MEASUREMENT OF THE LAMB SHIFT IN MUONIUM

7 downloads 0 Views 5MB Size Report
shift in n=2 muonium. The muonium atom is a hydrogen-like ..... t h e. o r b i t a l. e l e c t r o n . Since the charge of the u+. i s i d e n t i c a l t o t h a t o f. t h e ... B o h r ' s. c r i t e r i a. s h o u l d have energies and radii p B o h r. (. Z a. ) 2. 2. E. = -.
MEASUREMENT OF THE LAMB S H I F T IN MUONIUM

by CHARLES ALAN FRY

A THESIS SUBMITTED IN P A R T I A L FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

i THE FACULTY OF GRADUATE STUDIES Department of

We a c c e p t

Physics

t h i s t h e s i s as

to the required

conforming

standard

THE UNIVERSITY OF B R I T I S H COLUMBIA A u g u s t , 1985

©

C h a r l e s A l a n F r y , 1985

In p r e s e n t i n g

t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of

requirements f o r an advanced degree a t the

the

University

o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it

f r e e l y a v a i l a b l e f o r reference

and

study.

I further

agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may

be granted by the head o f

department o r by h i s o r her r e p r e s e n t a t i v e s .

my

It is

understood t h a t copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain

s h a l l not be allowed without my

permission.

Department of The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date

/HI i

written

Abstract This thesis describes the f i r s t shift

in

n=2

bound s t a t e believed of

muonium.

of

to

two

The muonium

leptons

atom i s a h y d r o g e n - l i k e both

(u e~), +

of

which

be p o i n t - l i k e p a r t i c l e s . The p o i n t - l i k e

the constituent

uncertainty

m e a s u r e m e n t o f t h e Lamb

of

particles

the

simplifies

application

of quantum

(QED) t o t h e c a l c u l a t i o n

o f t h e Lamb s h i f t

atom.

t h e Lamb s h i f t

Measurements

of

and

are nature

reduces

the

electrodynamics in

the

i n hydrogen

muonium disagree

w i t h t h e p r e d i c t i o n s o f t h e o r y by a few s t a n d a r d d e v i a t i o n s ; however,

theoretical

predictions

also

o t h e r , p a r t l y because of d i f f i c u l t i e s treatment muonium the

of t h e proton

system

hydrogen

associated

the

will

be

t o t h o s e a l r e a d y made i n

a v a l u a b l e t e s t o f QED. The

present experiment

i s not intended t o t e s t

investigation

the

of

with

s t r u c t u r e . Thus a m e a s u r e m e n t i n t h e

of s i m i l a r p r e c i s i o n system

d i s a g r e e w i t h each

methods

QED.

It

i s an

and t e c h n i q u e s n e c e s s a r y t o

i

surmount

the

difficulties

The

available

presented

by

the

nature

of

I muonium. 10 ° + 1

first Lamb

number

of

muonium a t o m s i s a b o u t

t i m e s l e s s t h a n t h a t o f h y d r o g e n u s e d by Lamb measurement. shift

statistical were f o u n d

10701If

The MHz.

v a l u e o b t a i n e d f o r t h e n=2 The

a t t h e 68% c o n f i d e n c e to contribute a further

uncertainty level.

in his muonium

quoted

Systematic

2 MHz u n c e r t a i n t y .

is

effects

Table 1 .

1

1.1

The

1.2

H i s t o r i c a l

Muonium

Atom

1

P e r s p e c t i v e

1.2.1

Lamb's

1.2.2

The

3

Experiments

Race

between

Present S t a t u s and Experiment

of

6

Theory

the

Lamb

and

Experiment

S h i f t

8

C a l c u l a t i o n 9

1.4

O u t l i n e

of

the

T h e s i s

12

The

Muonium

Energy

L e v e l s

15

2.1

Symmetry

2.2

The

2.3

S e p a r a t i o n

2.4

N o n - r a d i a t i v e

2 . 5

3.

Contents

I n t r o d u c t i o n

1.3

2.

of

15

E i g e n s t a t e s of

of

the

F,

ny,

Center

and

J, of

Mass

L

16

M o t i o n

17

C o r r e c t i o n s

19

2.4.1

C o r r e c t i o n s

to

the

Fine

2 . 4 . 2

C o r r e c t i o n s

to

the

H y p e r f i n e

2 . 4 . 3

R e c o i l

R a d i a t i v e

s t r u c t u r e s t r u c t u r e

C o r r e c t i o n s

19 . . . . 2 1 22

C o r r e c t i o n s

25

2.5.1

S e l f - e n e r g y

25

2 . 5 . 2

Magnetic

28

2 . 5 . 3

Vacuum

P o l a r i z a t i o n

2 . 5 . 4

Higher

Order

the

29

C a l c u l a t i o n s

32

The

Formation

3.1

G e n e r a l

C o n s i d e r a t i o n s

35

3 . 2

Methods

of

35

3 . 3

The

3.4

S l o w i n g

2s

Muonium

Forming

F o i l

S h i f t

C o r r e c t i o n s

Summary

of

Lamb

B i n d i n g

28

2 . 6

Beam

of

Moment

Muonium

I n t e r a c t i o n

Muons

35

37 40

i i i

3.5

3.6

3.7 4.

5.

6.

The

S t a t i s t i c a l

P r o p e r t i e s

a

Degrader

50

3.5.1

Momentum

S t r a g g l i n g

50

3 . 5 . 2

M u l t i p l e

S c a t t e r i n g

51

Monte C a r l o Muon Beam . . .

S i m u l a t i o n

of

M o d e r a t i o n

of

the 52

Summary

58

R a d i o - f r e q u e n c y T r a n s i t i o n 4.1

The

4.2

Approximate

Time

E x c i t a t i o n

of

the

Lamb

s h i f t 59

Dependent

S c h r o d i n g e r

Equation

59

S o l u t i o n

61

4.2.1

DC

Stark

e f f e c t

64

4 . 2 . 2

AC

Stark

S h i f t

64

4 . 2 . 3

E f f e c t

D e s c r i p t i o n Procedure

of

of

the

the

2p

3 /

,

2

s t a t e

Apparatus

65

and

E x p e r i m e n t a l 66

5.1

Vacuum

5.2

S c i n t i l l a t i o n

5.3

N e u t r a l

5.4

RF

5.5

The

5.6

Data

A c q u i s i t i o n

5.7

Beam

Parameters

Data

of

System

66 Counters

P r o d u c t i o n

66

F o i l

68

Region Quench

R e d u c t i o n

70 Region

and

and and

and

M i c r o C h a n n e l Event

P l a t e s

73

T r i g g e r

E x p e r i m e n t a l

76

Rates

78

A n a l y s i s

82

6.1

Timing

82

6.2

N o r m a l i z a t i o n

92

6 . 3

Form

6.4

The

6 . 5

S y s t e m a t i c Measurement

of

the

Resonance

F i t t i n g

Procedure

Curve

U n c e r t a i n t i e s

92 95 i n

the

Lamb

S h i f t 96

iv

6 . 6

6.7 7.

6.5.1

RF

6 . 5 . 2

N o n - l i n e a r i t y

6 . 5 . 3

Alignment

6 . 5 . 4

V e l o c i t y

6 . 5 . 5

N o r m a l i z a t i o n

Other

E f f e c t s

6.6.1

T r a n s v e r s e

6 . 6 . 2

RF

6 . 6 . 3

Magnetic

Summary

Power

of

of

. . 9 6

t h e RF

t h e

RF

Power

Region

L e v e l

a n d t h e

103 Beam

. . 1 0 3

D i s t r i b u t i o n

104

U n c e r t a i n t y

104 105

Stark

of

U n c e r t a i n t y

Doppler

S h i f t

(Time

D i l a t i o n )

.105

s h i f t

105

F i e l d s

106

U n c e r t a i n t i e s

and S y s t e m a t i c

E f f e c t s

106

C o n c l u s i o n 7.1

108

Comparison Measurement

w i t h

t h e

L i m i t a t i o n s

7.3

New Methods Measurement

7.4

P o s s i b l e

of

t h e

Present

f o r

a

Measurement

of

P i o n i urn Summary

Lamb

S h i f t 108

7.2

7.5

Other

Technique Muonium

t h e

n=2

Lamb

110 Lamb

S h i f t . . . 1 1 2

S h i f t

i n

.• of

1 15

R e s u l t s

116

REFERENCES APPENDIX

118 A:

POISSON

THE

MAXIMUM

LIKELIHOOD

PROCESS

TECHNIQUE

FOR

A 123

v

List

of F i g u r e s page

Figure

1.1: S c h e m a t i c

o f t h e Muonium E n e r g y

Figure 1.2: S c h e m a t i c o f t h e a p p a r a t u s u s e d experiments Figure

Levels i n Lamb's

2 first 7

1.3: The L a y o u t o f t h e E x p e r i m e n t a l A r e a s a t TRIUMF. 13

Figure 2.1: Some Lamb s h i f t

Feynman d i a g r a m s w h i c h c o n t r i b u t e t o t h e 26

Figure 3.1: The n e u t r a l f r a c t i o n a n d r e l a t i v e p o p u l a t i o n i n various states f o r a beam o f positively charged particles emerging from a foil as a f u n c t i o n of velocity. 38 Figure 3.2: dp/dx f o r a l u m i n u m a s c a l c u l a t e d u s i n g e q u a t i o n 3.5 43 F i g u r e 3.3: Muon v e l o c i t y a s a f u n c t i o n o f p a t h l e n g t h aluminum degrader

i n an 45

Figure 3.4: P r o t o n v e l o c i t y a s a f u n c t i o n o f p a t h l e n g t h i n an a l u m i n u m d e g r a d e r . 46 Figure 3.5: Number o f p a r t i c l e s a v a i l a b l e f r o m t h e M13 beam l i n e a t TRIUMF a s a f u n c t i o n o f momentum p e r uk o f p r i m a r y p r o t o n c u r r e n t a t 500 MeV 48 F i g u r e 3.6: M o n t e C a r l o r e s u l t s f o r t h e f r a c t i o n o f a muon beam s t o p p i n g i n an a l u m i n u m d e g r a d e r a n d t h e n e u t r a l f r a c t i o n a s a f u n c t i o n o f i n c i d e n t momentum 54 F i g u r e 3.7: M o n t e C a r l o r e s u l t s f o r t h e f r a c t i o n o f t h e beam emerging from t h e degrader w i t h momentum less than 2 MeV/c a s a f u n c t i o n o f t h e i n c i d e n t muon momentum. ...55 F i g u r e 3.8: C o m p a r i s o n o f t h e Monte C a r l o results with e x p e r i m e n t f o r t h e number o f p a r t i c l e s e m e r g i n g f r o m t h e f o i l w i t h momentum l e s s t h a n 2 MeV/c a s a f u n c t i o n of i n c i d e n t momentum 57 Figure

5.1: A s c h e m a t i c d i a g r a m o f t h e a p p a r a t u s

67

Figure

5.2: The RF t r a n s m i s s i o n

71

Figure

5.3: The RF s y s t e m

l i n e arrangement

72

F i g u r e 5.4: The e l e c t r i c f i e l d i n t h e q u e n c h r e g i o n . V i e w i s from the s i d e a t the v e r t i c a l midplane 74 vi

F i g u r e 5.5: E f f i c i e n c y o f c h a n n e l e l e c t r o n m u l t i p l i e r s a s a f u n c t i o n o f wave l e n g t h . 75 F i g u r e 5.6: T y p i c a l c i r c u i t used t o run plate. Specific values of the capacitances depend on the size micro-channel p l a t e s F i g u r e 5.7: S i m p l i f i e d data a c q u i s i t i o n Figure

diagram

a micro-channel r e s i s t a n c e s and and kind of 77

of the e l e c t r o n i c

logic

5.8: The M13 beam l i n e a t TRIUMF

for 79 80

F i g u r e 6.1: A t y p i c a l t i m e - o f - f l i g h t h i s t o g r a m f o r p a r t i c l e s t r a v e l l i n g b e t w e e n t h e i n c i d e n t s c i n t i l l a t o r a n d MCP B. 84 F i g u r e 6.2: E v e n t s a s a f u n c t i o n o f t i m e - o f - f l i g h t a n d time of d e t e c t i o n o f a Lyman-a p h o t o n . See t e x t f o r m e a n i n g s o f a , b, c 85 F i g u r e 6.3: The t i m i n g c u t s on t h e e v e n t s o f F i g u r e text)

6.2 ( s e e 86

Figure 6.4: Events a s a f u n c t i o n o f 1/0 a n d t i m e i n t h e quench r e g i o n ( i . e . time of d e t e c t i o n o f t h e Lyman-a photon less t h e time of e n t r y i n t o t h e quench r e g i o n ) . 88 Figure 6.5: 2s muonium d e t e c t e d a s a f u n c t i o n o f v e l o c i t y . The e f f e c t o f t i m i n g c r i t e r i a f o r e n t r y i n t o t h e q u e n c h region i s i l l u s t r a t e d 89 F i g u r e 6.6: 2s muonium d e t e c t e d a s a f u n c t i o n o f t i m e from entry into t h e q u e n c h r e g i o n t o e m i t a Lyman-a p h o t o n . The e f f e c t o f v e l o c i t y r e q u i r e m e n t s i s i l l u s t r a t e d . ..90 Figure 6.7: The d a t a p o i n t s a n d b e s t f i t r e s o n a n c e a f u n c t i o n o f a p p l i e d RF power a n d f r e q u e n c y F i g u r e 6.8: The b e s t f i t r e s o n a n c e power l e v e l s a t which data circles a r e an independent (see t e x t ) Figure and

c u r v e shown f o r t h e t h r e e was a c q u i r e d . . The open t e s t of the n o r m a l i z a t i o n 98

6.9: x contours for variation the signal i n t e n s i t y , a 2

o f t h e Lamb s h i f t S 100

Figure 6.10: x contours for variation of i n t e n s i t y , a and background i n t e n s i t y , b 2

curve as 97

the

signal 101

F i g u r e 7 . 1 : The d a t a o b t a i n e d by B a d e r s t a c h e r et al. f o r t h e Lamb s h i f t t r a n s i t i o n a n d a s c h e m a t i c o f t h e a p p a r a t u s used 1 09 VI1

List

of T a b l e s page

Table 2.1: V a r i o u s c o n t r i b u t i o n s h y d r o g e n a n d muonium T a b l e 2.2: Lamb s h i f t

calculation

to

results

the

Lamb

shift in 33

f r o m T a b l e 2.1..34

T a b l e 5.1: Summary o f m a t e r i a l s p r e s e n t i n t h e p a t h muon beam T a b l e 6.1: The o b s e r v e d numbers of counts s i g n a l s u s e d t o d e t e r m i n e t h e Lamb s h i f t

and

of t h e 69

normalized 91

T a b l e 6.2: The r e s u l t s o f v a r i o u s f i t s t o t h e resonance d a t a , i n w h i c h d i f f e r e n t p a r a m e t e r s have b e e n a l l o w e d t o vary. L i n e I I I i s the the quoted result f o r t h e Lamb shift 1 00 T a b l e 6.3: Summary o f t h e v a r i o u s c o n t r i b u t i o n s s y s t e m a t i c u n c e r t a i n t y o f t h e Lamb s h i f t

viii

to the 103

Acknowledgements This

experiment

successful wish t o

without

thank

manpower

my

and

thesis

could

collaborators

necessary

attention

have

to

run

the

who

helped

experiments

to

detail

in

provide

t o Rob K i e f l

the

the

very

inception

measure the Lamb s h i f t , success

of

the

of

the

Bailey,

experiment.

Gord

for h i s

f i n a l design of the Warren,

experimental program to

was i n l a r g e part r e p o n s i b l e f o r the I a l s o l e a r n e d , r e c e i v e d much

encouragement, and gained i n s i g h t John

the

over the many

apparatus. The encouragement and a s s i s t a n c e of John from

been

the a s s i s t a n c e of a great many people. I

weeks of d a t a - t a k i n g . I owe many thanks careful

not

Giles,

from

conversations

with

Glen M a r s h a l l , and A r t O l i n f o r

which I am very g r a t e f u l . Tim M i l e s deserves

thanks

for his

a s s i s t a n c e , above and beyond the c a l l of duty, with the data acquisition

system.

corrections

and

I

very

much

appreciate

many

suggestions of J e s s Brewer i n c o r p o r a t e d i n

the f i n a l d r a f t of the t h e s i s , as w e l l enthusiasm,

the

and e f f o r t

h i s generosity,

over the past few years as one of the

c o - s u p e r v i s o r s of my work. F i n a l l y , most h e a r t f e l t thanks

as

I

wish

to

express

my

to C h r i s Oram, with whom I worked most

c l o s e l y over the course of the experimental program, f o r h i s guidance,

a s s i s t a n c e , and f r i e n d s h i p .

ix

1 . INTRODUCTION

1.1

T H E MUONIUM ATOM

The

muonium

very

much

some

In

l i k e

1836

almost

atom the

t i m e s

c a s e

of

a p p r o x i m a t e l y

207

Since

the

p r o t o n , the as

the

hydrogen

times

atom.

i s The

which t h i s

i s

l e v e l of

the of

u

i s

of

muon

a

i s to

s i m p l i f i e s

p r o t o n ,

S,

be

a

the

i n

for

a n c

the

Lamb

muon

the

i s

over

p r o t o n

motion

must of

1

a

The

to

be

the

e x p l a i n e d

mass

between

the

magnetic

1.1

shows e x c i t e d

between energy

v a l u e

of

the

of

the

the

Lamb

n o t a t i o n . u n l i k e r a d i u s

the of

of

l e s s

p a i d muon

to

p r o t o n ,

about

1

fm;

muonium

s t r u c t u r e .

times be

that

f i r s t

average

e

treatment

1836/207

a t t e n t i o n

n

Lamb's

m a t h e m a t i c a l of

t

p a r t i c l e ,

out

i d e n t i c a l

d i f f e r e n c e

s h i f t .

f o l l o w i n g

spread

*

of

the

of

and

muon

e l e c t r o n .

F i g u r e

ground

an

of

can

reduced

t h r e e .

energy

2s^^

almost

magnitudes

the

to

as

o r b i t s .

p o s i t i v e

i d e n t i c a l

of

a c t s

o r b i t a l

i s

b e i n g

e l e c t r o n a

the

the

f a c t o r

The

i s

It

p r o t o n ,

e l e c t r o n ,

d i f f e r e n c e s

r e l a t i v e

unknowns

more of

the

p o i n t - l i k e

the

the

because

of

the

c a l l e d by

known

+

diagram

denoted

e f f e c t s

the

and

muonium.

i s

c i r c u m v e n t s hand,

of

p a r t i c l e s .

the

the

n u c l e u s

mass

d i f f e r e n c e s

energy

s h i f t

which

the

Most

muonium

energy

s t a t e s

the

e l e c t r o s t a t i c a l l y

i s

a p p r o x i m a t e l y

2 p ^ 2

than

the

two

which

atom

moments,

average

i n

of

of

from

(n=2)

atom

around

muonium

and

s t a t e

system

massive

n u c l e u s

hydrogen

the

bound

charge

hydrogen a r i s i n g

a

more

s t a t i o n a r y

the

i s

On

and

the

other

massive

than

the

c a l c u l a t i o n

(nucleus)

in

a

L

2P3/2

—r 10,922 MHz

I

F i g u r e 1.1:

2

74 MHz 1 *

Schematic of the Muonium Energy

Levels

3

d e s c r i p t i o n

of

1.2

HISTORICAL

In

t h e

of

r e v e a l e d t h e

part

atoms,

t h e

Balmer

that

not

r a d i a t e

the

o r b i t

c o n s t a n t ,

e n e r g i e s

s o l a r

that

c e n t u r y ,

i n

t h e

f i r s t

of

Bohr

i t s

l a b o r a t o r y ,

(Bohr, i n

a

momentum

i n t e g r a l

had

e x p l a n a t i o n

1913,

1914).

He

Coulomb

f i e l d

d i d

and

l e n g t h

number

s a t i s f y i n g

s p e c t r o s c o p y

s u c c e s s f u l

o r b i t i n g

of

an

o r b i t s

and

The

product

and

p

n i n e t e e n t h

e l e c t r o n

the

The

the

was

equaled

h.

atom.

s e r i e s .

an

i f

of

both

o b s e r v a t i o n s

proposed

have

muonium

PERSPECTIVE

l a t t e r

hydrogen

of

t h e

t h e

times

B o h r ' s

of

P l a n c k ' s

c r i t e r i a

should

r a d i i

Bohr

E

(

=

Z

a

)

2

2

-

mc 2 n

n

;

2

a

2

=

— a Z

n

0

. . . ( 1 . 1 ) r e l a t i v e

t o

the

energy

1/137.03604(11) v a l u e s

of

today

v a l u e s

Bohr of

energy,

n=1

i s

known

s u b s c r i p t

r a t h e r

(n=l)

u s i n g



e

2

Data

t h e a s

/ 2 a

0

h c

than

Taking

z e r o , t h e

t h e

a / 4 * a

0

that

a r e

2

and

t h e

number

or

.

Rydberg

eV

or

The i s

mass on

r e s t

R

e l e c t r o n

=

a l l

i n f i n i t e l y

a t

Rydberg

1

a

accepted

t a k e s

the

Bohr

m a s s

the

n

the

free

where

e l e c t r o n

e l e c t r o n

of

mass

=13.6058

r e s t ,

l a b e l l i n g free

reduced mass

The

value

i n f i n i t e

a t

MeV/c

c o n s t a n t

1984).

a b s o l u t e

i n f i n i t e



e l e c t r o n

.5110034(14)

i n d i c a t e s

t h e

free

Group,

t h e

than

a

s t r u c t u r e

g r e a t e r

z e r o

used

0

m =

o r b i t s .

z e r o

'R

f i n e

( P a r t i c l e

i n t e g e r many

t h e

and

of

0

a s

energy

f o r

,

the

where

mass,

f i r s t

3 . 2 8 9 8 5 - 1 0

m,

Bohr

denoted

by

9

the

i s

r a d i u s a

MHz

0

.

It

4 is

l a r g e compared t o t h e p r o t o n s i z e ,

50000 fm. T h e B o h r e n e r g y d i f f e r e n c e s the few

observed parts

wavelengths

energy r e l a t i o n

the

solution electron

(Schrodinger,

1926)

( 1 . 1 ) on a f i r m e r of

that

a differential

Bohr

had

included

the

three

showed t h a t n,

a n g u l a r momentum ranges

deriving

i t from

e q u a t i o n f o r t h e motion of This

made

n a t u r a l l y l e d to the

to "quantize" solution

value

should

of

the

t h e energy

also

naturally

principal

be n s t a t e s , d i f f e r i n g

where t h e " o r b i t a l "

through integers

n states associated

t h e Bohr

d i m e n s i o n a l nature of t h e r e a l

f o r each

there

next placed

basis,

l e v e l s of t h e atom. S c h r o d i n g e r ' s

number

with

of t h e Balmer s e r i e s t o w i t h i n a

i n a Coulomb f i e l d .

assumptions

and

were i n a g r e e m e n t

i n 10,000.

Schrodinger

the

being of the order of

problem quantum

in orbital

quantum

number

/

0 , 1 , 2 , . . . ( n - 1 ) . The e n e r g i e s o f t h e

with each v a l u e of n s t i l l

exhibited

no

d e p e n d e n c e o n / a l t h o u g h i t was e x p e c t e d t h a t a

relativistic

treatment of t h e problem should break the n - f o l d

degeneracy.

It

was

also

known by t h i s t i m e t h a t

the electron

" s p i n " a n d h a d a m a g n e t i c moment a s s o c i a t e d Attempts (Dirac,

to find a relativistic 1927) p r o p o s e d t h e

explained

the

successfully or the

"fine

predicted

spin.

equation f a i l e d u n t i l

Dirac

of

the

"Dirac spin

the previously

equation"

which

o f t h e e l e c t r o n and

observed

"splittings"

s t r u c t u r e " of the Balmer s e r i e s as consequences of

electron

effects.

presence

the

famous

with

possessed

spin

magnetic

The e l e c t r o n

moment

and

of

relativistic

s p i n a n g u l a r momentum stf = K/2 s h o u l d

5 combine with the o r b i t a l angular total given

angular by

Dirac twice

momentum

|/±s |. One

theory

was

the value

electron

where the allowed

that

t h e r e f o r e behaves

momentum with

the

the

fine

/=1

magnetically

of the e l e c t r o n as

spectroscopy

structure

r e s o l u t i o n to observe that the predicted

by

of

hydrogen

the

Dirac

equation.

of the 2 5 ^ 2

to

the

2p y 1

electronic

2

and

binding

able

energy

Only

nuclear

in

the

25^2

wavefunctions

relative do

Coulomb

potential

distances.

Uhling

(Uhling,

1 935)

[reduced] had

e x p l a i n the

of the wrong s i g n and required

shift.

In

i f the

at

short

a l r e a d y proposed

p o l a r i z a t i o n of the D i r a c vacuum around a e f f e c t was

the

significant

t h e r e f o r e the proposed r e d u c t i o n c o u l d occur modified

be

s t a t e were

overlap;

were

less

could

state

have

to

Pasternack

10% of the f i n e s t r u c t u r e i n t e r v a l state.

be

enough

i n t e r v a l s were s l i g h t l y

explained

reduced by about

a

state

with

observations

the

should

was

(Pasternack,1938) proposed t h a t the if

the

state.

2

By the e a r l y 1930's atomic

those

exactly

c a s e s : y=/+s=0+l/2 f o r the 2 5 ^ 2

and y=/-s=1-1/2 f o r the 2 p ^

than

the

electron

energy of a s t a t e with j=\/2

f o r the two

measure

are

i n a c l a s s i c a l model.

motion a s s o c i a t e d with the

in nature and

l i k e o r b i t a l angular

identical

of j

that the s p i n magnetic moment has

were d i s t r i b u t e d i d e n t i c a l l y

so

values

single

i t would have i f the charge and mass of

is orbital

whole

a

of the most dramatic p r e d i c t i o n s of

T h i s means that angular spin

momentum to give

charge,

but

the the

of too small a magnitude to 1947

Lamb

(Lamb,

1947)

6 explain

the

reported

required

shift.

h i s observation

In

1947

MHz" u s i n g a m i c r o w a v e t e c h n i q u e .

the

same

Bethe

successful

calculation

difference,

obtaining

1040

(Bethe,

of a

the shift

MHz due t o t h e i n t e r a c t i o n

vacuum

1.2.1

On t h e way home 1947)

25^2

made

-

the

Pi/2

2

from first

energy

of t h e 2 5 ^ 2 s t a t e of about of

the

electron

with

the

LAMB'S EXPERIMENTS

follows The

the

(see Figure

hot

oven

atoms

through

velocities

principle

1 . 2 ) . H y d r o g e n was p r e p a r e d

were a l l o w e d a

o f t h e Lamb e x p e r i m e n t s was a s

small

on t h e o r d e r

probability first

of

as

the

s t a b l e as they

hole.

Travelling

o f 10* m/s t h e y

hand,

2p-states.

being

c o u l d r a p i d l y (T a b o u t

metastable,

the emission stream

thermal

were bombarded

with

so a s t o maximize t h e

the 2s-states

The p - s t a t e s h o w e v e r were n o t 1.6 n s ) r e t u r n t o t h e

o f a Lyman-a p h o t o n

d i p o l e t r a n s i t i o n . The were

with

(n=2). T h i s would p o p u l a t e

g r o u n d s t a t e by e m i s s i o n electric

oven.

e x c i t i n g atoms f r o m t h e g r o u n d s t a t e t o t h e

excited state

well

i n an

t o escape i n a s t r e a m from t h e

a beam o f e l e c t r o n s w h i c h was a d j u s t e d

The

1947)

field.

Briefly,

as

(Lamb,

o f an e n e r g y d i f f e r e n c e o f " a b o u t

1000

meeting,

Lamb

2s

states,

( 1 2 2 nm) v i a an on

t h e dominant d e - e x c i t a t i o n

o f two p h o t o n s (T a b o u t

1/7 o f a

o f atoms p a s s e d t h r o u g h a microwave

r e g i o n and f i n a l l y

the

struck a detector

which

other process

second).

interaction

registered

the

7

F i g u r e 1.2: Schematic of the a p p a r a t u s used i n Lamb's f i r s t experiments.

8

current

o f atoms i n e x c i t e d s t a t e s ,

consisting

1

mainly

of

a t o m s i n t h e 2s s t a t e . I f t h e m i c r o w a v e s were o f t h e c o r r e c t f r e q u e n c y t o e x c i t e t r a n s i t i o n s b e t w e e n t h e 2s^^ levels,

a n d were o f s u f f i c i e n t

power d e n s i t y ,

2s atoms w o u l d be t r a n s f e r r e d t o t h e and

de-excite

before

striking

r e g i s t e r e d by t h e d e t e c t o r At

that

required was

difficult

Lamb

microwaves of the frequency

generate

a

level

and

variable

of

power

required

i n a magnetic 2

1

2

1 /

/2

through t h e a p p l i e d microwave frequency,

By

but i t

frequency

h i s co-workers solved

s o a s t o sweep t h e 2 s y ~ P

reduction

The c u r r e n t

w o u l d be r e d u c e d .

t h e microwave r e g i o n

varied

detector.

2p-levels

1000 MHz) was n o t d i f f i c u l t

a constant

experiment. placing

to

the metastable

short-lived

the

generating

(approximately

maintaining

be

time,

a n d 2-g>^^

f o r the

t h e p r o b l e m by

field e n e r


z

s h i f t

=

0 . 8 6 2 ( 12)

by

fin

0.102

MHz,

to

Lamb

v a l u e

i n

F=0

to

l i f e t i m e

of

the

2 p ^

5

=

i n

a

shows

agreement

from

(1983)

t h e o r e t i c a l S

with

MHz

energy

measured

o b t a i n

the

e x p e r i m e n t a l

t r a n s i t i o n

to

the

1057.845(9)

technique

s t a t e

2

are

a l r e a d y

on

2.2

c u r r e n t

P a l ' c h i k o v

r e l y i n g

the

F=1

2

f i e l d

s p l i t t i n g s .

t e c h n i q u e ,

The

o b t a i n s

2 p ^

from

Table

hydrogen

(1981)

S

c o n t r i b u t i n g

v a l u e s .

s h i f t

of

CALCULATIONS

muonium.

o s c i l l a t o r y

h y p e r f i n e

d i f f e r e n t

for

terms

and

Lundeen

separated

deduced

the

SHIFT

v a r i o u s

hydrogen

for

proton

i n c r e a s e

LAMB

shows

r e s u l t i n g

each

to

the

B o r i e .

OF

2.1

s h i f t s

i s

of

by

using

which

he

v a l u e s

of

used

a

much

c a l c u l a t i o n =

of

1057.8514(19)

MHz. Mohr's v a l u e

of

(1976)

the

r . m . s .

h i s

r e s u l t

one

o b t a i n s

the

e x p e r i m e n t a l

i n c l u d e MHz,

even

S

=

B o r i e ' s

which

o b t a i n s

for

S

=

more

c o r r e c t i o n

i s

r e s u l t charge

the

c u r r e n t l y

r e s u l t s

c o r r e c t i o n ,

1057.93(1) than here

MHz,

Mohr's

g i v e s

S

=

a

of

the

a c c e p t e d

MHz,

by

agreement

hydrogen

r a d i u s

1057.88(1)

i n

for

which few

which

value

i s

d i s a g r e e s

MHz,

0.862(9) w i t h

both

d e v i a t i o n s .

experiment.

c a l c u l a t i o n .

i n c o r r e c t C o r r e c t i n g

of

d i s a g r e e s

r e s u l t

1057.89(1)

an

p r o t o n .

standard

M o h r ' s w i t h

used

S

*

we

(1977)

experiment

I n c l u d i n g which

of

1057.84(1)

E r i c k s o n w i t h

If

fm

B o r i e ' s i s

s t i l l

33

EFFECT

HYDROGEN

MUONIUM

(MHz) SELF

ENERGY

Second

order

(2.23)

F o u r t h

o r d e r

(2.24)

g

e

- 2

(MHz)

( 2 . 8 )

AND

997.611

1009.924 0.444

0.444

(2.25)

Second

order

67.720

66.928

F o u r t h

order

- 0 . 1 0 3

- 0 . 1 0 3

VACUUM

POLARIZATION - 2 7 . 0 8 4

- 2 6 . 7 3 9

Second

order

F o u r t h

order

RELATIVISTIC

(2.26) ( 2 . 2 7 )

i I

- 0 . 2 3 9

EFFECTS

(2.28)

- 0 . 2 3 9

7.140

7.140

j

I

i

NUCLEUS

DIRAC

MOMENT

(2.10)

-0.171

- 0 . 0 0 2

j i

HIGHER

ORDER

EFFECTS

(

(2.29)

!

E r i c k s o n

- 0 . 3 7 2

- 0 . 3 7 2

Mohr

- 0 . 4 2 4

-0.424

RECOIL Owen

(Coulomb

FINITE B o r i e

(2.18)

0.359 r e c o i l )

SIZE ( f i n i t e

s i z e

Table 2 . 1 : V a r i o u s and Muonium.

C o n t r i b u t i o n s

3 . 188

- 0 . 0 7 4

- 0 . 6 5 6

0.145

0.000

0.000

- 0 . 0 4 2

c o r r e c t i o n )

t o

t h e

Lamb

S h i f t

1

i n

Hydrogen

34

higher

than

Owen f i r s t

experiment

h a s c a l c u l a t e d

p r i n c i p l e s ,

c a l c u l a t i o n , h y p e r f i n e

r e s u l t .

of

however,

(Owen, Owen's

f o r

t h e

(which the

he

hydrogen

r e s u l t

by

method The

appears

t o

t h e

Lamb

c o r r e c t i o n

Table

2 . 9 )

2 . 2 :

LAMB

i s

Lamb

SHIFT

r e c o i l " ) .

t o

s h i f t

MHz

f o r

t h e

seen

t o

s h i f t

muonium

he

t o

t h i s

moment

the l a t e r s h i f t

value

one

method

- 0 . 6 5 MHz term

i n

reduces

the

g i v i n g

A p p l y i n g •

h i s

good Mohr's

1047.64

MHz.

of

muon

the

n e g l i g i b l e .

c a l c u l a t i o n

(MHz)

t h e

thus

S

f o r

Lamb

E r i c k s o n

g i v e s

from In

E r i c k s o n

experiment.

anomalous be

t h e

I n c l u d i n g

1057.86(1)

i n

t h e

amounting

of

a n d

which

from

u s i n g

c a l c u l a t i o n

t h e o r y

1973).

v a l u e s

atom

d i f f e r

term

muonium

(Owen,

a f f e c t i n g t o

d e v i a t i o n s .

i n

i n c o r r e c t

s h i f t

s i n g l e

s h i f t

MHz

between

(equation

TOTAL

r e s u l t

Lamb

0.074

agreement

without

"Coulomb

MHz

muonium

1984)

a

standard

s h i f t

1047.03

t h e

Lamb

of

Lamb

o b t a i n e d

of

by

c a l l s

c o u p l e

t h e

he

muonium

c a l c u l a t i o n

a

o b t a i n i n g

s t r u c t u r e

c o r r e c t e d

o b t a i n s

by

r e s u l t s

from

HYDROGEN

Table

2.1

MUONIUM

E r i c k s o n

1057.93

1047.69

Mohr

1057.88

1047.64

E r i c k s o n

and

B o r i e

1057.89

1047.69

E r i c k s o n

a n d

Owen

1057.66

1047.03

1057.84

1047.64

Mohr

and

B o r i e

3.

3.1 A

GENERAL

Lamb

measurement

( r e c a l l

l i f e t i m e ,

1.6

the n s ,

width

of

i t

t h e r e f o r e

i s

times

about

of

100

must

2p In

n e c e s s a r y

order t o

longer

remain

i n

l e a s t

order

of

10

such

that

over

t h e

f l i g h t

T h i s

i s

a l s o

samples t h e r m a l ,

t h e

mean

We

now

s o u r c e s beam

t h e a s

METHODS

t h e

r a p i d l y

(such

3.2

to

i s

OF

case S i 0

2

i n )

l i n e s

muons of

second

c a n

l i n e s .

W i t h i n

t h e be t h e

t h e

a l t h o u g h

time

be

free

of

f o r

times

at

must

be

p r o b a b l i t y

of

atom

i s

10*

T o r r ;

5

l o w .

c o l l i s i o n a l

p r o d u c t i o n

methods

of

t h e

This

o t h e r w i s e p r o c e s s e s .

muonium

i n

powder

e n e r g i e s

i s

very

s h o r t .

t o

form

muonium

d i s c u s s e d

a v a i l a b l e meson

than

f o r n=2

experiment

t h e

by

l e v e l s

a r e

MUONIUM

v a r i o u s

above.

today

a r e

f a c t o r i e s .

d e l i v e r e d time

b e t t e r

where,

c o l l i s i o n

c o n s i d e r a t i o n s of

of

n=2

The

g a s m o l e c u l e s

d e - e x c i t e d

FORMING

examine

of

path

l e v e l

muonium

and

t h e

mean

a

l i f e t i m e .

a p p a r a t u s

t h e

t h e

e x c i t e d The

t o

n=2

l e v e l

Hence

i n t e r a c t i o n

muonium

t h e

n s .

vacuum

vacuums

t h e

n=2

1.1).

d e - e x c i t e

and

a

t h e

c o r r e s p o n d s t o

than

i n

F i g u r e

w a l l s

i n

means

of

observe

t h e

performed

the

MUONIUM

muonium

l e v e l

t h e

t h e

r e q u i r e s

t h e

w i t h

g e n e r a l l y

2S

diagram

i n t e r a c t i o n of

OF

l e v e l

MHz.

s i g n i f i c a n t l y

muonium

FORMATION

CONSIDERATIONS

s h i f t

s t a t e

THE

t o

s t r u c t u r e

35

an of

The

those

w i t h

most

of

t h e

T y p i c a l l y

10

experiment t h e

proton

by

a

view

c o p i o u s secondary

s

v*

these beam

per beam which

36 produces

the

The

muons,

p o s i t i v e l y

converted

to

c o n v e r s i o n

work

e f f i c i e n c y

i s

the

v e l o c i t y

the

a

w e l l

of

the

u+

f l u x v

methods

used

i n

v a p o u r ) ,

higher to have a l s o

a

e x c i t e d

Hence,

( e . g . ,

p r o c e e d i n g i n t e n s e

v e l o c i t i e s ,

but

i n

r e a s o n a b l e

improve momentum

slowed

s i z e , down.

proposed

the

c r i t i c a l s t a t e .

must

be

methods

of

if

and

They

t h e i r r e q u i r e

to

optimize

one

wishes

U n f o r t u n a t e l y ,

beam

l i n e s

f i n d s

i s

of

that

charged

beams,

charge

exchange

to the

rather

the

more

as

those

such

b r i g h t n e s s

beams.

the

beam

be

order

i n

Caesium

suggested.

r e c o m b i n a t i o n

has

been

r e l a t i v e l y keep

the

muonium

thus

produced

(Taqqu,

space 1984)

d e c r e a s e

would methods

p o t e n t i a l l y

momentum

the

even

apparatus

c o m p r e s s i o n which

of

i n v e s t i g a t e d

e f f i c i e n t

to

Phase

and

been

Coulomb

e l e c t r o n c o u l d

been

g r e a t e r .

c/100)

"tuned"

have by

and

be


>

b

we

have A p

0

the / A p

law *

( p / p

0

)

5

/

2

. . . ( 3 . 8 )

which P

i n

x

per

d e t e r m i n e s the

u n i t

the

degrader

i n c i d e n t

number as

a

of

f u n c t i o n

momentum, P

x

p a r t i c l e s

p

( p ) d p

0

.

=

of

One

the

=

p

0

( v

0

u n i t

number

momentum,

of

p a r t i c l e s

has

Po(Po)rfPo

(v/b) Pv(v)

per

5 / 2

) ( v

X

0

/ b )

5

+1 trn— /

2

+ 1 . . . ( 3 . 9 )

E q u a t i o n momentum for

f a l l s

u n i f o r m

momentum degrader

1

3 . 9 shows

One

l i n e a r

p

t h a t

r a p i d l y

p r o d u c t i o n ,

the

w i l l

have

0

n o t e s depth

t h a t of

the

i n

as

of

the

of

of

f o l l o w i n g

g e n e r a l

p e n e t r a t i o n

p a t h

p a r t i c l e s

v e l o c i t y

p a r t i c l e s

number the

number

i s

reduced

throughout

p a r t i c l e s

per

a

and

degrader

emerging

from

u n i t t h a t of the

shape:

l e n g t h

because

of

i s

g r e a t e r

m u l t i p l e

than

the

s c a t t e r i n g .

45

F i g u r e 3 . 3 : Muon v e l o c i t y as a f u n c t i o n of p a t h l e n g t h i n an aluminum d e g r a d e r .

46

PROTON

F i g u r e

3.4:

aluminum

VELOCITY

Proton

d e g r a d e r .

v e l o c i t y

IN

a s

a

RLUMINUM

f u n c t i o n

of

DLGRRDER

p a t h

l e n g t h

i n

an

47

P K

(v/b)5/2+1

"*

x

0

;

;

p < p

}

o t h e r w i s e

. . . T h i s

i s

j u s t

t h e

s i t u a t i o n

Numerous

e x p e r i m e n t s

3 . 5

t h e

shows

have

r e s u l t s

f o r

i n

the

c o n f i r m e d

t h e

M13

(3.10)

p r o d u c t i o n equation

beamline

a t

t a r g e t .

3.10.

Figure

TRIUMF

(Oram,

p r o d u c t i o n

target

1981b). The s e l e c t s the

secondary a

c h a n n e l

range

channel

of

v i e w i n g

momenta

momentum.

the

s p e c i f i e d

C l e a r l y ,

by

f o r

Ap

/ p

f i x e d

where Ap

/ p c

e q u a t i o n

( 3 . 8 ) )

the

number

of

muons

p

i s (see

c

t r a n s p o r t e d

w i l l

7/2 decrease

a s

p „ c

.

P a r t i c l e s

of

i n c i d e n t

on

f a l l

a

i s

p

i n ).

degrade i n t o

a

t o

x

,

a a

we

can

p

x

t o

p

n o n - z e r o

t h i c k n e s s

p

-

y

A p

v a l u e

however,

remove

a

beam A p

l o n g

c o n t r i b u t e

secondary

x.

(the

x

of

a s

and

from

c

of

m o n o - e n e r g e t i c

account?

s t r a g g l i n g A p

degrader

range

Even

momentum

The

when

x

output

maximum ( i . e .

a s

Ap

=

0)

s t r a g g l i n g

output would

i s

taken

e f f e c t s

amounts

t o

a r e

momenta

momentum

random

e q u a l

channel

l i k e

the

range

w r i t e * P

A

X

Px

7/2

P r

Pc ...(3.11)

Now,

s i n c e

p r e d i c t s t o p ,

Ap

/ p

the

r a t i o

g i v e n

t h e

i s p _ / p

value

v

by

d e f i n t i o n

f o r of

which

Ap

/ p C

. C

l e s s

than

p a r t i c l e s Attempts

u n i t y ,

w i l l t o

we c a n

begin

i n c r e a s e

t o

p_/p C

v

A

48

i—i—i—i—j—i—i

i i—|—r

f> MeV/c F i g u r e 3 . 5 : Number of p a r t i c l e s a v a i l a b l e f r o m t h e M13 a t T R I U M F a s a f u n c t i o n o f m o m e n t u m p e r *iA o f p r i m a r y c u r r e n t at 500 MeV.

beam l i n e p r o t o n

49

w i l l

r e s u l t

p a r t i c l e s of

i n

more

emerging

p a r t i c l e s ) ,

c o n d i t i o n s t r i k i n g

that t h e

from,

I, A p

x

p a r t i c l e s the

d e g r a d e r .

emerging

/ p

=

x

degrader

1

s t o p p i n g

i s

from

"

Av

(v C

S i n c e

t h e

i n t e n s i t y

I

and

i n t e n s i t y

degrader

t o

fewer

t h e

(number

under

the

i n t e n s i t y ,

I

by

( 2 / 7 ) v ( v / b ) 1

The

a

r e l a t e d

i n ,

/ b )

5

/

2

I

c

. . . ( 3 . 1 2 )

C

s t r i k i n g

c

+ v

5 / 2

the

degrader

i s

p r o p o r t i o n a l

7/2 to

v

c

A p

c

/ p

c

A p

c

/ p

c

A v .

c

For =

7%

emerging

/ v

momentum.

c / 5 0

The

Given

that

>

maximize

t h e

h a l f

i s

of

t h e

v a l u e s

experiment

one

c a l c u l a t e s

MeV/c

that

0.012

I

of

t h e

" e f f i c i e n c y " and

the

c / 5 0

t h e

which




3t

*

" _

...(4.7) where

V

r a d i u s

= -eE0/2K o f t h e i s

Let

u s d e f i n e

and

| < p | x | s > |

2

=

3 a

2

s t a t e ) . a

u n i t a r y

t r a n s f o r m a t i o n

A ,

( a i s t h e Bohr

62

A

e

«

+

i

"

t

n

/

,

2

0

-i«t/2

...(4.8) we

a l s o

d e f i n e

H

«= A / / A 1 "

k

iK3A/3t

+

A1"

... (4.9) so #

A

t h a t .

The

A14/>

s a t i s f i e s

t r a n s f o r m e d

e q u a t i o n

H a m i l t o n i a n

when

4.1 i s

a

L> -cV2-i7 /2, V e i8 1 s

V e

i

0

s

6

y /2-i

,

u

7 p

sum

/2

Ve

- i

i s

H of

,Ve

r e p l a c e d

two

+ i

by

t e r m s :

fit

6t , 0

... ( 4 . 10) The

f i r s t

s m a l l ,

term

i . e .

u

i f

of

#

=*



A

s d i a g o n a l f i r s t

term

term

v a r y i n g

and

second

approximat The

Ve

1

*

w i l l

n e g l e c t term.

i s

time ,

independent.

then

the

If

e f f e c t

i t s

t r a c e

of

the

i s off

p be f o r T h i s

l a r g e . the i s

We

d e f i n e

time

known

as

#'

b e i n g the

e q u a l the

to

the

r a p i d l y

" r o t a t i n g

f i e l d

i o n " . s o l u t i o n

f o r

the

time

U(t)

«- e x p {

e v o l u t i o n

o p e r a t o r

i s

now

s i m p l y :

-iff't/X)

...(4.11) C l e a r l y ,

a

t r a n s f o r m a t i o n

which

d i a g o n a l i z e s

h"

w i l l

a l s o

63

d i a g o n a l i z e

U.

The

e i g e n v a l u e s

Kx + (u

-u 9

P

-u-i



=

s

B

of

+V

are

H

%

i (

V

1

7_/2+ i 7 / 2 ) • 1 + ( 4 V < / ( «

P

3

KX - (o>s-ajp-o)- i

/

2

+

i 7-/2 + 1 7 _ / 2 ) } / 2

P

P

9

{us+cop-i 5

-

p

p

r

p

(Ug-u

p

7 / 2 + i 7 / 2 ) } /2

- u - i

2

s

p

... where and

X

c o r r e s p o n d s

g

to

Xp

The mean the

that

which

imaginary

l i f e t i m e , square

1

-

the

i s

mostly

p a r t of

1/T

root

to

one

s t a t e

of

a

i s

mostly

an

s - s t a t e

the

i n v e r s e

p - s t a t e .

i s

X

the

which

(4.12)

p r o p o r t i o n a l

s - s t a t e

i n

the

RF

to

f i e l d .

Expanding

o b t a i n s

V (7 -7_) 2

n

=

-2ImX

*

e

+

7, s

E——

(a> s

W p

-u)

(7 -7 )V4

2 +

s

P

. . . ( 4 . 1 3 ) We

note

that

that

there

the

e x p r e s s i o n

i s

no

o b s e r v a b l e

resonance

i s

symmetric

u

about

u n l e s s

-

w

s

~ " p

d i f f e r s

7

and from

9

7 7

P

.

The

decay

r a t e

i s

s m a l l

for

s

about power

1/7

s e c o n d .

f l u x

n e g l e c t i n g

g

we

a

the

maximum 2s

s t a t e

W r i t i n g

=

o 7

i s

for

which

(4.13)

cE|/16ir

i n

T

a

of

the

Of

u>^. p mean

| |

2

S

i d e n t i c a l Work

-

s

has

of

(u-u

K c

P

o r i g i n a l

u>

terms

i n s t e a d

4ire2o

- = 7 T

i s

=

course

l i f e t i m e the

of

average

e l e c t r i c

f i e l d ,

have

1

T h i s

w

(Lamb,

to

the

1952).

-o)) + 7 2

P

e x p r e s s i o n

2 D

2

/4

P

a p p e a r i n g

. . . ( 4 . 1 4 ) i n

Lamb's

64 4 . 2 . 1

DC

STARK

EFFECT

E q u a t i o n s for

t h e

the

case

" 2 s "

i n c r e a s e are

and t h e i r

a l s o

"2p"

a l s o

a

e l e c t r i c

DC

"2p"

s t a t e s

and

i s

d e c r e a s e d .

give

s e p a r a t i o n .

equal

s t a t e

e q u a t i o n

of

4.12

The

(4.12)

i n

the A

f o r

c

_ A

such

7 -

small

V) -7

v a l u e s

not

i n v o l v e

neglect

4 . 2 . 2

AC The

t h i s over

a l l

Stark

by

the

e q u a t i o n

" r o t a t i n g

the presence

STARK second

term

c o n s i d e r AC

given

i s

v a l u e s i t

as

s h i f t

r a t e s

l i f e t i m e

Stark

t o

of

the

" 2 s "

s t a t e

e f f e c t

(from

g i v e n

below:

)

p 2

p S

The

as

decay

the

a r e S

so

of

^

V

S

t h e

V » < 7 *

= -AE

i n

of

S

AE

o p p o s i t e

the

l i f e t i m e

s h i f t s

and

q u a d r a t i c

of

and

energy

t h a t

that

the

l i m i t

7_

e q u a l

and

s h i f t

The

changes

o p p o s i t e

r e s u l t s

energy

f i e l d . a r e

i n c r e a s e d

The

the

4.12

f i e l d

of

t h e P^/2

of

#

. . . ( 4 . 1 5 )

P

f o r

the

DC

Stark

a p p r o x i m a t i o n " s

2

t

a

t

e

s

but

e f f e c t

do

s t i l l

do

«

SHIFT term

s i m i l a r of a

A

t o

v a r i e s the

DC

r a p i d l y . Stark

e f f e c t

r e d u c i n g

the

DC

p e r t u r b a t i o n

and

o b t a i n

6,

(from

e q u a t i o n

AE

- -AE

4 . 1 0 ) .

=*

The

r e s u l t an

e f f e c t

when by

of

averaged h a l f .

e s t i m a t e

of

We the

65 4 . 2 . 3

EFFECT The

and

2

RF

P3/2

2 5 ^ 2 one

THE

f i e l d

2?^

a l s o

s t a t e s

C o n s i d e r i n g v a r i o u s

OF

l e v e l

h a s m a t r i x

which

these

m a t r i x

STATE

/2

a s

we

have

(one t o

now

and

h y p e r f i n e

t h e

summing

of

t h e

2 s

1 / / 2

n e g l e c t e d . over

the

of

t h e

component

two components

2 p

3

^

2

l e v e l )

o b t a i n s ( e E AE

=

0

)

2

- 2

2K2

s

| < p ^

v a l u e

of

| < p

3

y

2

| x | s > |

2

i s 3 a

3 / 2

« 2

| x | s > |

, P

s

The

between

u n t i l

p e r t u r b a t i o n s

elements connects

elements

.

3

/

9

/

2

2

. . . ( 4 . 1 7 )

5.

DESCRIPTION

5.1

VACUUM

The

a p p a r a t u s

beam

l i n e

OF

THE

APPARATUSAND

shown a

a p p r o x i m a t e l y

50 10~

i n

F i g u r e

mm m y l a r T o r r

5

o p e r a t i n g

through

v a l v e

a s s e m b l y .

The

t h e on

c o n t r o l l e d by

only

p o s s i b l e

i m p o r t a n t l y , apparatus an

10"

free

pumping t h e

o p e r a t i n g

i t

would

would the

4

The i f

be

of

t r a p

o i l

to

vacuum t o

a v a i l a b l e

would

have

was

were

much

more

i n t o

u p .

t o not

but

the

Had

there

a

turbo

( e . g . ,

been

o i l

prevent

pump

warm

gate

valve

p a r t i c l e s

begin

and

d e l e t e r i o u s

gate

c l o s e d

of

d i f f u s i o n

minimize

had

t h e

the

p r e s s u r e

t r a p

t o

have

from

i n c h

c o l d

d i f f u s i o n

system

system

a

necessary

that

flow

c o l d

by

p l a t e s .

t o

t h e

pump)

The

was

so

Torr

s h o u l d

s i m p l e r

and

r e l i a b l e .

SCINTILLATION

The

i n c i d e n t

were

RF

s i d e s 1.3

on

s l i d i n g

r e g i o n s .

of

of t h e

cm

r e m a i n i n g

COUNTERS

s c i n t i l l a t o r

mounted

c o n s i s t e d

x

5

s e p a r a t e d

n i t r o g e n

which

p o s s i b l e

5.2

and

t r a p

damage

t h e

o i l

m o l e c u l a r more

c o l d

l i q u i d

m i c r o c h a n n e l

about

was

window.

a u t o m a t i c a l l y

change

been

a

apparatus

t h e

5.1

was m a i n t a i n e d

pump

e f f e c t s

PROCEDURE

SYSTEM

by

e n t e r i n g

EXPERIMENTAL

The two

f i v e

and

f l a n g e s

f r o n t

of

t o t h e

c o l l i m a t i n g permit box

s c i n t i l l a t o r s which

apparatus s l i t

(X)

a t

and meshed the

entrance

s c i n t i l l a t o r s which

66

a c c e s s

t o

the

s c i n t i l l a t o r e n t e r e d

together t o

s c i n t i l l a t o r

the

formed

t o

from form

quench t h e

(BOX)

opposite a

3 . 8

r e g i o n .

t o p ,

f o i l

cm The

bottom,

67

F i g u r e

5.1:

A

schematic

diagram

of

the

a p p a r a t u s .

68

s i d e s

and

rear

l i g h t

guides of

so

l e v e l

low

t h e

e n t e r i n g

wrapping a

of

t h e

box from

" c r o s s

s c i n t i l l a t o r s

of

t h e

diameter

63

Mm t h i c k .

o p p o s i t e

l i g h t

aluminum each

wrapping.

v a l v e

would

( i n

be

to

t h e

the

a p p a r a t u s .

s e c t i o n

was

of

n o t

was

The

c o m p l e t e l y

observed

i n c i d e n t

L i g h t

and

c o l l e c t i o n

on

t h e

i n t e r l o c k e d

5.1)

o f f

s o

and

t h e

t h e

v a r i o u s 2 . 5

from

t h i n

i n

the

same

t h e

cm two

0 . 7 5 urn

way

f o r

a s

the

p h o t o m u l t i p l i e r s

apparatus

( p o s s i b l y )

t i g h t

was a

a

The

l i g h t

was

by

f i v e

p h o t o m u l t i p l i e r s

t h a t

s h o u l d

i n

counter

f a c i l i t a t e d

v o l t a g e s

were

p r e s s u r e

box

p o s i t r o n s

e x i t e d

s c i n t i l l a t o r (see

a p p a r a t u s ,

(7.5

t h e

rear

on

opened,

be

l e t

up

a d m i t t i n g

to

l i g h t

s c i n t i l l a t o r s .

The

The

b o x .

The

turned

atmospheric

mounted

t a l k "

guides

s c i n t i l l a t o r

gate

were

s c i n t i l l a t o r s of

d i s k ,

s c i n t i l l a t o r

box

i n c i d e n t /xm)

F i g u r e

and decay

t h e

was

used

3 . 5 ) ,

p o s i t r o n s

t r i g g e r i n g

counter

c o u l d

s c i n t i l l a t o r

which

which (one

one

a l s o

t o

t h e

+

a

s i m u l a t i o n

p l a t e s .

v e r y of

the which

M !)

m i c r o c h a n n e l by

beam

through

every

r e p l a c e d

p e r m i t t e d

c o p i o u s

passed

f o r

of be

veto

t h e

t h i n muon

241

beam

u s i n g

an

5.3

NEUTRAL

The

0 . 7 5

the

RF

5.1

summarizes

Am a l p h a

PRODUCTION

Mm A l

s o u r c e .

FOIL

f o i l

used

t o

t r a n s m i s s i o n

l i n e

assembly

t h e

v a r i o u s

produce

masses

n e u t r a l s

shown i n

t h e

i n

was mounted

F i g u r e

beam.

5 . 2 .

on Table

69

Table Masses Ma t e r i a

1

t(«xm)

i n

5.1 the

Beam

p(g/cm2)

Mass

E q u i v a l e n t

(mg/cm2)

Mass

A l

(mg/cm2) M y l a r

Beam

Window,

P i p e

( C

5

H , 0

S c i n t i l l a t o r (CH)

2

)

T o t a l

(Al)

(Al)

7.65

63

1.03

6.54

7.32

1 .50

2.70

0.40

0.40

0.75

2.70

0.20

0.20

E q u i v a l e n t

Mass

(Al)

Table

5 . 1 :

beam.

7.06

i l l a t o r

Wrapping F o i l

1.39

(X)

k

Sc i n t

51

16.6

Summary

of

m a t e r i a l s

p r e s e n t

i n

the

p a t h

of

the

muon

70 5.4 RF REGION The

RF r e g i o n was a r a d i o f r e q u e n c y

shown i n F i g u r e (Pipkin, given

5.2. I t was b a s e d on a d e s i g n

1982). A simple

in

Figure

of t h e l i n e

calculation

using

by F.M. the

calculation.

of

the

RF t r a n s m i s s i o n

I f P i s t h e power

(rms)

line Pipkin

dimensions

5.2 shows t h a t t h e i m p e d a n c e a t t h e c e n t r e

i s a b o u t 50 ohms. M e a s u r e m e n t o f

characteristics

average

transmission

voltage

difference

rms

r m c

impedance

l i n e confirmed the

transmitted

c o n d u c t o r and t h e grounded o u t e r V

the

in

between

watts, the

the

central

conductor i s :

= /50~P [ v o l t ] ...(5.1)

The

power d e n s i t y

i n t h e upper p a r t of the t r a n s m i s s i o n

line

is: 0.04 P [ w / c m ] 2

...(5.2) The and 5.3. data

power

continuously

regulated using

The f r e q u e n c y

frequency

every

few

minutes.

t r a n s m i t t e d was r e a d

switched In

by a

for a

addition

of

t h e power

level.

subsequent

computer c o n t r o l l e d

shown i n F i g u r e

was r e m o t e l y to

addition, frequency

b a c k t o t h e c o m p u t e r t o be r e c o r d e d

improvement

l i n e was m o n i t o r e d

the c i r c u i t

o f t h e RF s o u r c e

a c q u i s i t i o n computer, which

frequency

sent

through the t r a n s m i s s i o n

s e t by t h e

a

different the

counter

with other

experiment

actual

would

s w i t c h i n g and read

and

d a t a . An be

the

back o f

F i g u r e 5.2: The R F t r a n s m i s s i o n l i n e arrangement

72

COMPUTER SET

POWER

LEVEL

SELECTED from

VARIABLE

FREQUENCY

CAMAC

FREQUENCY SOURCE

25

WATT

POWER AMPLIFIER

I RF

TRANSMISSION

ATTENUATOR

RF POWER

METER

I

-30

dB

SPLITTER -10

dB

I

FREQUENCY METER

F i g u r e 5.3: The RF system.

READ

LINE

73

5 . 5

THE

QUENCH

F i g u r e

5 . 4

shows

the

quench

the

a p p a r a t u s

equal

a t

beam and

r e g i o n

t h e t h e

l a b e l l e d

s e r v e d

t o

prevent

quench (MCP1

photons

(122

(92 the

75

muonium

atoms,

counter

(X)

from

f o i l

11.4

of

.

s t a r k

over

a

1

The

a

photons

three

manufactured

The

l a y e r a

of

the

above

used

A

the

V/cm),

f i e l d

a l s o

f o i l

from

and

below

t o

t h e

m i c r o c h a n n e l

d e t e c t

of

was

time

of

Lyman-a

any

l a r g e r

(MCPB)

minimum

e x c i t e d

r e c t a n g u l a r

used

t o

f l i g h t

e f f e c t i v e

G a l i l e o

p l a t e s

area

t o

front C s l

f a c t o r

m i c r o c h a n n e l by

to

stop

from

path

the

l e n g t h

c m .

t y p e s .

by

were

r e g i o n .

d e t e r m i n i n g

s e n s i t i v e

Lyman

the

500

e l e c t r i c

from

and

microchannel

mm d i a m e t e r

p l a t e

t h e i r

a

p l a t e s

t h e

(30

m a i n t a i n e d

(about

quenching

quench

i n c r e a s e

w i t h

40

These

m i c r o c h a n n e l

f a c t o r y )

of

p a r a l l e l

s c i n t i l l a t o r

three

unfunneled

midplane

f i e l d

200 V/cm at

two

t h e t h e

i n

e q u i p o t e n t i a l s

e n t r a n c e

r e g i o n

f i e l d

p l a t e s . box

1

t h e

channel

e j e c t e d

A l l

f o r

t h e

quench

m i c r o c h a n n e l

i n c i d e n t t h e

t h e

from

a t

The

t h r e e

about

were

e n t e r e d mm)

at

The

and M C P 2 ) nm)

which

mm x

i n s i d e

s i d e

e l e c t r i c

e l e c t r i c

t h e

e l e c t r o n s

r e g i o n

p l a t e s

s t a t e s

t o

m i c r o c h a n n e l

S i t u a t e d

t h e

was a p p r o x i m a t e l y

s t r o n g e s t

MCPB.

t h e

t h e

of

s l i t

l i n e a r l y

p l a t e

from

that

PLATES

map of

n u m e r i c a l l y ) .

f a c e s

entrance

t h e

viewed

show

front

d e c r e a s e d

the

a s

MICROCHANNEL

p o t e n t i a l

(computed

d i r e c t i o n ,

r e a c h i n g

AND

t h e

increments)

between g r i d

REGION

of

p l a t e s

68% from

f a c e s

t o

were

were

enhance

t e n used

C o r p o r a t i o n ,

(see i n

" f u n n e l e d " the

value

coated

t h e i r

t h i s

of

55%

(at

the

e f f i c i e n c y

F i g u r e

M a s s . ,

t o

5 . 5 ) .

experiment USA.

t o The

were

F i g u r e 5 . 4 : The e l e c t r i c the s i d e a t the v e r t i c a l

f i e l d i n t h e quench r e g i o n . View i s from midplane.

75

F i g u r e 5.5: E f f i c i e n c y of c h a n n e l e l e c t r o n m u l t i p l i e r s as a f u n c t i o n of wave l e n g t h .

76 enhancement

i s ,

however,

i s

h y d r o s c o p i c .

was

observed

to

t o

r e j u v e n a t e

b u l b s

were

1

of

t h e

the

front

Even

t h e

c a u s i n g

c o a t i n g .

I t

some

m i c r o c h a n n e l

m a i n t a i n e d

m a i n t a i n i n g

t h e

-2000

quench

q u a r t z of

t h e

p o s s i b l e

of

longer

c i r c u i t r y t h e

V ,

r e g i o n

which

was

f i e l d

A

D i g i t a l

the

program

(CAMAC,

1

Chosen

50% would

t o

t h e i r

used

a c q u i r e

s m a l l

the

there

i s

a n d

s i z e .

to

The

independent

t h e

system

i t

t o

shut

o f f .

HV that

v o l t a g e s .

an

As

i n c r e a s e

a i n

TRIGGER

1983)

t o

three

that

cause

EVENT

by

each

above.

so

M i l e s ,

was

of

f o r

s e t

MULTI

and

f o r

was

C o r p o r a t i o n

(T.

C s l

run

of

d e s c r i b e d

MCP's

Equipment

1982)

parameters

supply

AND

the

r e s p o n s i b l e

a n d p h o t o m u l t i p l i e r

ACQUISITION

the

MCP

v a l v e

DATA

i n

each

gate

5 . 6

t h e

t o

s u r f a c e

i n t e r l o c k e d

about

t o

f r o n t

used

each

by

heat

wavelengths

were

c u r r e n t

r a p i d l y

response

s u p p l i e s

each

s l i t

from

power

measure,

order

entrance

water

s u p p l i e d

s a f e t y

a i r

55 W

b u l b s

v o l t a g e s

t h e

In

these

h i g h

c o n t r o l l e d

room

halogen

t o

t h e

C s l

d e t e c t i o n .

T y p i c a l l y

a t

t h e

of

two

observe

even

t o

e f f i c i e n c y .

u s i n g

t o

because

exposure

r i g h t

then

MCP's

at

shows

p l a t e .

a n d

p o s s i b l e

s i n c e

of

c o a t i n g ,

was

m a i n t i a n

t h e i r

d e s o r p t i o n

p r o b a b i l i t y 5 . 6

It

t o

minutes

l e f t

t h e

t h e

was a l s o

F i g u r e

was

t o

of

photons

s m a l l

C s l

r e g i o n .

s u r f a c e s

few

decrease

MCP's

i n s t a l l e d

quench

t o

a

g r e a t l y

vacuum,

MCP's

d i f f i c u l t

PDP-11/34 a n d

c o n t r o l r e c o r d

computer

u s i n g

standard

v a r i o u s d a t a .

running CAMAC

e x p e r i m e n t a l A

s i m p l i f i e d

77

CHEVRON MICRO-CHANNEL PLATE

CONFIGURATION

CHARGE COLLECTION PLATE

rh

JT m

m

0 fl COAXIAL CABLE

INSIDE VACUUM TANK OUTSIDE VACUUM TANK

r

!

1

FERRITE BEADS

MV - 2 0 0 0 V MONITOR OUTPUT

(mutt b « vtry

high

imp«donc«)

SIGNAL

F i g u r e 5 . 6 : T y p i c a l c i r c u i t used t o r u n a m i c r o - c h a n n e l p l a t e . S p e c i f i c v a l u e s of t h e r e s i s t a n c e s and c a p a c i t a n c e s depend on t h e s i z e and k i n d o f m i c r o - c h a n n e l p l a t e s .

78

l o g i c

s c h e m a t i c The

5.7).

event

A

muon

s t a r t e d

the

d u r i n g or

i s

CAMAC a

muonium

q u e n c h i n g

However,

i t

o f f - l i n e

by

from

have

a c c e p t e d

was

many

as

the

r e q u i r e m e n t s

i n c i d e n t

w e l l

MCPB

and

as

ns

gate

from

one

or

other

to

u n l i k e l y

s e l e c t

t i m e s

T h i s

l i k e l y

of

to

the

a l l

F i g u r e

s c i n t i l l a t o r

500

events

those

(see

a

d e t e c t e d .

more

than

5.7.

three

the

been

p o s s i b l e

s i n c e

F i g u r e

had

TDC's

p u l s e

must

o b v i o u s l y

i n

t r i g g e r

d e t e c t e d

w h i c h

MCP2

shown

(WIDE of

event to

on

to

due

the

MCP1

due

to

i n t e r e s t i n g

p u l s e s

X)

t r i g g e r

be

be

(X)

2s i t .

events

MCP's

were

r e c o r d e d . Each a d d i t i o n a l p u l s e

r e c o r d e d

p i e c e s

of

h e i g h t s

MCP's

were

r e c o r d e d on

event

the

of

were

i n c i d e n t

the

as

times

as

i n c i d e n t

5.7

PARAMETERS

experiment

focus

of

F i g u r e

the

BOX

of

the

was

to

the

time

p u l s e s

on

the

c o l l i m a t i n g next

The

and

three

monitored

of

and

s e v e r a l

above.

s c i n t i l l a t o r s

( r e l a t i v e

p r e v i o u s

had

mentioned

frequency

and

tape)

of

each

a

and p u l s e

of

the

s c i n t i l l a t o r , p u l s e s

i n

the

s c i n t i l l a t o r .

BEAM

The

the

RF

times

not

i n c i d e n t

s c i n t i l l a t o r ) of

w e l l

four

The

the

s c i n t i l l a t o r s

magnetic

i n f o r m a t i o n

r e c o r d e d . as

(on

the 5.8

beam

l i n e

Ap/p

of

was

AND

performed

secondary i s

a

i n

was

at

c h a n n e l

diagram

momentum 0.5%

EXPERIMENTAL

of

the

a d j u s t e d

order

to

the

M13

RATES f i r s t

at

beam

TRIUMF l i n e

u s i n g f i n d

doubly

the

a

achromatic

(Oram,

198lb).

c o n f i g u r a t i o n . r e l a t i v e l y p o i n t

of

The small

maximum

79

F i g u r e 5.7: S i m p l i f i e d acquisition.

d i a g r a m of

the

electronic

logic for

data

horizontal B vertical jaws

rvocuum valve beom blocker

beamline IA

X F 3 final focus

4

target ^ IATI

diagnostics^/ vertical tlit horizontal tlit•colt

0

I

2

3fttt

CD

O

81 p r o d u c t i o n

of

c/100

F i g u r e

(see

Once

the

p a r t i c l e s

optimum

channel

a v a i l a b l e

in

F i g u r e

d e t e c t e d proton

32,000

Hz

muon

( i . e .

t h e r e

much

raw

80

WIDE

numerous

found,

the

Ap/p

7%.

and

the

low

p u l s e

i s

shown

s c i n t i l l a t o r for

Beam

than

s c i n t i l l a t o r s ,

of

a

primary a

a c c e p t e d

X).

10

the

mm

about

p o s i t r o n s muons

the

height

and

n e u t r a l .

s t r i k i n g

5.7

box

KHz

4.2

at

KHz,

on

on

and a

requirement

or

w i t h i n

d e t e c t i o n

15 of

the

to

Lyman-a

beam

j u s t

at but

c o l l i m a t i n g

p u l s e s

from

c o n d i t i o n s

p o s i t r o n s

120 8 . 9

KHz.

KHz.

the

the

c o r r e s p o n d e d

to

a 500

L a t e r events

ns

13.1%

MCPB.

The

be

p r e s e n t

from

gate

reduced

the

a n a l y s i s

showed

p u l s e ns

was

by

The

500

about

8

that per

averaged

which

About

( w i t h i n

d e t e c t e d

that same

these

about

c o r r e l a t e d

Hz.

c o n d i t i o n s .

of

r a t e

b e i n g

t r i g g e r

about

r a t e

under

l a r g e l y

T h i s

u*. (X)

MCPB was

t h i s was

i n c i d e n t

these

more

MeV

F i g u r e KHz

a

second

the

reduced

i n c i d e n t

to

32

be

i n c i d e n t

per

500

to

c/50

momentum

by

r a t e

a p p a r a t u s

MCP2

at of

were

the

muons

*iA

of

to

was

i n c r e a s e d

f u n c t i o n

36,000

l i k e l y

MeV/c

MeV/c

l o g i c

were

was

between

s c i n t i l l a t o r .

The

system

15.4

a

15.4

The

s c i n t i l l a t o r ,

an

At

as

t a r g e t .

vetoed

about

f l u x

100

were

i n c i d e n t

of

of

momentum

p a r t i c l e s

a c c e p t a n c e

3 . 5 .

t h i s

r a t e ,

momentum

c u r r e n t

v e l o c i t i e s

i . e .

a p p r o x i m a t e l y

g r a p h i t e

the

3 . 8 ) ;

momentum

The

w i t h

e n t e r e d

BOX

h a l f

of

veto t h i s

gate) of

the

w i t h muons

a d d i t i o n a l e i t h e r

MCP1

t r i g g e r

r a t e

the hour,

r a t e

of

under

6.

6.1

tape and

r e d u c t i o n

s c i n t i l l a t o r .

a l l

t h e

t i m i n g

for

d e t e c t o r s c o u l d

be

AND

shows

the

time

photon

a

ANALYSIS

from

t h e

6 . 2

random

i n

t h e

a r e

c o n s i s t e n t

t y p i c a l

backgrounds.

(b)

c o i n c i d e n c e

near

O c c a s i o n a l l y p e n e t r a t i n g

t h e

t h e

w i l l

t h e

i n c i d e n t

d e t e c t o r s , t h e

w i t h

t h e

r a t e s

d i a g o n a l

=

f l

random

and

a

t h e

p u l s e s

Lyman-a

beam

which manage

s c i n t i l l a t o r

82

t o b o x .

t i m i n g

a l l

t

h i s t o g r a m

of

t h e

t o

events f o r

and

i n

three (a)

one

of

enhancement a n d a

d e t e c t o r . a n d a r e

MCPB,

l a b e l l e d

MCPB

t r i g g e r

t o

p u t a t i v e

p l a t e

MCPB

MCPB

F i g u r e

t i m e - o f - f l i g h t

s m a l l e r

T h i s

c a s e s ,

( r e l a t i v e

of

on

of

( r e l a t i v e

muon)

p o s i t r o n s

s t r i k e

a

expected

on

The

p r o v i d e d

and MCPB.

enhancement

t ) .

MCP

(t)

channel

events

on

r e s o l u t i o n .

o v e r a l l

m a j o r i t y

(t

ns

data each

In

time

The

X

one

2

r u n ) .

between

p o s i t r o n s

than

counter

of

of

r e l a t i v e

back

from

t h e

p l o t

s i m u l t a n e o u s

a l l of

t h e

t h e

r e s u l t e d

on

beam

t o

The

d e t e c t o r s

t r i g g e r

a l l of

i n c i d e n t

X

t i m i n g

e l e c t r o n i c s .

a g a i n s t

counter

a l l t h e

t i m e - o f - f l i g h t

Lyman-a

c o u n t e r ) ,

of

t h e

t h e

b e t t e r

of

a

Lyman-a

d o e s n ' t

t h e

d e t e c t i o n

t o

t o

t y p i c a l

f o r

c o r r e s p o n d s

l a b e l l e d

a

of

i n

and a s s o c i a t e d

i n c i d e n t

(again

s c a n n i n g

determined

d i m e n s i o n a l

d e t e c t i o n

i n c i d e n t

which

between

of

the

F i g u r e

P o s i t r o n s

shows

two

w i t h

h i s t o g r a m s

determined

6.1

p a r t i c l e s

6.2

of

s i g n a t u r e

Figure

not

s t a r t e d

and g e n e r a t i o n

d e f i n i t i v e

the

REDUCTION

TIMING Data

t

DATA

That

i s ,

X

t h e r e f o r e

vetoed

MCPB

happens

r e a l

by

X.

without a t

random

83 times

relative

to

muons

enhancement l a b e l l e d

X.

stopped

the

in

It

i n coincidence resulted

Lyman-a

from

decay

detectors

t

was

used

to

geometry) t h e f r a c t i o n of time traversal of

region.

This

s p e n t by t h e

before

the

permitted particle

positrons

and

(t ^

=

r

which

MCPB.

The

total

0.289

particle

the

t)

spent

in

l i n e a s w e l l a s t h e amount entered

the

quench

o f t h e amount o f t i m e

quench

d e - e x c i t a t i o n p h o t o n was d e t e c t e d ,

region

tg = t

f l

before

its

- 0.404 t .

On t h e b a s i s o f t i m i n g , t h e e v e n t s c o u l d be and

coincidence

randomly i n c o i n c i d e n c e

calculation in

on

c a l c u l a t e (on t h e b a s i s o f

o f t h e RF t r a n s m i s s i o n

time e l a p s e d

the t h i r d pulses

with a real

w i t h t h e p a s s a g e o f a muon b e t w e e n X time-of-flight

X. F i n a l l y

( c ) i s t h e r e s u l t o f random

t h e Lyman-a d e t e c t o r s o f MCPB a n d

triggering

classified

t h e number o f e v e n t s w o r t h y o f f u r t h e r c o n s i d e r a t i o n a s

p o s s s i b l e 2s muonium g r e a t l y r e d u c e d . The criteria

are i l l u s t r a t e d

by F i g u r e s

( i ) The t i m e - o f - f l i g h t required

to

correspond

t

following

timing

6.2 a n d 6.3:

between

X

and

MCPB

to a p a r t i c l e with

was

velocity

b e t w e e n c / 5 5 a n d c / 2 0 0 ; i . e . , 21 ns < t < 76 ns [ s e e Figure (ii)

6.3, l a b e l ( i ) ] .

The i n t e r v a l

region

and

t ^ between e n t r y

detection

of

a

into

Lyman-a

the

quench

photon

r e q u i r e d t o be s u c h t h a t t h e

particle

the

l e s s t h a n 20 n s i n i t ;

i.e.,

region

but

0 ns < L

[see F i g u r e

Q

had

spent

< 20 n s o r t

6.3, l a b e l

a

(ii)].

had

was

entered

- 20 ns < 0.404 t < t

a

64

58 n i* *» r ft en « nc o-

p» p> p> e> »n n 9> p pi> *»in

O

n

r

ri c

e "b



%

• - «ri •o C n «»*>•-

x:

o • K K

-I » PJ •

M -

r* - r» O et• PJn c tr. 5 »— » ni i

" b

• 85! —

ft *

«} *»

ig8888888S88888g88888888888888! 888888888' > IS *

(_

.

"•can > r> p> f« Pi f

i -z

i g u r e 6 . 1 : r a v e l l i n g

uesi

& m m •t * »m* ip» p« —

i

A t y p i c a l t i m e - o f - f l i g h t h i s t o g r a m for p a r t i c l e s between the i n c i d e n t s c i n t i l l a t o r a n d MCP B.

85

2

E V e

n t S

dl?ertin; •

3

o

f to

3 CL

ro oi rt

in

Contrlbutlona 2 to x 2 W 12.5 W 25 U

U2

2?

Mean life (na)

Nuaber of degreee of freedoa

(HHE)

zr 3*01 to oi H

r» o w c 3 cm cr a>

Hyperfine apllttlng

(MH«)

o to