product,  service,  and   organization.       Measuring  Impact  and  Influencing  Behavior   As  I  continue  to  develop  the  design  idea  into  a  viable  solution  in  a  given  market,  I  will  need  to   bring  in  other  tools  to  make  sure  the  design  is  contextually  appropriate  and  results  in   meaningful  and  positive  impact.  Meaningful  impact  would  be  ensuring  that  the  whole  system  is   addressed  by  making  connections  with  people  in  the  place  this  idea  would  be  implemented  and   adapting  the  design  based  on  local  feedback  and  needs  (Polak,  2008).  Also  considering   negatives  outcomes  that  may  come  with  the  intervention  will  be  addressed  to  avoid   diminishing  current  situations  further.  As  an  organization,  knowing  how  and  what  is  being   measured  will  be  very  important  when  moving  forward,  as  well  as  staying  attuned  to  SolDrop   users  needs  and  contextual  operating  conditions  (Polak,  2008).  

 

30  

Conclusions   Design  Outcomes  and  Broad  Lessons    

06  

  My  intention  for  this  thesis  project  was  to  design  a  more  sustainable,  innovative,  and  (ideally)   productive  solar  still  using  Biomimicry  methodologies  as  a  tool  for  creating  a  more  innovative   and  sustainable  design  solution.    The  project  resulted  in  two  sets  of  conclusions.    One  set  is   related  to  the  outcomes  of  the  design,  including  an  evaluation  of  its  sustainability  and  the   results  of  Round  1  of  the  BSDC.  The  second  is  related  to  the  broad  lessons  that  I  learned  from   the  thesis  project.  The  broad  lessons  include  lessons  learned  regarding  the  process  of  designing   using  Biomimicry,  the  Biomimicry  methodology  as  a  sustainable  design  tool,  the  evolution  of   my  ‘Biomimicry  Thinking’,  and  reflections  on  Biomimicry  within  the  context  of  sustainable   design.       I  found  that  using  Biomimicry  tools  to  design  SolDrop  resulted  in  a  robust  design  idea  for     a  self-­‐contained,  self-­‐regulating  solar  still  that  can  be  adapted  to  multiple  situations  and   therefore  resilient  in  theory.  However,  SolDrop  is  still  in  the  theoretical  stage.  I  need  to     expand  and  develop  the  concept  to  further  test  my  assumptions.  In  this  section,  I  will  dive     into  the  outcomes  of  the  project  thus  far  and  the  lessons  I  learned  designing  the  object     itself  and  lessons  from  using  Biomimicry  methodologies.    

Design  Outcomes       Evaluating  the  Sustainability  of  SolDrop       One  of  the  main  goals  of  this  project  was  to  create  a  more  sustainable  design  solution.  By  using   Life’s  Principles  in  depth,  I  was  able  to  take  a  critical  look  at  various  aspects  of  the  design  idea   to  evaluate  the  sustainability  of  SolDrop.  Designs  that  follow  Life’s  Principles  will  likely  emerge   as  well  adapted  to  Earth’s  operating  conditions  and  be  a  product  that  enhances  Earth’s  ability   to  support  life  for  generations  to  come  (Biomimicry  3.8,  2011).     Life’s  Principles,  Design  Lessons  from  Nature:    Evolve  to  Survive    Be  Resource  (Materials  and  Energy)  Efficient    Use  Life-­‐friendly  Chemistry    Adapt  to  Changing  Conditions    Integrate  Development  with  Growth    Be  Locally  Attuned  and  Responsive    

 

31  

Note:  Descriptions  of  Life’s  Principles  (denoted  in  blue  text  below)  are  excerpts  from  the  ‘Life’s   Principles  Checklist’  worksheet  provided  during  the  2012  BSDC,  and  are  materials  produced  by   Biomimicry  3.8  published  in  2011.  

  The  SolDrop  solar  still  works  by  breaking  down  the  functions  into  smaller  and  smaller  parts  such   that  every  design  choice  for  each  part  was  made  to  help  aid  in  the  overall  process  of  water   distillation.  By  using  many  small  components,  no  one  piece  is  solely  responsible  for  any  one   function.  For  example,  the  function  of  evaporation  and  more  specifically,  heating  of  water,  was   achieved  not  only  by  the  inner  water  basin  getting  hot  but  by  also  using  a  black  dirty  water   container  that  absorbed  more  solar  radiation,  preheating  the  water  going  into  the  tube.  By   insulating  the  input  capillary  tubes  it  keeps  the  water  warm  as  it  moves  up  to  the  inner  water   basin  where  only  a  small  amount  is  heated  and  evaporated.  From  the  container  through  the   tubes  and  into  the  basin,  the  design  tries  to  keep  the  water  warm  until  the  solar  energy  heat  it   into  a  vapor.  This  approach  reflects  Life’s  Principles  of  redundancy,  resilience,  multi-­‐ functionality,  and  decentralization  that  will  each  be  discussed  in  section  of  my  thesis.     Evolving  to  Survive  ::  Continually  incorporates  and  embodies  information  to  ensure  enduring   performance  by  replicating  strategies  that  work,  integrating  the  unexpected,  and  reshuffling   information.     SolDrop  is  based  on  the  simple  technology  of  distillation  that  we  know  works  to  purify   99.5%  of  contaminated  from  water  (Zieke,  2011);  this  is  an  example  of  replicating  strategies   that  work.  When  I  made  a  crude  prototype  of  the  design  idea,  I  used  a  bottle  with   corrugated  sides  and  noticed  that  the  water  running  down  the  edges  was  getting  caught  on   the  ridged  sides  of  the  bottle.  Moving  forward,  I  integrated  the  unexpected  by  adding   corrugated  walls  to  facilitate  the  function  of  moving  the  clean  water  down  into  the  collector   as  well  as  adding  strength  to  the  thin  wall  material  like  a  clamshell.  I  incorporated  the   unexpected  in  a  way  that  allowed  the  form  of  the  body  to  lead  to  new  functions.  With  the   intention  of  implementing  the  idea  through  various  materials  or  in  different  conditions,   information  will  be  exchanged  and  altered  to  create  new  options,  further  increasing  its   ability  to  evolve.       Being  Resource  (Material  and  Energy)  Efficient  ::  Skillfully  and  conservatively  takes  advantage   of  local  resources  and  opportunities  by  using  multi-­‐functional  design,  low  energy  processes,   recycling  all  materials,  and  fitting  form  to  function.     The  solar  still  uses  freely-­‐available  solar  energy  and  gravity  to  drive  internal  processes,   making  it  energy  efficient,  especially  compared  to  other,  often  centralized,  water   purification  technologies  (Zieke,  2011).  The  idea  behind  SolDrop  is  that  by  containing  all  

 

32  

that  parts  in  the  pod,  and  addressing  each  function  independently,  I  was  able  to  optimize   conditions  for  evaporation  and  condensation  by  designing  each  the  forms  to  fit  each   function.  Furthermore,  each  form  also  provides  multiple  functions.  For  example,  the   corrugated  walls  of  the  body  are  a  good  example  of  multifunctional  design.  The  corrugation   alone  provides  strength.  The  spiraling  corrugations  provide  strength  and  direct  water,   combining  two  forms  to  provide  two  functions.  This  multi-­‐functionality  of  this  design   contributes  to  its  resource  efficiency,  which,  in  theory,  could  also  yield  higher  amounts  of   purified  water  than  current  solar  still  designs.         As  I  continue  the  design  process  to  develop  the  concept  for  particular  markets,  I  will   determine  the  best  material  based  on  locality.  For  a  very  low-­‐cost  variation,  that  could  be   used  in  poverty-­‐stricken  areas,  I  will  try  to  adapt  the  idea  into  a  functioning  solar  still  made   from  discarded  bottles.  This  is  an  example  of  how  the  idea  can  close  the  loop  on  the   materials  used.     Use  Life-­‐friendly  Chemistry  ::  Use  chemistry  that  supports  life  processes  by  building  selectively   with  a  small  subset  of  elements,  breaking  down  products  into  benign  constituents  and  doing   chemistry  in  water.       SolDrop  uses  solar  energy  and  gravity  as  free  energy  to  drive  the  process,  avoiding  the  use   of  fossil  fuels  or  other  harmful  sources  of  energy.  It  uses  distillation,  rather  than  biocides,   for  water  purification,  making  it  a  life-­‐friendly  technology  (Zieke,  2011).  The  design  is  in   concept  stage,  however,  when  materials  will  be  selected,  additional  tools  such  as  life-­‐ cycle  assessments  (LCA)  and  computer  models  would  be  used  to  test  the  viable  of  various   materials.  In  order  to  adhere  to  Life’s  Principles  I  will  aim  for  selecting  materials  that   breakdown  into  benign  by-­‐products  while  satisfying  the  needs  of  the  design.  Moving   forward  this  may  be  a  starch-­‐based  plastic  or  another  more  locally-­‐attuned  material  or   manufacturing  method.     Adapting  to  Changing  Conditions  ::  Appropriately  responds  to  dynamic  contexts  by  maintaining   integrity  through  self-­‐renewal  and  incorporating  diversity,  as  well  as  embodying  resilience   through  variation,  redundancy,  and  decentralization.     Embodying  resilience  became  one  of  my  core  guiding  principles  during  this  process.  The   SolDrop  design  idea  “maintains  function  following  disturbance  by  incorporating  a  variety   of  duplicate  forms,  processes,  or  systems  that  are  not  located  exclusively  together,”  a  self-­‐ renewal  principle  nature  uses  to  evolve  (Biomimicry  3.8,  2011).  SolDrop  maintains   integrity  through  self-­‐renewal  and  incorporating  diversity  by  developing  a  design  that  has   the  option  of  a  single  pod  that  works  to  purify  the  water  on  its  own  or  with  multiple  pods  

 

33  

together  that  may  be  scaled  up  or  down.  The  SolDrop  design  embodies  resilience  through   decentralization;  one  pod  works  on  its  own  without  depending  on  the  frame  or  collection   of  multiple  pods.  In  the  same  regards,  the  collection  of  multiple  pods  is  able  to  work  even   if  one  or  a  few  pods  are  not  working.     A  single  SolDrop  solar  still  pod  includes  multiple  forms  that  meet  functional  process   needs.  If  one  part  in  the  solar  still  is  damaged  or  breaks,  it  can  be  repaired  or  replaced   without  compromising  the  use  of  the  whole.  As  the  design  is  implemented  in  a  given   location,  the  design  will  maintain  its  functional  integrity  by  using  local  information  flows   for  improving  the  system  by  adapting  to  changing  conditions  from  space.       Integrates  Development  with  Growth  ::  Invests  optimally  in  strategies  that  promote  both   development  and  growth  by  combining  modular  and  nested  components,  building  from  the   bottom  up,  and  self-­‐organizing.     SolDrop  is  composed  of  individual  pods  (modules)  that  can  be  nested  as  a  collection  in  a   frame.  The  modularity  of  the  SolDrop  concept,  allows  the  collection  of  pods  to  interact  in   concert  to  enhance  the  overall  system  by  combining  nested  components  to  conserve   space.    SolDrop’s  modular  and  nested  design  builds  from  the  bottom  up  in  a  self-­‐ organizing  framework.  This  allows  for  adaptability  and  variability  (development)  as  well  as   scalability  (growth).     The  approach  of  the  SolDrop  development  has  been  progressively  simple  to  complex.     First  the  modular  and  nested  concept  is  an  adaptable  design  idea  that  does  not  prescribe   specific  materials  or  exact  design,  but  rather  describes  the  idea  in  a  way  that  can  be   adapted  for  the  specific  location.  Next  in  development,  the  form  and  materials  for  each   pod  can  be  optimized  for  local  context  and  conditions;  the  still  itself  promotes   development  and  growth  as  a  locally  attuned  system.  Next,  the  form,  material,  and  layout   of  the  frame  are  can  be  optimized  for  the  collective  whole.  Finally,  the  overall  system  gets   increasingly  more  complex  as  the  idea  develops  and  grows  in  various  regions  and  is   adapted  to  be  locally  attuned  and  responsive,  another  dimension  of  Life’s  Principles.           Being  Locally  Attuned  and  Responsive  ::  Integrates  with  the  surrounding  environment  by  using   readily  available  materials  and  energy  and  cultivating  cooperative  relationships,  as  well  as   leveraging  cyclic  processes  and  feedback  loops.       As  mentioned  throughout  this  evaluation  against  Life’s  Principles,  the  SolDrop  system  was   designed  to  be  locally-­‐attuned  by  allowing  for  adaptable  and  responsive  design  iterations,   site-­‐specific  partnerships,  and  true  understanding  and  reflection  of  cultural  relevance  and  

 

34  

meaningful  impacts.  For  example,  to  respond  to  changing  needs  SolDrop  could  be  used  as   one  pod  per  person,  one  collection  (unit)  per  family,  or  perhaps  scaled  up  for  community   use.  If  needed,  the  idea  could  include  a  floatation  element  for  use  directly  on  the  water   source,  or  used  in  collections  of  different  sizes;  all  locally  attuned  and  responsive   attributes.       By  creating  partnerships  with  local  organizations  that  contribute  to  our  feedback  loops,   SolDrop  as  an  organization,  could  develop  the  localized  concept  using  abundant  and   accessible  materials  whether  the  materials  are  discarded  plastic  bottles  or  pre-­‐formed   glass  units.  This  type  of  collaborative  design  may  lead  to  jobs  creation,  finding  value   through  win-­‐win  interactions.  Also  by  optimizing  the  system  to  be  used  with  other   products  in  the  environment  will  make  the  most  of  what  is  locally  available,  like  being   used  with  Hippo  Rollers  which  are  water  storage  and  transport  barrels  (Hippo  Water   Roller  Project,  2013).  Overall  this  solar  still  idea  responds  to  diurnal  cycles  by  leveraging   thermal  to  drive  the  cycles  of  evaporation  and  condensation.  The  self-­‐regulating  functions   allow  water  to  cycle  through  the  distillation  process  repeatedly  and  continuously.     Results  ::  BSDC,  Round  1   I  submitted  the  SolDrop  design  concept  to  the  BSDC  hosted  by  the  Biomimicry  3.8  Institute.  The   SolDrop  concept  was  named  a  top-­‐ten  finalist  for  Round  1  and  invited  to  develop  the  idea  in   Round  2.  The  first  round  entry  for  the  BSDC  (See  Appendix)  shows  the  beginning  stages  of  the   greater  overall  system  that  I  have  envisioned  SolDrop.  The  second  round  of  the  competition   requires  submission  of  a  start-­‐up  business  plan  using  Biomimicry  as  a  platform  for  advancing   the  concept  further  in  a  chosen  ecosystem.      

Broad  Lessons     Following  the  Biomimicry  Approach     I  really  enjoyed  this  process  of  using  the  Challenge  to  Biology  Biomimicry  Design  Spiral  (C2B   BDS)  as  a  design  and  problem  solving  methodology.  I  found  that  it  aligned  my  thinking  with   biological  strategies,  and  pushed  me  to  explore  and  learn  from  successful  natural  designs  in  a   much  deeper  way  than  any  other  previous  exposure  I’ve  had  with  design.  Biomimicry  also   broadly  sets  new  biological  standards  of  sustainability  to  aim  for  by  satisfying  as  many  as  Life’s   Principles  as  possible.  The  following  two  parts  will  discuss  the  various  lessons  I  learned  from  the   process  of  designing  SolDrop  using  the  C2B  BDS.      

 

35  

Seeing  Patterns   +  Nature  exhibits  numerous  different  strategies  for  performing  the  needed  function.  Many   different  organisms  have  different  strategies,  but  leverage  the  same  underlying  pattern.     I  gained  a  deeper  understanding  of  the  Biomimicry  approach  once  I  started  to  see  patterns   emerge  from  researching  dozens  of  organisms  and  natural  models,  and  after  making  multiple   laps  through  the  C2B  BDS.  Although  I  realized  as  I  moved  closer  to  a  more  sustainable  solution,   that  specific  functional  strategies  may  be  inspired  by  a  single  organism;  however,  it  was  the   discovering  strategic  patterns  underlying  numerous  models  that  were  most  helpful  to   abstracting  useful  design  concepts.     Seeing  the  strategic  patterns  emerge  was  a  breakthrough  lesson  for  me.  I  gained  clarity  on  how   to  abstract  the  patterns  from  these  strategies  that  I  could  then  emulate  in  my  design  solution.   Researching  the  several  different  biological  strategies  used  for  temperature  regulation  brought   light  to  the  design  concepts  I  could  emulate,  and  combine  in  a  way  that  provided  SolDrop  with   its  own  ability  to  self-­‐regulate  temperatures  by  using  the  form  that  fits  the  function.     A  Reason  for  Every  Choice   +  All  of  nature’s  designs  fit  form  to  function  and  are  multi-­‐functional.  Forms,  functions,  process,   and  systems  are  optimized  to  support  and  enhance  each  other  as  a  collective  whole.       I  have  heard  of  ‘form  fits  the  function’  throughout  my  design  education  but  never  had  such  an   understanding  of  the  true  meaning  of  this  until  after  researching  so  many  organisms.  I  was  able   to  see  how  in  nature  there  is  a  reason  for  every  ‘design  choice’.  In  every  example  with  an   organism  or  ecosystem,  the  form  facilitates  the  process,  collectively  performing  functions   adapted  to  the  specific  location  or  need.  Seeing  now  how  relentlessly  nature  adheres  to  this   principle  makes  me  realize  how  much  of  the  products  designed  by  humans  are  not  fitting  form   to  function  in  most  cases.       Making  Incremental  Gains   +  Always  strive  for  incremental  gain  as  nature  is  always  making  progress  towards  positive   outcomes.  It  never  gets  worse  to  get  better.       This  lesson  was  not  directly  outlined  in  the  methodology  but  one  that  I  came  away  with  during   the  process.  Here  are  some  of  my  curiosities  that  arose:   Can  our  products  make  incremental  gain  with  the  object  itself  and  as  an  overall  system?     Can  some  of  the  product  or  system  be  done  is  a  way  that  still  performs  the  same  function   even  in  conditions  that  aren’t  ideal?    

 

36  

Can  parts  of  the  product  still  work,  performing  some  function(s),  even  if  other  parts  do  not   work?     Can  the  product  be  a  viable  solution  in  a  market  that  is  not  exactly  your  target  consumer?     Can  your  product  be  created  with  alternative  materials  or  manufacturing  methods?       Dynamic  Responding   +  Create  dynamic  and  responsive  systems  that  are  locally  attuned  and  adapting  to  changing   conditions.       This  is  one  of  the  principles  outlined  in  the  C2B  BDS  methodology  that  I  gained  a  much  deeper   understanding  of  throughout.  Previous  to  this  project,  I  would  tend  to  design  for  static  and   independent  products  that  did  not  grow,  develop,  and  adapt  to  changing  conditions.  I  will   continue  to  incorporate  this  into  the  refinements  of  SolDrop  and  my  sustainable  design  work  in   general  because  it  is  embodies  an  iterative  process  applied  to  product  designs  themselves  as   well  as  the  overall  system.       Using  Biomimicry  Methodology     I  found  that  using  the  C2B  BDS  allowed  the  project  to  grow  and  develop  over  the  course  of  the   taking  laps  around  the  spiral.  The  idea  evolved  as  I  gained  a  better  understanding  of  intended   functions,  learned  how  biological  models  work,  and  emulated  these  lessons  through  iterations   of  the  design.  Unlike  a  traditional  design  process  that  can  be  linear,  the  C2B  BDS  helped  me  to   create  a  better  definition  of  the  design  challenge,  as  I  understood  the  functions  better,  resulting   in  new  design  ideas  that  continuously  incorporated  nature’s  lessons.  Below  are  some  of  the   lessons  I  took  away  from  working  through  this  process.     Multiple  Laps     +  Taking  multiple  laps  is  important.  As  I  worked  through  the  design  spiral,  I  arrived  at  more   encompassing  levels  of  sustainability  with  each  trip.  I  was  able  to  arrive  at  more  innovation  and   sustainable  solutions  as  I  gained  further  understanding  of  my  design  challenge.  This  was  done   by  breaking  down  the  product  into  its  functions,  learning  how  nature  uses  form  to  facilitate   functions,  and  emulating  the  ideas  through  design  iterations.  Finally,  the  evolving  concept  was   evaluated  against  Life’s  Principles  each  lap.    Incorporating  more  and  more  of  nature’s  lessons   each  time,  resulted  in  my  idea  getting  closer  to  a  more  sustainable  solution,  creating  conditions   conducive  to  life.       Divergent  and  Convergent  Thinking       +  Understanding  when  to  change  my  thinking  between  divergent  and  convergent  depending  on   which  step  I  was  at  in  the  design  spiral  and  which  phase  of  the  project  overall.  Learning  when  I   was  getting  too  divergent  and  needed  to  get  more  convergent  was  a  skill  I  developed  during    

37  

this  thesis  project  work.  This  “spiral  technique  is  going  from  divergent  thinking  (DISCOVER)  back   to  convergent  thinking  (EMULATE).  At  any  point,  when  you  feel  you  are  getting  farther  from  a   solution  (too  divergent),  stop  and  proceed  through  to  the  Emulate  stage  where  you  create  a   specific  design  solution  that  incorporates  the  strategies  or  principles  that  you  discovered  and   abstracted”  (DeLuca,  2012).  This  lesson  is  important  to  push  creativity  but  also  incremental  to   productivity.  Divergent  and  convergent  thinking  is  also  required  to  realize  sustainable  design.       To  better  show  how  the  different  steps  of  the  C2B  BDS  are  an  iterative  process  with  divergent   and  convergent  thinking,  I  created  this  sketch  that  hybridizes  the  two  design  diagrams  (See   Figure  15).  By  thinking  broadly  (diverging)  about  my  design  at  various  stages,  I  was  able  to   creatively  think  beyond  the  scope  of  my  own  assumptions  and  knowledge  base.  On  the  other   hand,  in  order  to  not  get  too  far  from  the  scope  of  the  challenge,  I  used  information  that  I   learned  in  the  previous  design  spiral  steps  or  laps  to  help  me  to  narrow  down  (converge)  into   an  emulated  strategy  or  principle.  

  Figure  15.  Biomimicry  Spiral  adapted  to  show  how  divergent  and  convergent  thinking  is  used  throughout   the  process.  Graphic  for  divergent/convergent  thinking  adapted  from  The  Double  Diamond  diagram  and   agile  development  models  as  described  by  the  British  Design  Council  (Stickdorn,  et.al,  2011)    

Each  step  can  be  convergent  during  one  lap  and  divergent  during  another  lap  depending  on   where  the  designer  is  in  the  design  process.  For  example,  at  the  beginning  of  the  process,  

 

38  

designers  need  to  think  broadly  when  identifying  functions  and  the  challenge  being  addressed,   but  once  all  of  the  steps  have  been  reached,  the  Identify  step  on  the  second  lap  of  the  spiral   could  have  more  narrow  thinking  of  the  functions  as  a  designer’s  understanding  of  the   challenge  deepens.  As  designs  expand  through  each  lap  of  the  Biomimicry  spiral,  the   biomimetic  solution  will  get  broad  and  narrow  back  in  using  an  iterative  process  of  agile   development  using  feedback  loops  (see  Figure  15).       Avoiding  Superficial  Replications   +  Distinguishing  between  true  biomimetic  problem-­‐solving  over  superficial  replication  of   natural  forms  in  design  was  another  take  away  for  me.  In  some  occasions,  I  discovered  that   biomimetic  solutions  may  not  even  physically  resemble  anything  in  nature,  rather  they  are  a   collection  of  natural  strategies  used  to  accomplish  intended  function  that  also  reflect  Life’s   Principles  for  sustainability.  Working  through  the  Biomimicry  methodologies  kept  me  engaged   in  deep  consideration  for  biological  problem  solving,  rather  than  a  superficial  replication  of   nature  when  aiming  for  an  innovative  solution.  Here  is  an  example  of  what  I  mean  by  superficial   replication  of  a  natural  form  (See  Figure  16).      

  Figure  16.  Outset®  Hex  Ice  Tray  (Fox  Run  Brands),  photo  from  Amazon.com    

Designing  this  ice  tray  was  my  first  paid  product  design  job  coming  out  of  design  school   (surprisingly,  the  product  made  it  to  market)  but  clearly,  this  was  a  shallow  application  of   Biomimicry  that  failed  to  recognize  Life’s  Principles.  Now  that  I  have  a  deeper  understanding  of   Biomimicry,  this  old  project  reminds  me  how  far  I  have  come  through  MCAD’s  Sustainable   Design  program.  This  job  working  on  kitchen  gadgets  is  actually  what  got  me  thinking  more   about  my  design  process  and  wondering  why  I  did  not  understand  product  lifecycle  or  systems   thinking  coming  out  of  my  undergraduate  industrial  design  degree.  Less  than  a  dozen  projects   in,  I  could  no  longer  justify  working  on  design  ideas  when  I  did  not  think  were  well  thought  out   or  had  positive  impact  in  the  world.  This  led  me  to  seek  out  continuing  education  in   sustainability-­‐minded  design.  

 

39  

  Evolution  of  my  Biomimicry  Thinking  

  I  used  Biomimicry  as  a  sustainable  design  framework  to  achieve  a  more  innovative  and   sustainable  solar  still  concept;  however,  my  perspectives  and  ability  to  practice  ‘Biomimicry   Thinking’  evolved  more  than  I  could  have  anticipated.  The  more  I  engaged  with  the  Biomimicry   process  as  a  design  tool,  the  more  I  experienced  revelations.  These  experiences  changed  how  I   view  the  use  of  Biomimicry  as  a  tool  for  design  inspiration  all  the  way  through  to  Biomimicry  as   a  tool  for  ongoing,  positive  impact.  Here  is  a  sketch  to  illustrate  how  my  design  perspective   evolved  into  a  Biomimicry  Thinking  process  (See  Figure  17).    

  Figure  17.  Evolution  of  Biomimicry  Thinking  Diagram.  Reinterpreted  diagram  is  inspired  by     Carl  Hastrich’s  ‘Biomimicry  Ladder’  sketch  on  his  blog,  Bouncing  Ideas  

  Biomimicry  for  Inspiration  to  Biomimicry  for  Innovation   Initially,  I  viewed  Biomimicry  as  source  of  inspiration  for  my  design  where  I  gathered   information  on  how  I  might  draw  inspiration  from  a  natural  form  or  a  particular  model.  As  I   discovered  inspiring  biological  models,  I  began  to  reframe  my  design  challenge  and  capture   insights,  as  well  as  inspiration,  from  that  model.  The  more  biological  strategies  I  researched,  the   more  I  saw  nature’s  principles  emerge.  Seeing  different  patterns  across  many  natural  models,   enable  me  to  move  from  drawing  inspiration  directly  from  single  organisms/models  to  seeing   Biomimicry  as  a  tool  for  innovation.  This  inspiration-­‐to-­‐innovation  shift  in  perspective  occurred   for  me  when  I  was  able  to  let  go  of  a  specific  biological  inspiration  and  apply  what  I  learned  to   make  deeper  connections  to  the  underlying  patterns  and  principles,  rather  than  clinging  to   particular  biological  solutions.        

 

40  

Innovation  to  Paradigm   Letting  go  allowed  new  models  to  inform  my  next  stages  of  thinking.  The  more  organisms  I   investigated,  the  more  I  was  able  to  abstract  insights  to  the  level  of  a  principle,  and  the  easier  it   was  to  see  how  Biomimicry  applied  to  more  than  this  design  process.  This  shifted  my  thinking   to  see  how  the  Biomimicry  design  tool  is  able  to  transcend  from  a  tool  into  a  paradigm;  a   worldview  underlying  the  theories  and  methodologies  of  nature’s  principles  and  patterns   (Merriam-­‐Webster,  2013).  Now  I  am  able  to  see  lessons  from  nature  everywhere,  in  many  areas   of  my  life,  and  how  they  can  be  applied  to  different  fields  or  phases  of  production.       Paradigm  to  Radical  (Sustainable)  Innovation   After  working  through  the  C2B  BDS  process  first  hand,  I  have  gained  a  better  understanding   how  Biomimicry  is  a  design  tool  and  a  paradigm.  Biomimicry  is  influencing  new  ways  of  doing   business,  architecture,  chemistry  and  so  on,  making  it  a  viable  tool  toward  radical  innovation.   Radical  innovation  means  discovering  completely  new  ways  of  doing  things,  shifting  design   standards,  and  often  making  previous  innovations  obsolete  (Merriam-­‐Webster,  2013).  I  believe   that  once  designers  are  able  to  see  how  abstracting  lessons  from  nature  may  be  applied  beyond   the  design  of  the  object/product  to  the  organizational  model  that  supports  it  and  its  connection   to  the  environment  it  exists  in,  and  then  radical  innovation  will  begin.       Radical  Innovation  to  Ongoing  Positive  Impact   Going  through  the  adaptive  thinking  process  that  the  design  spiral  fosters,  I  have  realized  that   although  Biomimicry  as  a  design  tool  and  paradigm  has  powerful  contributions  toward   innovation,  it  would  be  best  to  cultivate  cooperative  relationships  with  other  sustainable  design   tools  and  frameworks  (i.e.,  lifecycle  assessments,  eco-­‐certification  systems,  user-­‐centered   design  and  systems  thinking  tools).  “Sustainable  design  professionals  are  best  off  knowing  what   the  right  tools  for  their  job  are  and  how  to  use  them  together”  (Faludi,  2012).  Other  sustainable   design  tools  could  be  integrated  into  various  steps  of  the  Biomimicry  Design  Spirals  to  create  a   holistic  system  that  is  responsive  to  local  needs  and  social  context,  resulting  in  designs  with   ongoing  positive  impact.         Reflecting  on  my  thesis  question,  “Can  I  design  a  more  sustainable  and  innovative  solar  still   using  Biomimicry?”  I  would  answer  “yes”  because  I  successfully  used  Biomimicry  as  a  model,   mentor,  and  measure  to  create  a  resilient  and  robust  design  idea  for  a  modular  solar  still  that  is   different  than  anything  on  the  market.  I  was  originally  seeking  an  answer  to  a  simple  question,   but  found  much  more  than  a  simple  answer,  I  experienced  an  evolution  in  my  design  thinking.      

 

41  

Moving  forward,  I  recognize  that  I  will  have  to  use  my  additional  sustainable  design  knowledge   and  product  design  experience  in  addition  to  Biomimicry  methodology,  to  appropriately   execute  as  I  move  the  design  from  idea  to  reality.  This  will  come  into  play  during  the  Round  2  of   the  BSDC.  Understanding  the  limitations  of  Biomimicry  now  will  help  me  determine  the  best   tools  to  bring  into  the  ongoing  process  of  refining  my  designs  for  SolDrop.                                                                                                                                         Biomimicry  within  the  context  of  Sustainable  Design    

  One  thing  that  I’ve  learned  through  my  tenure  at  MCAD  is  that  most  of  the  impacts  that  a   product  will  have  are  embedded  during  the  design  phase.  The  choices  all  designers  make   involving  the  products  they  create  are  made  from  the  onset  of  the  design  process.  Decisions   about  what  a  product  is  made  of,  and  how,  where,  and  why  it  was  made,  used,  and  disposed  of   will  define  a  product’s  level  of  sustainability.     Limitations  of  Biomimicry   After  using  the  C2B  BDS  exclusively,  I  can  see  how  the  Biomimicry  methodology  could  benefit   from  the  incorporation  of  other  tools  and  various  points  throughout  the  process.  Non-­‐human   natural  systems  are  constrained  by  learning  from  what  they’ve  experience  the  generation   before,  whereas  humans  have  the  unique  ability  to  learn  from  others  outside  of  themselves   (Faludi,  2012).  Faludi  also  describes  how  sustainability  tools  serve  one  or  more  basic  purposes   including  focusing  attention  (objectives),  suggesting  specific  design  ideas  (strategies),  and   keeping  score  (metrics)  (Faludi,  2011).  The  BDS  includes  all  three  to  a  degree;  this  is  why  it  is   being  used  for  many  applications.  Like  any  tool,  there  are  limitations,  for  this  reason  Biomimicry   can  be  used  with  other  tools  that  help  set  boundaries  of  the  problem,  such  as  user-­‐centered   design  and  systems  thinking,  quantitative  measurement  tools  such  as  lifecycle  assessments,   Cradle-­‐to-­‐Cradle,  and  modeling  programs  for  testing  viability  (Faludi,  2011).  Beyond  biology,   other  fields  and  areas  of  expertise  should  be  referenced  to  best  execute  the  design  with   feasible  materials  and  manufacturing  methods.  Biomimicry  can  result  in  designing  better,  more   sustainable  products  and  systems,  especially  when  complimented  by  these  other  tools  and   areas  of  expertise  (Faludi,  2011).     The  sketch  below  is  a  modification  of  Figure  17,  presented  above,  to  demonstrate  how  other   relevant,  sustainable  design  tools  are  needed  to  move  biomimetic  concepts  further  into   production  with  the  ultimate  goal  of  reaching  radical  innovation  that  contributes  to  ongoing   positive  and  sustainable  impact  (See  Figure  18).  

 

42  

  Figure  18.  Evolution  of  Biomimicry  Thinking  Diagram  shown  with  how  other  relevant  tools  might  be   integrated  for  radical  innovation  and  ongoing  positive  change  

Nature  has  a  whole  system  context.  In  every  case,  biological  organisms  experience,  respond,   and  adapt  to  their  surroundings  and  therefore  ‘design’  themselves  with  contextual  relevance.  In   my  SolDrop  design  experience,  I  found  that  using  the  C2B  BDS  exclusively  was  not  going  to  help   me  to  completely  understand  the  context  SolDrop  will  be  used  in.  Access  to  clean  water  is  a   major  design  challenge  that  reaches  far  beyond  my  understanding  of  the  true  needs  of   communities  thousands  of  miles  away,  living  in  conditions  different  than  those  that  I  have   experience  in  Western  culture.  Although  I  found  using  Biomimicry  design  tools  very  helpful   when  looking  to  nature  for  solutions,  other  tools  and  frameworks  would  help  me  to  further   define  the  context  of  the  relevant  situations  that  SolDrop  will  be  employed  within  (i.e.,  society,   culture,  social  systems,  etc.).  There  are  parts  of  the  C2B  BDS  that  address  defining  the  operating   conditions  that  the  design  will  exist  within  but  there  are  other  tools  that  would  undoubtedly  do   a  better  job  of  setting  priorities  and  contextual  objectives  for  the  challenge  at  hand.       Applying  the  lens  of  Biomimicry  to  compare  the  design  of  human  products  and  systems  to   those  found  in  nature  has  been  wonderful  for  my  overall  development  of  deep  sustainable   design  thinking.  I  found  that  working  through  the  C2B  BDS  process  resulted  in  a  whole  systems   thinking  perspective  whereas  other  sustainable  design  methodologies  begin  with  whole   systems  thinking.  For  me  this  discovery-­‐based  approach  has  shaped  my  ability  to  cast  a  wider   net  while  using  whole  systems  thinking.  I  can  now  make  more  encompassing  considerations  by   initially  looking  at  a  product’s  whole  system  and  by  reframing  the  design  challenge  into  core  

 

43  

functions,  abstracted  strategies  and  principles,  and  emulate  lessons  from  nature.  In  my  opinion,   the  C2B  BDS  served  as  a  wonderful  gateway  to  understanding  the  vast  lessons  that  may  be   learned  from  biology  to  inspire  innovation  on  many  levels.      

Next  Steps     BSDC,  Round  2  and  beyond     Round  2  of  the  Biomimicry  Student  Design  Challenge  is  centered  on  bringing  the  biomimetic   solutions  to  a  viable  place  as  a  business  venture.  This  round  includes  a  mentorship  component   with  Startup  Nectar,  a  business  incubator  for  Biomimicry-­‐based  ventures.  I  will  collaborate  with   my  BSDC  teammates  to  bring  the  idea  closer  to  market  using  additional  design  tools,  areas  of   study,  and  processing  methods  for  prototyping  the  design  idea  for  real-­‐world  use.       By  incorporating  what  we’ve  learned  through  creating  crude  models  and  getting  feedback  from   the  BSDC  judges,  we  aim  to  take  the  design  further  for  the  BSDC,  Round  2  submission.  The   creation  of  a  business  plan  will  give  us  critical  information  on  how  and  where  the  SolDrop  solar   still  best  fits  into  the  desired  location.  As  we  take  the  next  steps,  the  idea  will  adapt  specific   needs  as  needs  are  assessed,  designs  are  customized,  and  field  tested  (see  Figure  19).      

Figure  19.  Progression  of  taking  the  SolDrop  idea  to  market    

   

  The  SolDrop  solar  still  will  be  positioned  in  developing  regions  where  it  will  have  the  most   meaningful  impact  because  these  low-­‐resource  areas  face  the  largest  challenges.  Initially  I    

44  

intend  to  position  the  design  idea  for  developing  nations  with  limited  resources  before  moving   into  consumer  markets  for  developed  nations,  like  here  in  the  North  America.  It  will  be   important  to  establish  that  this  design  idea  can  be  achieved  for  this  population  before  moving   into  other  consumer  markets  in  developed  nations.    To  do  this,  additional  tools  and  resources   will  be  used  to  get  at  the  social  relevance  (e.g.  design  for  real  social  impact  resources  by   Mulago  Foundation,  human-­‐centered  design  toolkit  by  IDEO.org,  design  for  extreme   affordability  by  Stanford  University),  technological  feasibility  (Autodesk  Inventor  CAD   modeling),  and  manufacturing  design  will  be  used  to  create  prototypes  that  will  be  used  for   feasibility  testing  and  user  studies.       There  are  many  models  out  there  of  projects  that  are  trying  to  make  a  difference,  but  which   actually  do  make  a  real  impact?  By  using  resources  like  those  published  by  various  foundations,   organizations,  and  individuals  tackling  similar  issues,  I  can  arrive  at  a  more  contextually  relevant   solution  for  the  nuances  of  impoverished  regions.  Moving  forward,  I  will  use  additional  tools   and  areas  of  expertise  with  Biomimicry  to  provide  a  more  robust  design  process  for  the   product,  supporting  business,  and  accompanying  services.  To  measure  success  and  true  impact,   the  design  team  would  identify  metrics  and  gather  information  help  us  determine  how   appropriate  this  design  idea  is  in  a  given  community.  Researching  the  competitive  landscape   will  also  clue  our  team  into  similar  projects,  learning  from  what  they  have  experienced,  and   understanding  who  is  potentially  competing  for  the  same  funding  avenues.       Currently,  I  am  working  with  my  BSDC  teammates  to  create  initial  prototypes  to  test  the   functionality  and  technical  claims  (see  Appendix).  This  work  will  be  done  beyond  the  scope  of   the  thesis.  Once  the  pivotal  question,  “Does  it  effectively  work?”  is  answered,  further   refinement  of  the  design  can  be  developed  with  the  use  of  other  tools,  feedback  loops,  and   site-­‐specific  partnerships.     Now  that  I  have  a  design  idea  (seed),  I  will  have  to  find  the  best  ground  (the  locations  that   benefit  most)  to  plant  it  in,  and  strive  to  make  it  native  (being  locally  attuned  and  responsive)   to  that  ecosystem  (the  community)  in  which  it  lives.  Once  the  seed  is  growing,  I  will  have  to  use   local  nutrients  (materials,  manufacturing,  and  labor)  to  feed  and  maintain  balance  between   development  and  growth  (with  cooperative  partnerships  using  feedback  loops)  to  enrich  that   local  biome  (the  country  and  surrounding  environment)  (see  Figure  20).    

 

45  

 

Figure  20.  Growth  model  for  the  future  of  the  SolDrop  solar  still  and  evolving  service  system  

  I  realize  that  SolDrop  has  a  long  way  before  becoming  a  viable  solution  for  positive,  sustainable   impact.  More  importantly,  working  on  this  thesis  project  has  expanded,  deepened,  and   solidified  my  understanding  of  sustainable  design.  I  have  gained  confidence  in  how  I  approach   design  and  how  I  will  forge  ahead  in  my  career  as  a  sustainable  design  practitioner  looking  to   create  evolving  solutions  (see  Figure  21).      

Figure  21.  ‘The  (design)  Squiggle’  by  Damien  Newman  showing  the  (closed)  convention  design  process   and  a  rendition  of  the  ‘Design  Squiggle’  ending  with  evolving  solutions  done  by  Stefanie  Di  Rosso   showing  the  sustainable  design  process  (I  Think,  I  Design  Blog,  2012)  

   

  As  a  designer  (and  user)  of  products  and  as  I  leave  MCAD’s  master’s  program,  I  have  a   heightened  sense  of  responsibility  to  do  my  part  to  create  as  consciously  as  I  can  by  absorbing,   reshuffling,  and  sharing  information.  I  believe  that  the  process  of  developing  my  thesis  project    

46  

has  made  me  a  better  designer  because  I  can  better  determine  when  and  how  various   sustainable  design  tools  should  be  used  and  when  to  turn  to  other  expertise  on   multidisciplinary  teams  to  create  sustainable  design  solutions  that  contribute  to  ongoing   positive  impact  and  ultimately  creates  conditions  conducive  to  life.    

References    

07  

Al-­‐Hayeka,  Imad,  and  Omar  O.  Badranb.  “The  effect  of  using  different  design  of  solar  stills  on  water   distillation.”  Desalination  169  (2004):  121-­‐127     Architecture  for  Humanity.  Design  Like  You  Give  a  Damn.  New  York:  Metropolis  Books,  2006.     AskNature:  A  project  of  The  Biomimicry  3.8  Institute.  2013.  Biomimicry  3.8  Institute.  13  May  2013.       (*NOTE:  Specific  citations  for  the  biological  references  found  on  the  AskNature.org  website  can  be   round  in  the  reference  section  of  the  BSDC  Round  1  entry  (see  Appendix)   Benyus,  Janine.  Biomimicry  Innovation  Inspired  by  Nature.  New  York:  Harper  Perennial,  2002.     Benyus,  Janine.  “A  Biomimicry  Primer.”  Biomimicry  Resource  Handbook.  2011.  Biomimicry  3.8  Institute,   Biomimicry  Guild.  Print.       Biomimicry  Group.  Life’s  Principles:  Design  Lessons  from  Nature.  2011.  Biomimicry  3.8  Institute.  Pp  2.       Biomimicry  Group.  Biomimicry  Design  Spirals.  2011.  Biomimicry  3.8  Institute.  Pp  1.       Biomimicry  3.8.  4th  Annual  Biomimicry  Student  Design  Challenge:  Water  Wise.  5  December  2012.   Biomimicry  3.8  Institute.  13  May  2013  .     Coffrin,  Stephen;  Frasch,  Etic;  Santorella,  Mike;  Yanagisawa,  Mikio.  Solar  Powered  Water  Distillation   Device.  “MS  Thesis:  Mechanical  Engineering.”  Northeastern  University,  Boston,  2008.   Northeastern  University.  Web.  20  Feb  2013.       DeLuca,  Denise.  Personal  Interview.  04  December  2012.     Dunning,  Brian.  The  Golden  Ratio.  28  August  2012.  Sketptoid:  critical  analysis  of  pop  phenomena.  14   May  2013.  .     Faludi,  Jeremy.  “Biomimicry.”  Worldchanging:  A  User’s  Guild  to  the  21st  Century.  Ed.  Alex  Steffen;  Carissa   Bluestone.  New  York:  Abrams,  2011.  99-­‐100.   Faludi,  Jeremy.  “Biomimicry’s  Place  in  Green  Design.”  Zygote  Quarterly  03  (2012):121-­‐129.  Web.  11  May   2013.  

 

47  

Fukuhara,  Teryuki,  and  Smimul  Ahasan,  and  Yoshihiro  Ishii.  “Production  Model  of  Tubular  Solar  Still   Based  on  Condensation  Theory.”  IV  Conferencia  Latino  Americana  de  Energia  Solar  Cusco   (2010).     Fuller,  R.Buckminster.  Your  Private  Sky:  The  Art  of  Design  Science.  Ed.  Joachim  Krausse;  Claude   Lichtenstein.  Baden:  Lars  Muller,  1999.   Fritz,  Rodney,  Schorn,  Larry.  Vein  Disorders.    2013.  Advanced  Vein  Clinic  of  North  Texas.  Web.  13  May   2013     Hastrich,  Carl.  “Hierarchy  of  Biomimicry  innovation.”  Bouncing  Ideas.  Wordpress.  17  October  2011.   Web.  13  May  2013.   Hippo  Water  Roller  Project.  What  is  the  Hippo  Water  Roller?  01  June2012.  Imvubu  Projects.  11  May   2013.     How  the  Hydrological  Cycle  Works.  2012.  Foundation  for  Water  and  Energy  Education  (FWEE).  Web.  08   December  2012.  .     LittleGreenSeed.  “A  tool  for  innovation  –  the  biomimicry  design  spiral.”  LittleGreenSeed.  Wordpress.     2  December  2011.  Web.  10  May  2013.     National  Geographic.  How  to  Find  Water.  1996.  National  Geographic  Society.  Web.  08  December   2012..     Natural  Resources  Defense  Council  (NRDC).  Issues:  Water.  2012.  Natural  Resources  Defense  Council   (NRDC).  Web.  09  December  2012.  .     Natural  Resources  Defense  Council  (NRDC).  Water  Facts.  February  2010.  Natural  Resources  Defense   Council  (NRDC).  Web.  09  December  2012.  .       “paradigm.”  Merriam-­‐Webster.com.  Merriam-­‐Webster,  2013.  Web.  13  May  2013.         Polak,  Paul.  Out  of  Poverty.  San  Francisco:  Berrett-­‐Koehler  Publishers,  Inc.,  2008.     Stickdorn,  Marc,  Schneider,  Jackob.  This  is  Service  Design  Thinking.  Hoboken:  John  Wiley  &  Sons,  Inc.,  2011.     United  States  Geological  Survey  (USGS).  Where  is  Earth’s  Water  Located?  31  October  2012.  U.S.   Department  of  the  Interior.  Web.  10  December  2012.  http://ga.water.usgs.gov/edu/earth   wherewater.html>.     Water.org.  Water  Facts.  2012.  Estimated  with  data  from  WHO/UNICEF  Joint  Monitoring  Programme   (JMP)  for  Water  Supply  and  Sanitation.  Web.  08  December  2012.  .      

48  

World  Health  Organization.  10  Facts  About  Water  Scarcity.  March  2009.  UNICEF  and  World  Health   Organization  (WHO).  Web.  09  December  2012.  .     Zieke,  Gregor.  “Development  of  a  low-­‐cost,  high-­‐efficiency  solar  distillation  unit  for  small-­‐scale  use  in   rural  communities.”  (2011).  MS  Thesis:  Resource  Management.   .    

Appendix    

08  

BSDC  Round  1  Entry     The  first  round  entry  for  the  Biomimicry  Student  Design  Challenge  is  attached.  I  will  continue  to   collaborate  and  reference  outside  materials  to  make  a  stronger  entry  for  Round  2  of  the   Biomimicry  Student  Design  Challenge  2012-­‐2013  due  in  May  2013.

       

 

49