Metal-Oxide Semiconductor Field Effect Transistor (MOSFET)

112 downloads 7991 Views 1MB Size Report
Announcements. • HW7 Due Apr. 14. • Reading. • MOSFETS I & II (Silva). • 5.1 – 5.3, 7.1 - 7.5 (Sedra/Smith). 2. Page 3. MOSFET Circuit Symbols. NMOS. PMOS.
ECEN325: Electronics Spring 2017 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements • HW7 Due Apr. 13

2

ECEN 326 in Fall 2017 • I will be teaching ECEN 326 (Electronic Circuits) in Fall 2017 • Lecture MWF 9:10-10 • Labs R 8-10:50 or 11:10-2:00

• Prerequisite for important senior-level analog design classes (474) • Topics • Differential amplifiers, opamp circuits, frequency response, feedback, stability, output stages 3

MOSFET Circuit Symbols NMOS

PMOS

• MOSFETs are 4-terminal devices • Drain, Gate, Source, & Body

• Body terminal generally has small impact in normal operation modes, thus device is generally considered a 3-terminal device • Drain, Gate, and Source are respectively similar to the Collector, Base, and Emitter of the BJT

• 2 complementary MOSFETS: NMOS, PMOS 4

NMOS Physical Structure

n+

n+

[Karsilayan] 5

CMOS Physical Structure

[Karsilayan] 6

VT Definition [Silva]

• The threshold voltage, VT, is the voltage at which an “inversion layer” is formed • For an NMOS this is when the concentration of electrons equals the concentration of holes in the p- substrate 7

MOS Equations in Triode Region (Small VDS) [Sedra/Smith] Current from Source to Drain : I 

dQ dQ dx   Qd ( x) dt dx dt

Incremental Charge Density : Qd ( x)  COX W (VGC  x   VT ) Gate - to - Channel Voltage : VGC  x   VT  VGS  VCS ( x)  VT Electron Velocity :     n E  x    n

dv x  dx

I DS   I  COX W (VGS  VCS ( x)  VT )  n

dv x  dx

L

I 0

dx 

 C n

 ox

OX

W (VGS  VT  VCS ( x))dv x 

0

I DS   nCOX

I   I DS Capacitance per unit gate area : Cox 

DS

VDS

W 1  VGS  VT  VDS VDS L 2 

t ox

Electron mobility :  n 8

Triode or Linear Region [Silva]

VDS

x=0

V 0   0

V  x   VDS

x L

x=L

V L   VDS

VGC x   VGS  V x   VGS  VDS

x L

• Channel depth and transistor current is a function of the overdrive voltage, VGS-VT, and VDS • Because VDS is small, VGC is roughly constant across channel length and channel depth is roughly uniform I DS 

W  nCOX VGS  VTn  0.5VDS VDS L

RDS 

For small VDS

1

W Cox VGS  VTn  L

9

MOS Equations in Triode Region (Large VDS) VGS

GND

Drain current: Expression used in SPICE level 1

VDS

I DS 

tox N+

W

N+

ID

L

GND

VGS

VDS

W  nCOX VGS  VTn  0.5VDS VDS L

Linear approximation

This doesn’t really happen

IDsat

tox N+

N+

Non-linear channel

W

VGS > VT VDS VDSsat

VDSsat  VGS  VTn

Triode Region Channel Profile [Sedra/Smith]

VGC x   VGS  V x   VGS  VDS

x L

• If VGC is always above VT throughout the channel length, the transistor current obeys the triode region current equation 11

Saturation Region Channel Profile VGC x   VGS  V x   VGS  VDS

x L

• When VDS  VGS-VT=VOV, VGC no longer exceeds VT, resulting in the channel “pinching off” and the current saturating to a value that is no longer a function of VDS (ideally)

[Sedra/Smith] 12

Saturation Region [Silva]

VDSsat=VGS-VT

x=0

V 0   0

V  x   VDS

VDS-VDSsat

x L

VGC  x   VGS  V  x   VGS  VDS

x L

x=L

V L   VDS

• Channel “pinches-off” when VDS=VGS-VT and the current saturates • After channel charge goes to 0, the high lateral field “sweeps” the carriers to the drain and drops the extra VDS voltage I DS   nCOX

W VDS    V V  GS VDS Tn 2  VDS VGS VTn L

I DS 

 nCOX W 2

L

VDSsat  VGS  VTn

VGS  VTn 2 13

NMOS ID – VDS Characteristics VOV  VGS  VTN

[Sedra/Smith]

14

MOS “Large-Signal” Output Characteristic [Sedra/Smith]

Note: Vov=VGS-VT

15

What about the PMOS device? NMOS

PMOS [Silva]

• The current equations for the PMOS device are the same as the NMOS EXCEPT you swap the current direction and all the voltage polarities NMOS W  nCOX VGS  VTn  0.5VDS VDS L W  nCOX VGS  VTn 2 Saturation: I DS  2L

Linear: I DS 

PMOS





W  p COX VSG  VTp  0.5VSD VSD L 2 W I SD   p COX VSG  VTp 2L

I SD 





16

PMOS ID – VSD Characteristics VOV  VSG  VTP

[Karsilayan]

(Saturation)

17

NMOS DC Operation (w/ infinite rout) Region

Bias Condition

I DS

Cutoff

VGS  VTN

I DS  0

Triode (Linear)

VGS  VTN , VDS  VGS  VTN

Saturation (Active) VGS  VTN , VDS  VGS  VTN

[Karsilayan]

I DS   nCox

I DS 

V  W VGS  VTN  DS VDS L 2 

 nCox W 2

L

VGS  VTN 2

• In transistor model, often combine nCox term as a parameter KPN with units A/V2 • In lab, we combine nCox(W/L) term as a parameter N with units A/V2 18

PMOS DC Operation (w/ infinite rout) Region

Bias Condition

I SD

Cutoff

VSG  VTP

I SD  0

Triode (Linear)

VSG  VTP , VSD  VSG  VTP

Saturation (Active) VSG  VTP , VSD  VSG  VTP

[Karsilayan]

I SD   p Cox

I SD 

V  W VSG  VTP  SD VSD L 2 

 p Cox W 2

L

V

SG  VTP



2

• In transistor model, often combine pCox term as a parameter KPP with units A/V2 • In lab, we combine pCox(W/L) term as a parameter P with units A/V2 19