Eur. Phys. J. C 52, 1021–1023 (2007) DOI 10.1140/epjc/s10052-007-0454-9
THE EUROPEAN PHYSICAL JOURNAL C
Erratum
Measurements of charged kaon semileptonic decay branching fractions K ± → π 0µ±ν and K ± → π 0 e±ν and their ratio The NA48/2 Collaboration J.R. Batley1 , C. Lazzeroni1, D.J. Munday1 , M.W. Slater1 , S.A. Wotton1 , R. Arcidiacono2,16 , G. Bocquet2 , N. Cabibbo2 , A. Ceccucci2 , D. Cundy2,17 , V. Falaleev2 , M. Fidecaro2 , L. Gatignon2 , A. Gonidec2 , W. Kubischta2 , A. Norton2,18 , M. Patel2 , A. Peters2 , S. Balev3 , P.L. Frabetti3 , E. Goudzovski3 , P. Hristov3,19 , V. Kekelidze3,19 , V. Kozhuharov3, L. Litov3 , D. Madigozhin3 , E. Marinova3, N. Molokanova3 , I. Polenkevich3, Y. Potrebenikov3, S. Stoynev3,20 , A. Zinchenko3 , E. Monnier4,21 , E. Swallow4 , R. Winston4 , P. Rubin5 , A. Walker5 , W. Baldini6 , A. Cotta Ramusino6 , P. Dalpiaz6 , C. Damiani6 , M. Fiorini6 , A. Gianoli6 , M. Martini6 , F. Petrucci6 , M. Savri´e6, M. Scarpa6 , H. Wahl6 , A. Bizzeti7,22 , M. Calvetti7 , E. Celeghini7 , E. Iacopini7 , M. Lenti7 , F. Martelli7,23 , G. Ruggiero7,19 , M. Veltri7,23 , M. Behler8 , K. Eppard8 , K. Kleinknecht8 , P. Marouelli8 , L. Masetti8 , U. Moosbrugger8, C. Morales Morales8, B. Renk8 , M. Wache8 , R. Wanke8 , A. Winhart8 , D. Coward9,24 , A. Dabrowski9,a , T. Fonseca Martin9,19 , M. Shieh9 , M. Szleper9 , M. Velasco9 , M.D. Wood9,25 , G. Anzivino10 , P. Cenci10 , E. Imbergamo10, M. Pepe10 , M.C. Petrucci10 , M. Piccini10,19 , M. Raggi10 , M. Valdata-Nappi10 , C. Cerri11 , G. Collazuol11 , F. Costantini11 , L. DiLella11 , N. Doble11 , R. Fantechi11 , L. Fiorini11,26 , S. Giudici11 , G. Lamanna11 , I. Mannelli11 , A. Michetti11 , G. Pierazzini11 , M. Sozzi11 , B. Bloch-Devaux12 , C. Cheshkov12,19 , J.B. Ch`eze12 , M. De Beer12 , J. Derr´e12, G. Marel12 , E. Mazzucato12 , B. Peyaud12, B. Vallage12 , M. Holder13 , A. Maier13,19 , M. Ziolkowski13, S. Bifani14 , C. Biino14 , N. Cartiglia14 , M. Clemencic14,19 , S. Goy Lopez14 , F. Marchetto14 , H. Dibon15 , M. Jeitler15 , M. Markytan15 , I. Mikulec15 , G. Neuhofer15 , L. Widhalm15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UKb CERN, 1211 Geneva 23, Switzerland Joint Institute for Nuclear Research, Dubna, Russian Federation The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60126, USA Department of Physics and Astronomy, University of Edinburgh, JCMB King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK Dipartimento di Fisica dell’Universit` a e Sezione dell’INFN di Ferrara, 44100 Ferrara, Italy Dipartimento di Fisica dell’Universit` a e Sezione dell’INFN di Firenze, 50125 Firenze, Italy Institut f¨ ur Physik, Universit¨ at Mainz, 55099 Mainz, Germanyc Department of Physics and Astronomy, Northwestern University, 2145 Sheriden Rd., Evanston, IL 60208-3112, USA Dipartimento di Fisica dell’Universit` a e Sezione dell’INFN di Perugia, 06100 Perugia, Italy Dipartimento di Fisica, Scuola Normale Superiore e Sezione dell’INFN di Pisa, 56100 Pisa, Italy DSM/DAPNIA – CEA Saclay, 91191 Gif-sur-Yvette, France Fachbereich Physik, Universit¨ at Siegen, 57068 Siegen, Germanyd Dipartimento di Fisica Sperimentale dell’Universit` a e Sezione dell’INFN di Torino, 10125 Torino, Italy ¨ Osterreichische Akademie der Wissenschaften, Institut f¨ ur Hochenergiephysik, 10560 Wien, Austriae Present address: Dipartimento di Fisica Sperimentale dell’Universit Sezione dell’INFN di Torino, 10125 Torino, Italy Present address: Istituto di Cosmogeofisica del CNR di Torino, 10133 Torino, Italy Present address: Dipartimento di Fisica dell’Universit` a e Sezione Ferrara, 44100 Ferrara, Italy Present address: CERN, 1211 Geneva 23, Switzerland Present address: Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112, USA Also at Centre de Physique des Particules de Marseille, IN2P3-CNRS, Universit´e de la M´editerran´ee, Marseille, France Also Dipartimento di Fisica, Universit` a di Modena, 41100 Modena, Italy Istituto di Fisica, Universit` a di Urbino, 61029 Urbino, Italy Permanent address: SLAC, Stanford University, Menlo Park, CA 94025, USA Present address: UCLA, Los Angeles, CA 90024, USA Present address: Institut de Fisica d RAltes Energies, Universitat A Barcelona, 08193 Bellaterra (Barcelona), Spain Received: 5 October 2007 / Published online: 1 November 2007 − © Springer-Verlag / Societ` a Italiana di Fisica 2007
1022
The NA48/2 Collaboration: Charged kaon semileptonic decays
Abstract. In an earlier paper [1], the background for Ke3 was over estimated due to an erroneous calculation of the electron identification efficiency. The correct ratios of the partial widths involving this channel are RKe3/K2π = 0.2470 ± 0.0009 (stat) ± 0.0004 (syst) and RKµ3/Ke3 = 0.663 ± 0.003 (stat) ± 0.001 (syst). Assuming the PDG value [2] for the K2π branching ratio, the measured branching fraction of Br (Ke3 ) continues to exceed the current PDG value [2]. The extracted value of |Vus |f+ (0) is in agreement with the CKM unitary prediction; thus, our conclusions in [1] do not change.
Erratum to: Eur. Phys. J. C 50, 329–340 (2007) DOI 10.1140/epjc/s10052-007-0253-3 In the analysis of charged kaon semileptonic decays presented in an earlier paper [1], the background for Ke3 was unfortunately overestimated due to an erroneous calculation of the electron identification efficiency. The average electron identification efficiency is corrected to be (98.59 ± 0.09)%, see Fig. 4a, and this is the only input into the calculation that has been modified. Table 1 lists the corresponding quantities needed to evaluate the branching fractions, and Table 2 lists the expected background, based on the corrected electron identification efficiency. The updated results of Table 4 in [1] for RKe3/K2π and RKµ3/Ke3 are
Taking the current PDG value for the K2π branching fraction [2], the branching fraction for Ke3 is found to be Br (Ke3 ) = 0.05168 ± 0.00019 (stat) ± 0.00008 (syst) ± 0.00030 (norm). Using this branching fraction and the input values listed in [1], the |Vus | matrix element times the vector form factor f+ (0) is found to be |Vus |f+ (0) = 0.2193 ± 0.0012 [Ke3 ] (1) = 0.21928 ± 0.00039 (stat) ± 0.00017 (syst) ± 0.00062 (norm) ± 0.00096 (ext) . Combining this |Vus |f+ (0) value for Ke3 with the corresponding value for Kµ3 in [1] and shown in Fig. 10, we
RKe3/K2π = 0.2476 ± 0.0011 (stat) ± 0.0005 (syst) [K + ] , RKe3/K2π = 0.2460 ± 0.0015 (stat) ± 0.0006 (syst) [K − ] , RKµ3/Ke3 = 0.6605 ± 0.0040 (stat) ± 0.0017 (syst) [K + ] and RKµ3/Ke3 = 0.6661 ± 0.0055 (stat) ± 0.0019 (syst)
[K − ] .
The results for K + and K − combined are RKe3/K2π = 0.2470 ± 0.0009 (stat) ± 0.0004 (syst) and RKµ3/Ke3 = 0.663 ± 0.003 (stat) ± 0.001 (syst) ,
Fig. 4. a The E/pc particle identification efficiency for electrons from clean subsamples of Ke3 decays
and they are shown in Figs. 8 and 9, respectively. The result for RKµ3/K2π remains unchanged [1]. The online version of the original article can be found at http://dx.doi.org/10.1140/epjc/s10052-007-0253-3. a
e-mail:
[email protected] Funded by the U.K. Particle Physics and Astronomy Research Council c Funded by the German Federal Minister for Education and research under contract 05HK1UM1/1 d Funded by the German Federal Minister for Research and Technology (BMBF) under contract 056SI74 e Funded by the Austrian Ministry for Traffic and Research under the contract GZ 616.360/2-IV GZ 616.363/2VIII, and by the Fonds f¨ ur Wissenschaft und Forschung FWF Nr. P08929-PHY b
Fig. 8. RKe3/K2π result compared to the corresponding PDG value [2]. The RKµ3/K2π result is unchanged and shown in Fig. 8 of [1]
The NA48/2 Collaboration: Charged kaon semileptonic decays
1023
Table 1. Updated information used to extract the branching ratio, where track = e± , π ± for ± ± , K2π i = Ke3 Raw number of events (Ni )
Acceptance × particle ID (Acci × trackID )
Backgrounds/ signal (∆i )
Trigger efficiency (Trigi )
+ Ke3 − Ke3
56.196 30.898
0.0698 ± 0.0001 0.0694 ± 0.0001
(0.0200 ± 0.0008)% (0.0209 ± 0.0010)%
0.9990 ± 0.0005 0.9982 ± 0.0008
+ K2π − K2π
461.837 256.619
0.1418 ± 0.0001 0.1412 ± 0.0001
(0.2893 ± 0.0058)% (0.2896 ± 0.0058)%
0.9987 ± 0.0002 0.9990 ± 0.0002
Decay type
Table 2. Recalculated percentage of expected background from Monte Carlo simulation for Ke3 and K2π from the main contributors to their total background Contributing channel
K−
K+ Ke3
Kπ± π0 π0 K2π
(0.0130 ± 0.0007)% (0.0070 ± 0.0003)%
(0.0139 ± 0.0009)% (0.0071 ± 0.0004)%
K2π (0.2848 ± 0.0058)% (0.0045 ± 0.0006)%
Kµ3 Ke3
(0.2846 ± 0.0058)% (0.0050 ± 0.0008)% Fig. 10. Comparison of the NA48 measurement of |Vus |f+ (0) from Ke3 data in (1) and from Kµ3 data in [1], and the Ke3 BNL-E865 result [3]. The theoretical prediction shown is obtained assuming unitarity of the CKM matrix and using the values for Vud and Vub as input and the choice of f+ (0) all as described in [1]
|Vus | = 0.2277 ± 0.0013 (other) ± 0.0019 (theo) ,
(3)
which is consistent with the unitarity prediction as calculated in [1], namely, |Vus |unitary = 0.2274 ± 0.0013. Fig. 9. RKµ3/Ke3 results compared to KEK-246 results [4], the corresponding PDG value of 2006 [2] and to the predictions assuming µ–e universality, (6) in [1], with the λ+ and λ0 values given for K ± in the PDG of 2006 [2]
obtain |Vus |f+ (0) = 0.2188 ± 0.0012 ,
(2)
References 1. J.R. Batley et al., Eur. Phys. J. C 50, 329 340 (2007) 2. Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006) [http://pdg.lbl.gov] 3. A. Sher et al., Phys. Rev. Lett. 91, 261 802 (2003) [arXiv: hep-ex/0305042] 4. K. Horie et al., Phys. Lett. B 513, 311 (2001)