Metric Spaces

2 downloads 0 Views 2MB Size Report
Mar 1, 2018 - metric spaces. ey extended the results of Heilpern [ ] into. L-fuzzy mappings in metric spaces. In this paper, we prove some common fixed pointย ...
Hindawi Journal of Function Spaces Volume 2018, Article ID 5650242, 9 pages https://doi.org/10.1155/2018/5650242

Research Article Fixed Points of L-Fuzzy Mappings in Ordered ๐‘-Metric Spaces Ismat Beg

,1 Mohamed A. Ahmed,2 and Hatem A. Nafadi3

1

Lahore School of Economics, Lahore, Pakistan Assiut University, Assiut, Egypt 3 Port Said University, Port Said, Egypt 2

Correspondence should be addressed to Ismat Beg; [email protected] Received 26 October 2017; Revised 20 December 2017; Accepted 11 January 2018; Published 1 March 2018 Academic Editor: Tomonari Suzuki Copyright ยฉ 2018 Ismat Beg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We prove common fixed point theorems for weakly commuting and occasionally coincidentally idempotent L-fuzzy mappings in ordered ๐‘-metric spaces. We also obtain common fixed point for pair of mapping satisfying (JCLR) property. An application to integral type and usual contractive condition is given.

1. Introduction In 1967, Goguen [1] introduced the notion of L-fuzzy sets as a generalization of fuzzy sets [2]. Afterward, Heilpern [3] gave the concept of fuzzy mappings and proved fixed point theorems for fuzzy contractive mappings in metric linear spaces as a generalization of Nadler [4] contraction principle. Subsequently, several authors studied the generalizations/extensions and applications of these results; in many papers sufficient conditions for the existence of fixed point for fuzzy and L-fuzzy contractive mappings in metric spaces and ๐‘-metric spaces are obtained (see [5โ€“8]). Rashid et al. [9] proved common L-fuzzy fixed point theorem in complete metric spaces. They extended the results of Heilpern [3] into L-fuzzy mappings in metric spaces. In this paper, we prove some common fixed point theorems for L-fuzzy mappings in ordered ๐‘-metric spaces. An application to integral type and usual contractive condition is also given, we will generalize and extend results [10, 11].

2. Preliminaries Definition 1 (see [12]). Let ๐‘‹ be a nonempty set. A mapping ๐‘‘ : ๐‘‹ ร— ๐‘‹ โ†’ [0, โˆž) is called ๐‘-metric if there exists a real number ๐‘ โ‰ฅ 1 such that, for every ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, we have (๐‘‘1 ) ๐‘‘(๐‘ฅ, ๐‘ฆ) = 0 โ‡” ๐‘ฅ = ๐‘ฆ,

(๐‘‘2 ) ๐‘‘(๐‘ฅ, ๐‘ฆ) = ๐‘‘(๐‘ฆ, ๐‘ฅ), (๐‘‘3 ) ๐‘‘(๐‘ฅ, ๐‘ง) โ‰ค ๐‘{๐‘‘(๐‘ฅ, ๐‘ฆ) + ๐‘‘(๐‘ฆ, ๐‘ง)}. In this case, the pair (๐‘‹, ๐‘‘) is called a ๐‘-metric space. Definition 2 (see [13]). Let (๐‘‹, ๐‘‘) be a ๐‘-metric space. A sequence {๐‘ฅ๐‘› } in ๐‘‹ is called (i) convergent if and only if there exists ๐‘ฅ โˆˆ ๐‘‹ such that ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ) โ†’ 0 as ๐‘› โ†’ โˆž, (ii) Cauchy if and only if ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) โ†’ 0 as ๐‘š, ๐‘› โ†’ โˆž. A ๐‘-metric space is said to be complete if and only if each Cauchy sequence in this space is convergent. Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, let ๐ถ๐ฟ(๐‘‹) denote the collection of all nonempty closed subsets of ๐‘‹, let ๐‘Š(๐‘‹) be the set of all fuzzy sets of ๐‘‹, where its ๐›ผ-level sets are nonempty compact subsets of ๐‘‹, and let R+ be the set of nonnegative real numbers; define the metrics ๐‘‘ : ๐‘‹ ร— ๐ถ๐ฟ(๐‘‹) โ†’ R+ and ๐ป : ๐ถ๐ฟ(๐‘‹) ร— ๐ถ๐ฟ(๐‘‹) โ†’ R+ as ๐‘‘(๐‘ฅ, ๐ด) = inf ๐‘ฆโˆˆ๐ด๐‘‘(๐‘ฅ, ๐‘ฆ) and ๐ป(๐ด, ๐ต) = max{sup๐‘Žโˆˆ๐ด ๐‘‘(๐‘Ž, ๐ต), sup๐‘โˆˆ๐ต ๐‘‘(๐ด, ๐‘)}. Notice that ๐‘‘(๐‘Ž, ๐ต) โ‰ค ๐‘‘(๐‘Ž, ๐‘) and ๐‘‘(๐‘Ž, ๐ต) โ‰ค ๐ป(๐ด, ๐ต), for each ๐‘Ž โˆˆ ๐ด and ๐‘ โˆˆ ๐ต. Let ๐‘“ : ๐‘‹ โ†’ ๐‘‹, ๐น : ๐‘‹ โ†’ ๐ถ๐ฟ(๐‘‹), and ๐ถ(๐‘“, ๐น) be the set of the coincidence points of (๐‘“, ๐น). Lemma 3 (see [14]). Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, ๐ด, ๐ต โˆˆ ๐ถ๐ฟ(๐‘‹); then ๐‘‘(๐‘Ž, ๐ต) โ‰ค ๐ป(๐ด, ๐ต) for all ๐‘Ž โˆˆ ๐ด.

2

Journal of Function Spaces

Definition 4 (see [15]). A partially ordered set consists of a set ๐‘‹ and a binary relation โชฏ on ๐‘‹ which satisfies the following conditions for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹:

{๐‘ฆ2๐‘›+1 } = {๐‘”๐‘ฅ2๐‘›+1 } โŠ‚ ๐น๐‘ฅ2๐‘› ,

(1) ๐‘ฅ โชฏ ๐‘ฅ (reflexivity).

{๐‘ฆ2๐‘›+2 } = {๐‘“๐‘ฅ2๐‘›+2 } โŠ‚ ๐บ๐‘ฅ2๐‘›+1 ,

(2) If ๐‘ฅ โชฏ ๐‘ฆ and ๐‘ฆ โชฏ ๐‘ฅ, then ๐‘ฅ = ๐‘ฆ (antisymmetry).

A set with a partial order โชฏ is called a partially ordered set. Let (๐‘‹, โชฏ) be a partially ordered set and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Elements ๐‘ฅ and ๐‘ฆ are said to be comparable elements of ๐‘‹ if either ๐‘ฅ โชฏ ๐‘ฆ or ๐‘ฆ โชฏ ๐‘ฅ. Definition 5. Let ๐ด and ๐ต be two nonempty subsets of (๐‘‹, โชฏ); the relation โชฏ1 between ๐ด and ๐ต is defined as ๐ด โชฏ1 ๐ต: if for every ๐‘Ž โˆˆ ๐ด there exists ๐‘ โˆˆ ๐ต such that ๐‘Ž โชฏ ๐‘. Definition 6 (see [1]). A function ๐ด : ๐‘‹ โ†’ ๐ฟ is said to be an L -fuzzy set if ๐ด is a mapping from a nonempty set ๐‘‹ into a complete distributive lattice ๐ฟ. Definition 7 (see [9, 10, 16]). Let ๐ด be an L-fuzzy set in ๐‘‹. The ๐›ผL -level set of ๐ด (denoted by ๐ด ๐›ผL ) is defined as if ๐›ผL โˆˆ ๐ฟ \ {0L } ,

๐ด 0L = {๐‘ฅ โˆˆ ๐‘‹ : 0L โชฏ๐ฟ ๐ด (๐‘ฅ)},

(2)

then ๐‘‚(๐น, ๐บ, ๐‘“, ๐‘”, ๐‘ฅ0 ) is called the orbit for the mappings (๐น, ๐บ, ๐‘“, ๐‘”).

(3) If ๐‘ฅ โชฏ ๐‘ฆ and ๐‘ฆ โชฏ ๐‘ง, then ๐‘ฅ โชฏ ๐‘ง (transitivity).

๐ด ๐›ผL = {๐‘ฅ โˆˆ ๐‘‹ : ๐›ผL โชฏ๐ฟ ๐ด (๐‘ฅ)}

Definition 13 (see [19]). Let (๐‘‹, ๐‘‘) be a metric space, ๐‘“, ๐‘” : ๐‘‹ โ†’ ๐‘‹, and ๐น, ๐บ : ๐‘‹ โ†’ ๐‘Š(๐‘‹). Let ๐‘ฅ0 โˆˆ ๐‘‹; if there exists a sequence {๐‘ฆ๐‘› } in ๐‘‹ such that

(1)

where ๐ต denotes the closure of the set ๐ต. Definition 8 (see [9]). Let ๐‘‹ and ๐‘Œ be two arbitrary nonempty sets and IL (๐‘Œ) denote the collection of all L-fuzzy sets in ๐‘Œ. A mapping ๐น is called L-fuzzy mapping if ๐น is a mapping from ๐‘‹ into IL (๐‘Œ). An L-fuzzy mapping ๐น is an L-fuzzy subset on ๐‘‹ ร— ๐‘Œ with membership function ๐น(๐‘ฅ)(๐‘ฆ). The function ๐น(๐‘ฅ)(๐‘ฆ) is the grade of membership of ๐‘ฆ in ๐น(๐‘ฅ). Definition 9 (see [9]). Let ๐น, ๐บ be L -fuzzy mappings from an arbitrary nonempty set ๐‘‹ into IL (๐‘‹). A point ๐‘ง โˆˆ ๐‘‹ is called an L-fuzzy fixed point of ๐น if ๐‘ง โˆˆ {๐น๐‘ง}๐›ผL , where ๐›ผL โˆˆ ๐ฟ \ {0L }. The point ๐‘ง โˆˆ ๐‘‹ is called a common L-fuzzy fixed point of ๐น and ๐บ if ๐‘ง โˆˆ {๐น๐‘ง}๐›ผL โˆฉ {๐บ๐‘ง}๐›ผL . Remark 10 (see [10, 16]). If ๐›ผL = 1L then the L-fuzzy fixed point is just the fixed point for the ๐ฟ-fuzzy mapping. Definition 11 (see [17]). Let (๐‘‹, ๐‘‘) be a metric space, ๐‘“ : ๐‘‹ โ†’ ๐‘‹, and ๐น : ๐‘‹ โ†’ ๐ถ๐ฟ(๐‘‹). Then the pair (๐‘“, ๐น) is said to have (CLR) property if there exists a sequence {๐‘ฅ๐‘› } in ๐‘‹ and ๐ด โˆˆ ๐ถ๐ฟ(๐‘‹) such that lim๐‘›โ†’โˆž ๐‘“๐‘ฅ๐‘› = ๐‘ข โˆˆ ๐ด = lim๐‘›โ†’โˆž ๐น๐‘ฅ๐‘› , with ๐‘ข = ๐‘“V, for some ๐‘ข, V โˆˆ ๐‘‹. Definition 12 (see [18]). Let (๐‘‹, ๐‘‘) be a metric space, ๐‘Œ โŠ† ๐‘‹, ๐‘“ : ๐‘‹ โ†’ ๐‘‹, and ๐น : ๐‘‹ โ†’ ๐ถ๐ฟ(๐‘‹). Two mappings (๐‘“, ๐น) are said to be occasionally coincidentally idempotent if ๐‘“2 ๐‘ฅ = ๐‘“๐‘ฅ for some ๐‘ฅ โˆˆ ๐ถ(๐‘“, ๐น).

Definition 14 (see [19]). Metric space ๐‘‹ is called ๐‘ฅ0 joint orbitally complete, if every Cauchy sequence of each orbit at ๐‘ฅ0 is convergent in ๐‘‹. Definition 15 (see [20]). Let ๐‘“ be a mapping from a subset ๐‘Œ of a metric space (๐‘‹, ๐‘‘) into ๐‘‹ and ๐น : ๐‘Œ โ†’ ๐ถ๐ฟ(๐‘‹); then ๐‘“ is said to be ๐น-weakly commuting at ๐‘ฅ โˆˆ ๐‘Œ if ๐‘“2 ๐‘ฅ โˆˆ ๐น๐‘“๐‘ฅ.

3. Definitions in ๐‘-Metric Spaces Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, ๐‘Œ โŠ† ๐‘‹, ๐‘“, ๐‘” : ๐‘Œ โ†’ ๐‘‹ and ๐น, ๐บ are two L-fuzzy mappings from ๐‘Œ into IL (๐‘‹) such that, for each ๐‘ฅ โˆˆ ๐‘Œ, ๐›ผL โˆˆ ๐ฟ \ {0L }, {๐น๐‘ฅ}๐›ผL and {๐บ๐‘ฅ}๐›ผL are nonempty closed subsets of ๐‘‹. Similar to [11], first we rewrite some notions in ๐‘-metric spaces as follows. Definition 16. The pairs (๐‘“, ๐น) and (๐‘”, ๐บ) are said to have (JCLR) property if there exist two sequences {๐‘ฅ๐‘› } and {๐‘ฆ๐‘› } in ๐‘Œ and ๐ด, ๐ต โˆˆ ๐ถ๐ฟ(๐‘‹) such that lim ๐‘“๐‘ฅ๐‘› = lim ๐‘”๐‘ฆ๐‘› = ๐‘ข,

๐‘›โ†’โˆž

๐‘›โ†’โˆž

lim {๐น๐‘ฅ๐‘› }๐›ผL = ๐ด,

๐‘›โ†’โˆž

(3)

lim {๐บ๐‘ฆ๐‘› }๐›ผL = ๐ต,

๐‘›โ†’โˆž

with ๐‘ข = ๐‘“V = ๐‘”๐‘ค, ๐‘ข โˆˆ ๐ด โˆฉ ๐ต, for some ๐‘ข, V, ๐‘ค โˆˆ ๐‘Œ. Definition 17. Two mappings ๐‘“ and ๐น are said to be occasionally coincidentally idempotent if ๐‘“2 ๐‘ฅ = ๐‘“๐‘ฅ for some ๐‘ฅ โˆˆ ๐ถ(๐‘“, ๐น). Definition 18. Two mappings ๐‘“ and ๐น are said to be ๐น-weakly commuting at ๐‘ฅ โˆˆ ๐‘Œ if ๐‘“๐‘“๐‘ฅ โˆˆ {๐น๐‘“๐‘ฅ}๐›ผL . Let ฮฆ be the family of all continuous mappings ๐œ™ : [0, โˆž)6 โ†’ [0, โˆž) satisfying the following properties: (๐œ™1 ) ๐น is nondecreasing in the 1st variable and nonincreasing in the 3rd, 4th, 5th, and 6th coordinate variables. (๐œ™2 ) There exists โ„Ž โˆˆ (0, 1) such that for every ๐‘ข, V โ‰ฅ 0, ๐‘ โ‰ฅ 1 with ๐œ™(๐‘ข, V, V, ๐‘ข, ๐‘(๐‘ข+V), 0) โ‰ค 0 or ๐œ™(๐‘ข, V, ๐‘ข, V, 0, ๐‘(๐‘ข+ V)) โ‰ค 0 implies ๐‘ข โ‰ค โ„ŽV. Example 19. (i) ๐œ™(๐‘ก1 , ๐‘ก2 , ๐‘ก3 , ๐‘ก4 , ๐‘ก5 , ๐‘ก6 ) = ๐‘ก1 โˆ’ โ„Ž max{๐‘ก2 , (๐‘ก3 + ๐‘ก4 )๐‘ก5 ๐‘ก6 }. (ii) ๐œ™(๐‘ก1 , ๐‘ก2 , ๐‘ก3 , ๐‘ก4 , ๐‘ก5 , ๐‘ก6 ) = ๐‘ก1 โˆ’ โ„Ž min{๐‘ก2 , (๐‘ก3 + ๐‘ก4 )/๐‘, (๐‘ก5 + ๐‘ก6 )/๐‘2 }, ๐‘ โ‰ฅ 2. (iii) ๐œ™(๐‘ก1 , ๐‘ก2 , ๐‘ก3 , ๐‘ก4 , ๐‘ก5 , ๐‘ก6 ) = ๐‘ก1 โˆ’ โ„Ž๐‘ก2 .

Journal of Function Spaces

3

Let ฮจ be the family of continuous mappings ๐œ“ : [0, โˆž)3 โ†’ R, which is nondecreasing in the first coordinate and satisfying the following condition for each ๐‘ข, V โ‰ฅ 0: if ๐œ“(๐‘ข, V, V) โ‰ค 0 or ๐œ“(๐‘ข, V, ๐‘ข) โ‰ค 0, then ๐‘ข โ‰ค V.

but ๐œ™ (๐‘‘ (๐‘ฆ1 , ๐‘ฆ2 ) , ๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) , ๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) , ๐‘‘ (๐‘ฆ1 , ๐‘ฆ2 ) , ๐‘ (๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) + ๐‘‘ (๐‘ฆ1 , ๐‘ฆ2 )) , 0)

Example 20. (i) ๐œ“(๐‘ก1 , ๐‘ก2 , ๐‘ก3 ) = ๐‘ก1 โˆ’ min{๐‘ก2 , (๐‘ก2 + ๐‘ก3 )/๐‘›}, ๐‘› โ‰ฅ 2. (ii) ๐œ“(๐‘ก1 , ๐‘ก2 , ๐‘ก3 ) = ๐‘ก1 โˆ’ ๐‘ก2 . (iii) ๐œ“(๐‘ก1 , ๐‘ก2 , ๐‘ก3 ) = ๐‘ก1 โˆ’ (๐‘ก2 + ๐‘ก3 )/๐‘›, ๐‘› โ‰ฅ 2.

โ‰ค ๐œ™ (๐ป ({๐น๐‘ฅ0 }๐›ผL , {๐บ๐‘ฅ1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ0 , ๐‘”๐‘ฅ1 ) , ๐‘‘ (๐‘“๐‘ฅ0 , {๐น๐‘ฅ0 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ1 , {๐บ๐‘ฅ1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ0 , {๐บ๐‘ฅ1 }๐›ผL ) , 0) โ‰ค 0;

4. Common Fixed Points in Ordered ๐‘-Metric Spaces Theorem 21. Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, ๐‘Œ โŠ† ๐‘‹, and โชฏ be a partial order defined on ๐‘Œ, ๐‘“, ๐‘” : ๐‘Œ โ†’ ๐‘‹ such that ๐‘“(๐‘Œ) and ๐‘”(๐‘Œ) are closed. Suppose that ๐น, ๐บ are two L-fuzzy mappings from ๐‘Œ into IL (๐‘‹) such that for each ๐‘ฅ โˆˆ ๐‘Œ and ๐›ผL โˆˆ ๐ฟ\{0L }, {๐น๐‘ฅ}๐›ผL and {๐บ๐‘ฅ}๐›ผL are nonempty closed subsets of ๐‘‹ which satisfy the following conditions:

then from the property ๐œ™(๐‘ข, V, V, ๐‘ข, ๐‘(๐‘ข + V), 0) โ‰ค 0 which implies ๐‘ข โ‰ค โ„ŽV, there exists โ„Ž โˆˆ (0, 1) such that ๐‘‘(๐‘ฆ1 , ๐‘ฆ2 ) โ‰ค โ„Ž๐‘‘(๐‘ฆ0 , ๐‘ฆ1 ). Again, ๐‘ฆ2 = ๐‘“๐‘ฅ2 โˆˆ {๐บ๐‘ฅ1 }๐›ผL , ๐‘ฆ3 = ๐‘”๐‘ฅ3 โˆˆ {๐น๐‘ฅ2 }๐›ผL , ๐‘ฅ2 โชฏ ๐‘ฅ3 , and ๐‘‘(๐‘ฆ3 , ๐‘ฆ2 ) = ๐‘‘(๐‘”๐‘ฅ3 , ๐‘“๐‘ฅ2 ) โ‰ค ๐ป({๐น๐‘ฅ2 }๐›ผL , {๐บ๐‘ฅ1 }๐›ผL ); then ๐œ™ (๐ป ({๐น๐‘ฅ2 }๐›ผL , {๐บ๐‘ฅ1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ2 , ๐‘”๐‘ฅ1 ) ,

(1) {๐น๐‘ฅ}๐›ผL โชฏ1 ๐‘”(๐‘Œ) and {๐บ๐‘ฅ}๐›ผL โชฏ1 ๐‘“(๐‘Œ).

๐‘‘ (๐‘“๐‘ฅ2 , {๐น๐‘ฅ2 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ1 , {๐บ๐‘ฅ1 }๐›ผL ) , 0,

(2) ๐‘”๐‘ฆ โˆˆ {๐น๐‘ฅ}๐›ผL or ๐‘“๐‘ฆ โˆˆ {๐บ๐‘ฅ}๐›ผL implies ๐‘ฅ โชฏ ๐‘ฆ.

๐‘‘ (๐‘”๐‘ฅ1 , {๐น๐‘ฅ2 }๐›ผL )) โ‰ค 0.

(3) If ๐‘ฆ๐‘› โ†’ ๐‘ฆ, then ๐‘ฆ๐‘› โชฏ ๐‘ฆ for all ๐‘› โˆˆ N.

(8)

Also

(4) (๐‘“, ๐น) and (๐‘”, ๐บ) are weakly commuting and occasionally coincidentally idempotent. (5) For all comparable elements ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ and ๐ธ > 0, there exists ๐œ™ โˆˆ ฮฆ such that ๐œ™ (๐‘„) + ๐ธ min (๐‘„) โ‰ค 0,

(7)

(4)

๐œ™ (๐‘‘ (๐‘ฆ2 , ๐‘ฆ3 ) , ๐‘‘ (๐‘ฆ1 , ๐‘ฆ2 ) , ๐‘‘ (๐‘ฆ2 , ๐‘ฆ3 ) , ๐‘‘ (๐‘ฆ1 , ๐‘ฆ2 ) , 0, ๐‘ (๐‘‘ (๐‘ฆ1 , ๐‘ฆ2 ) + ๐‘‘ (๐‘ฆ2 , ๐‘ฆ3 ))) โ‰ค ๐œ™ (๐ป ({๐น๐‘ฅ2 }๐›ผL , {๐บ๐‘ฅ1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ2 , ๐‘”๐‘ฅ1 ) ,

(9)

๐‘‘ (๐‘“๐‘ฅ2 , {๐น๐‘ฅ2 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ1 , {๐บ๐‘ฅ1 }๐›ผL ) , 0, ๐‘‘ (๐‘”๐‘ฅ1 , {๐น๐‘ฅ2 }๐›ผL )) โ‰ค 0;

where ๐‘„ = (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) ,

(5)

then from the property ๐œ™(๐‘ข, V, ๐‘ข, V, 0, ๐‘(๐‘ข + V)) โ‰ค 0 which implies ๐‘ข โ‰ค โ„ŽV, there exists โ„Ž โˆˆ (0, 1) such that ๐‘‘(๐‘ฆ2 , ๐‘ฆ3 ) โ‰ค โ„Ž๐‘‘(๐‘ฆ1 , ๐‘ฆ2 ) โ‰ค โ„Ž2 ๐‘‘(๐‘ฆ0 , ๐‘ฆ1 ). By induction we obtain ๐‘‘(๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) โ‰ค โ„Ž๐‘› ๐‘‘(๐‘ฆ0 , ๐‘ฆ1 ). Continuing in this way, we obtain an orbit ๐‘‚(๐น, ๐บ, ๐‘“, ๐‘”, ๐‘ฅ0 ) such that ๐‘ฆ2๐‘›+1 = ๐‘”๐‘ฅ2๐‘›+1 โˆˆ {๐น๐‘ฅ2๐‘› }๐›ผL and ๐‘ฆ2๐‘›+2 = ๐‘“๐‘ฅ2๐‘›+2 โˆˆ {๐บ๐‘ฅ2๐‘›+1 }๐›ผL . Further,

(6) One of ๐‘“(๐‘Œ) or ๐‘”(๐‘Œ) is ๐‘ฅ0 joint orbitally complete for some ๐‘ฅ0 โˆˆ ๐‘Œ;

๐‘‘ (๐‘ฆ๐‘› , ๐‘ฆ๐‘š ) โ‰ค ๐‘๐‘‘ (๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) + ๐‘2 ๐‘‘ (๐‘ฆ๐‘›+1 , ๐‘ฆ๐‘›+2 ) + โ‹… โ‹… โ‹…

then ๐‘“ and ๐‘” have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point

โ‰ค ๐‘๐‘‘ (๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) + ๐‘2 ๐‘‘ (๐‘ฆ๐‘›+1 , ๐‘ฆ๐‘›+2 ) + โ‹… โ‹… โ‹…

Proof. Let ๐‘ฅ0 โˆˆ ๐‘‹ and ๐‘ฆ0 = ๐‘“๐‘ฅ0 ; then by (1), there exist ๐‘ฅ1 , ๐‘ฅ2 โˆˆ ๐‘Œ such that ๐‘ฆ1 = ๐‘”๐‘ฅ1 โˆˆ {๐น๐‘ฅ0 }๐›ผL and ๐‘ฆ2 = ๐‘“๐‘ฅ2 โˆˆ {๐บ๐‘ฅ1 }๐›ผL , from (2), ๐‘ฅ0 โชฏ ๐‘ฅ1 โชฏ ๐‘ฅ2 . Now, ๐‘‘(๐‘ฆ1 , ๐‘ฆ2 ) = ๐‘‘(๐‘”๐‘ฅ1 , ๐‘“๐‘ฅ2 ) โ‰ค ๐ป({๐น๐‘ฅ0 }๐›ผL , {๐บ๐‘ฅ1 }๐›ผL ); then ๐œ™ (๐ป ({๐น๐‘ฅ0 }๐›ผL , {๐บ๐‘ฅ1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ0 , ๐‘”๐‘ฅ1 ) , ๐‘‘ (๐‘“๐‘ฅ0 , {๐น๐‘ฅ0 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ1 , {๐บ๐‘ฅ1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ0 , {๐บ๐‘ฅ1 }๐›ผL ) , 0) โ‰ค 0,

+ ๐‘๐‘šโˆ’๐‘›โˆ’1 ๐‘‘ (๐‘ฆ๐‘šโˆ’1 , ๐‘ฆ๐‘š )

+ ๐‘๐‘šโˆ’๐‘› ๐‘‘ (๐‘ฆ๐‘šโˆ’1 , ๐‘ฆ๐‘š ) ๐‘›

โ‰ค ๐‘โ„Ž ๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) ๐‘ก + ๐‘ โ„Ž

(10) ๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) + โ‹… โ‹… โ‹…

+ ๐‘๐‘šโˆ’๐‘› โ„Ž๐‘šโˆ’1 ๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) =

(6)

2 ๐‘›+1

๐‘โ„Ž๐‘› ๐‘‘ (๐‘ฆ0 , ๐‘ฆ1 ) . 1 โˆ’ ๐‘โ„Ž

Therefore, lim๐‘›,๐‘šโ†’โˆž ๐‘‘(๐‘ฆ๐‘› , ๐‘ฆ๐‘š ) = 0. Hence, {๐‘ฆ๐‘› } is a Cauchy sequence. As {๐‘ฆ2๐‘›+2 } is a Cauchy sequence in ๐‘“(๐‘Œ), and ๐‘“(๐‘Œ) is joint orbitally complete, therefore, there exists ๐‘ง โˆˆ ๐‘‹ such

4

Journal of Function Spaces

that ๐‘ฆ2๐‘›+2 โ†’ ๐‘ง = ๐‘“๐‘ข, for ๐‘ข โˆˆ ๐‘Œ. Next, we show that ๐‘ง โˆˆ {๐น๐‘ข}๐›ผL . Since ๐œ™ (๐‘„) + ๐ธ min (๐‘„) โ‰ค 0,

each ๐‘ฅ โˆˆ ๐‘‹, there exists ๐‘ฆ โˆˆ ๐‘Œ such that ๐‘ฅ โ‰ค ๐‘ฆ. Let ๐ฟ = [0, 1] and define the maps ๐‘“, ๐‘”, ๐น, ๐บ on ๐‘‹ as ๐‘”๐‘ฅ = ๐‘ฅ/2, ๐‘“๐‘ฅ = ๐‘ฅ/3, 0, { { { { { {1 (๐น๐‘ฅ) (๐‘ฆ) = { , {3 { { { {2 , {3

(11)

where ๐‘„ = (๐ป ({๐น๐‘ข}๐›ผL , {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ข, ๐‘”๐‘ฅ2๐‘›+1 ) , ๐‘‘ (๐‘“๐‘ข, {๐น๐‘ข}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) ,

๐‘ฅ , 5 ๐‘ฅ ๐‘ฅ if < ๐‘ฆ < , 5 4 ๐‘ฅ if โ‰ค ๐‘ฆ โ‰ค 1, 4 if 0 โ‰ค ๐‘ฆ โ‰ค

๐‘ฅ 0, if 0 โ‰ค ๐‘ฆ โ‰ค , { { 7 { { { {1 ๐‘ฅ ๐‘ฅ (๐บ๐‘ฅ) (๐‘ฆ) = { , if < ๐‘ฆ < , { 6 7 6 { { { ๐‘ฅ {1 , if โ‰ค ๐‘ฆ โ‰ค 1. {4 6

(12)

๐‘‘ (๐‘“๐‘ข, {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐น๐‘ข}๐›ผL )) ,

(15)

then Define the sequences ๐‘ฅ2๐‘› , ๐‘ฅ2๐‘›+1 , and ๐‘ฅ2๐‘›+2 in ๐‘Œ as ๐‘ฅ2๐‘› = {1/(2๐‘› + 1)}, ๐‘ฅ2๐‘›+1 = {1/(2๐‘› + 2)}, and ๐‘ฅ2๐‘›+2 = {1/(2๐‘› + 3)}, ๐‘› โˆˆ N; then ๐‘ฆ2๐‘›+1 = ๐‘”๐‘ฅ2๐‘›+1 = 1/2(2๐‘› + 2) and ๐‘ฆ2๐‘›+2 = ๐‘“๐‘ฅ2๐‘›+2 = 1/3(2๐‘› + 3). Now, {๐น๐‘ฅ2๐‘› }2/3 = [1/4(2๐‘› + 1), 1] and {๐บ๐‘ฅ2๐‘›+1 }1/4 = [1/6(2๐‘› + 2), 1]; then ๐‘”๐‘ฅ2๐‘›+1 โˆˆ {๐น๐‘ฅ2๐‘› }2/3 and ๐‘“๐‘ฅ2๐‘›+2 โˆˆ {๐บ๐‘ฅ2๐‘›+1 }1/4 . Further, lim๐‘›โ†’โˆž ๐‘“๐‘ฅ2๐‘›+2 = lim๐‘›โ†’โˆž ๐‘”๐‘ฅ2๐‘›+1 = 0 โˆˆ [0, 1] = lim๐‘›โ†’โˆž {๐น๐‘ฅ2๐‘› }2/3 = lim๐‘›โ†’โˆž {๐บ๐‘ฅ2๐‘›+1 }1/4 . Let ๐œ™(๐‘ก1 , . . . , ๐‘ก6 ) = ๐‘ก1 โˆ’ โ„Ž๐‘ก2 ; then we have

๐œ™ (๐ป ({๐น๐‘ข}๐›ผL , {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ข, ๐‘”๐‘ฅ2๐‘›+1 ) , ๐‘‘ (๐‘“๐‘ข, {๐น๐‘ข}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ข, {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐น๐‘ข}๐›ผL )) โ‰ค 0, ๐œ™ (๐‘‘ (๐‘ฆ2๐‘›+2 , {๐น๐‘ข}๐›ผL ) , ๐‘‘ (๐‘ง, ๐‘ฆ2๐‘›+1 ) , ๐‘‘ (๐‘ง, {๐น๐‘ข}๐›ผL ) ,

๐œ™ (๐‘„) + ๐ธ min (๐‘„) = 0,

(13)

๐‘‘ (๐‘ฆ2๐‘›+1 , ๐‘ฆ2๐‘›+2 ) , ๐‘‘ (๐‘ง, ๐‘ฆ2๐‘›+2 ) , ๐‘๐‘‘ (๐‘ฆ2๐‘›+1 , {๐น๐‘ข}๐›ผL )) where

โ‰ค ๐œ™ (๐ป ({๐น๐‘ข}๐›ผL , {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘“๐‘ข, ๐‘”๐‘ฅ2๐‘›+1 ) ,

๐‘„ = (๐ป ({๐น๐‘ฅ2๐‘› }๐›ผ๐ฟ , {๐บ๐‘ฅ2๐‘›+1 }๐›ผ๐ฟ ) , ๐‘‘ (๐‘“๐‘ฅ2๐‘›+2 , ๐‘”๐‘ฅ2๐‘›+1 ) ,

๐‘‘ (๐‘“๐‘ข, {๐น๐‘ข}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) ,

๐‘‘ (๐‘“๐‘ฅ2๐‘›+2 , {๐น๐‘ฅ2๐‘› }๐›ผ๐ฟ ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐บ๐‘ฅ2๐‘›+1 }๐›ผ๐ฟ ) ,

๐‘‘ (๐‘“๐‘ข, {๐บ๐‘ฅ2๐‘›+1 }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐น๐‘ข}๐›ผL )) โ‰ค 0.

(17)

๐‘‘ (๐‘“๐‘ฅ2๐‘›+2 , {๐บ๐‘ฅ2๐‘›+1 }๐›ผ๐ฟ ) , ๐‘‘ (๐‘”๐‘ฅ2๐‘›+1 , {๐น๐‘ฅ2๐‘› }๐›ผ๐ฟ )) .

As ๐‘› โ†’ โˆž ๐œ™ (๐‘‘ (๐‘ง, {๐น๐‘ข}๐›ผL ) , 0, ๐‘‘ (๐‘ง, {๐น๐‘ข}๐›ผL ) , 0, 0, ๐‘๐‘‘ (๐‘ง, {๐น๐‘ข}๐›ผL ))

(16)

(14)

โ‰ค 0.

By ๐œ™(๐‘ข, V, ๐‘ข, V, 0, ๐‘(๐‘ข + V)) โ‰ค 0 which implies ๐‘ข โ‰ค โ„ŽV, we have ๐‘‘(๐‘ง, {๐น๐‘ข}๐›ผL ) โ‰ค โ„Ž.0 = 0. Thus, ๐‘ง โˆˆ {๐น๐‘ข}๐›ผL . As ๐‘ง = ๐‘“๐‘ข โˆˆ {๐น๐‘ข}๐›ผL โˆˆ ๐‘”(๐‘Œ), therefore, there exists ๐œ โˆˆ ๐‘Œ such that ๐‘ง = ๐‘”๐œ. Similarly, ๐‘ง = ๐‘”๐œ โˆˆ {๐บ๐œ}๐›ผL . Since the pair (๐น, ๐‘“) are weakly commuting and occasionally coincidentally idempotent and ๐‘ง = ๐‘“๐‘ข โˆˆ {๐น๐‘ข}๐›ผL , then ๐‘ง = ๐‘“๐‘ข = ๐‘“๐‘“๐‘ข = ๐‘“๐‘ง; therefore, ๐‘ง = ๐‘“๐‘ง = ๐‘“๐‘“๐‘ข โˆˆ {๐‘“๐น๐‘ข}๐›ผL โŠ† {๐น๐‘“๐‘ข}๐›ผL = {๐น๐‘ง}๐›ผL . Also ๐‘ง = ๐‘”๐œ โˆˆ {๐บ๐œ}๐›ผL ; then ๐‘ง = ๐‘”๐œ = ๐‘”๐‘”๐œ = ๐‘”๐‘ง; therefore, ๐‘”๐‘ง = ๐‘”๐‘”๐œ โˆˆ {๐‘”๐บ๐œ}๐›ผL โŠ† {๐บ๐‘”๐œ}๐›ผL = {๐บ๐‘ง}๐›ผL . Example 22. Let ๐‘Œ โŠ† ๐‘‹ = [0, 1] and ๐‘‘(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ|2 ; then (๐‘‹, ๐‘‘) is a ๐‘-metric space with ๐‘ = 2. Define the partial order ๐‘ฅ โชฏ ๐‘ฆ as ๐‘ฅ โ‰ค ๐‘ฆ for each ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘‹ โชฏ1 ๐‘Œ as follows: for

Finally, ๐‘“0 = ๐‘“๐‘“0 โˆˆ [0, 1] = ๐น๐‘“0 and ๐‘”๐‘”0 = ๐‘”0 โˆˆ [0, 1] = ๐บ๐‘”0; that is, (๐‘“, ๐น) and (๐‘”, ๐บ) are weakly commuting and occasionally coincidentally idempotent (๐‘“, ๐น) and (๐‘”, ๐บ) are weakly commuting and occasionally coincidentally idempotent. Now, ๐‘“, ๐‘”, ๐น, ๐บ satisfy all conditions of Theorem 21 and ๐‘“0 = ๐‘”0 = 0 โˆˆ [0, 1] = {๐น0}2/3 = {๐บ0}1/4 is a common fixed point. Corollary 23. Let (๐‘‹, ๐‘‘) be a complete ๐‘-metric space, ๐‘Œ โŠ† ๐‘‹, and โชฏ be a partial order defined on ๐‘Œ, ๐‘“, ๐‘” : ๐‘Œ โ†’ ๐‘‹ such that ๐‘“(๐‘Œ) and ๐‘”(๐‘Œ) are closed. Suppose that ๐น, ๐บ are two Lfuzzy mappings from ๐‘Œ into IL (๐‘‹) such that, for each ๐‘ฅ โˆˆ ๐‘Œ and ๐›ผL โˆˆ ๐ฟ \ {0L }, {๐น๐‘ฅ}๐›ผL and {๐บ๐‘ฅ}๐›ผL are nonempty closed subsets of ๐‘‹ which satisfy conditions ((1)โ€“(5)); then ๐‘“ and ๐‘” have a common fixed point, while ๐น and ๐บ have a common ๐ฟfuzzy fixed point. Remark 24. (1) Theorem 21 is a generalization of Theorem 2.2 [6], Theorem 14 [9], and Theorem 3.1 [8].

Journal of Function Spaces

5

(2) In Theorem 21, one may put one of ๐‘“ = ๐‘” or ๐น = ๐บ or both; in this case, condition (4) has the following versions:

๐œ™ (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘“๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) + ๐ธ min (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘“๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) โ‰ค 0, ๐œ™ (๐ป ({๐น๐‘ฅ}๐›ผL , {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฅ}๐›ผL ))

(18)

+ ๐ธ min (๐ป ({๐น๐‘ฅ}๐›ผL , {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) โ‰ค 0, ๐œ™ (๐ป ({๐น๐‘ฅ}๐›ผL , {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘“๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) + ๐ธ min (๐ป ({๐น๐‘ฅ}๐›ผL , {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) โ‰ค 0.

Theorem 25. Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, ๐‘Œ โŠ† ๐‘‹, and โชฏ be a partial order defined on ๐‘Œ, ๐‘“, ๐‘” : ๐‘Œ โ†’ ๐‘‹ such that ๐‘“(๐‘Œ) and ๐‘”(๐‘Œ) are closed. Suppose that ๐น๐‘› is a sequence of L-fuzzy mappings from ๐‘Œ into IL (๐‘‹) such that, for each ๐‘ฅ โˆˆ ๐‘Œ and ๐›ผL โˆˆ ๐ฟ\{0L }, {๐น๐‘› ๐‘ฅ}๐›ผL are nonempty closed subsets of ๐‘‹ which satisfy the following conditions:

(1) (๐‘“, ๐น) and (๐‘”, ๐บ) satisfy (JCLR) property. (2) (๐‘“, ๐น) and (๐‘”, ๐บ) are weakly commuting and occasionally coincidentally idempotent.

(1) {๐น๐‘˜ ๐‘ฅ}๐›ผL โชฏ1 ๐‘”(๐‘Œ) and {๐น๐‘™ ๐‘ฅ}๐›ผL โชฏ1 ๐‘“(๐‘Œ). (2) ๐‘”๐‘ฆ โˆˆ {๐น๐‘˜ ๐‘ฅ}๐›ผL or ๐‘“๐‘ฆ โˆˆ {๐น๐‘™ ๐‘ฅ}๐›ผL implies ๐‘ฅ โชฏ ๐‘ฆ. (3) If ๐‘ฆ๐‘› โ†’ ๐‘ฆ, then ๐‘ฆ๐‘› โชฏ ๐‘ฆ for all ๐‘› โˆˆ ๐‘. (4) (๐‘“, ๐น๐‘˜ ) and (๐‘”, ๐น๐‘™ ) are weakly commuting and occasionally coincidentally idempotent. (5) For all comparable elements ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ, ๐‘˜ = 2๐‘› + 1 and ๐‘™ = 2๐‘› + 2, ๐‘› โˆˆ N and ๐ธ > 0, there exists ๐œ™ โˆˆ ฮฆ such that ๐œ™ (๐‘„) + ๐ธ min (๐‘„) โ‰ค 0,

๐‘“(๐‘Œ) and ๐‘”(๐‘Œ) are closed. Suppose that ๐น, ๐บ are two L-fuzzy mappings from ๐‘Œ into IL (๐‘‹) such that, for each ๐‘ฅ โˆˆ ๐‘Œ and ๐›ผL โˆˆ ๐ฟ\{0L }, {๐น๐‘ฅ}๐›ผL and {๐บ๐‘ฅ}๐›ผL are nonempty closed subsets of ๐‘‹ which satisfy the following conditions:

(19)

where ๐‘„ = (๐ป ({๐น๐‘˜ ๐‘ฅ}๐›ผL , {๐น๐‘™ ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘˜ ๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘™ ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘™ ๐‘ฆ}๐›ผL ) , (20) ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘˜ ๐‘ฅ}๐›ผL )) .

(6) One of ๐‘“(๐‘Œ) or ๐‘”(๐‘Œ) is ๐‘ฅ0 joint orbitally complete for some ๐‘ฅ0 โˆˆ ๐‘Œ, then ๐‘“ and ๐‘” have a common fixed point while ๐น๐‘˜ and ๐น๐‘™ have a common ๐ฟ-fuzzy fixed point. Proof. Put ๐น = ๐น๐‘˜ and ๐บ = ๐น๐‘™ in Theorem 21. This concludes the proof.

(3) For all comparable elements ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ and ๐ธ > 0 there exists ๐œ™ โˆˆ ฮฆ such that ๐œ™ (๐‘„) + ๐ธ min (๐‘„) โ‰ค 0,

(21)

where ๐‘„ = (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐บ๐‘ฆ}๐›ผL ) ,

(22)

๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) ; then ๐‘“ and ๐‘” have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point. Proof. Since (๐‘“, ๐น) and (๐‘”, ๐บ) satisfy (JCLR) property, there exist two sequences {๐‘ฅ๐‘› }, {๐‘ฆ๐‘› } in ๐‘Œ and ๐ด, ๐ต โˆˆ ๐ถ๐ฟ(๐‘‹) such that lim ๐‘“๐‘ฅ๐‘› = lim ๐‘”๐‘ฆ๐‘› = ๐‘ข,

๐‘›โ†’โˆž

๐‘›โ†’โˆž

lim {๐น๐‘ฅ๐‘› }๐›ผL = ๐ด,

๐‘›โ†’โˆž

(23)

lim {๐บ๐‘ฆ๐‘› }๐›ผL = ๐ต.

๐‘›โ†’โˆž

5. Common Fixed Points with (JCLR) Property

With ๐‘ข = ๐‘“V = ๐‘”๐‘ค and ๐‘ข โˆˆ ๐ด โˆฉ ๐ต, for some ๐‘ข, V, ๐‘ค โˆˆ ๐‘Œ, we show that ๐ด = ๐ต, since

Theorem 26. Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, ๐‘Œ โŠ† ๐‘‹, and โชฏ be a partial order defined on ๐‘Œ, ๐‘“, ๐‘” : ๐‘Œ โ†’ ๐‘‹ such that

๐œ™ (๐‘„) + ๐ธ (๐‘„) โ‰ค 0,

(24)

6

Journal of Function Spaces Theorem 27. In Theorem 26, we may replace condition (3) by another: for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ and ๐ธ > 0 there exist ๐œ“ โˆˆ ฮจ such that

where ๐‘„ = (๐ป ({๐น๐‘ฅ๐‘› }๐›ผL , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , ๐‘”๐‘ฆ๐‘› ) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , {๐น๐‘ฅ๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐บ๐‘ฆ๐‘› }๐›ผL ) ,

(25)

+ ๐ธ min (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) ,

๐‘‘ (๐‘“๐‘ฅ๐‘› , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐น๐‘ฅ๐‘› }๐›ผL )) .

๐‘‘ (๐‘“V, ๐ด)) โ‰ค 0,

(26)

which gives ๐œ™ (๐ป (๐ด, ๐ต) , 0, 0, ๐ป (๐ด, ๐ต) , ๐‘ (๐ป (๐ด, ๐ต) + 0) , 0) โ‰ค ๐œ™ (๐ป (๐ด, ๐ต) , 0, ๐‘‘ (๐‘“V, ๐ด) , ๐‘‘ (๐‘“V, ๐ต) , ๐‘‘ (๐‘“V, ๐ต) ,

(32)

๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL )) โ‰ค 0;

As ๐‘› โ†’ โˆž, ๐œ™ (๐ป (๐ด, ๐ต) , 0, ๐‘‘ (๐‘“V, ๐ด) , ๐‘‘ (๐‘“V, ๐ต) , ๐‘‘ (๐‘“V, ๐ต) ,

๐œ“ (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ))

(27)

then ๐‘“ and ๐‘” have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point. Proof. Since (๐‘“, ๐น) and (๐‘”, ๐บ) satisfy (JCLR) property, there exist two sequences {๐‘ฅ๐‘› }, {๐‘ฆ๐‘› } in ๐‘Œ and ๐ด, ๐ต โˆˆ ๐ถ๐ฟ(๐‘‹) such that lim๐‘›โ†’โˆž ๐‘“๐‘ฅ๐‘› = lim๐‘›โ†’โˆž ๐‘”๐‘ฆ๐‘› = ๐‘ข, lim๐‘›โ†’โˆž {๐น๐‘ฅ๐‘› }๐›ผL = ๐ด, lim๐‘›โ†’โˆž {๐บ๐‘ฆ๐‘› }๐›ผL = ๐ต, with ๐‘ข = ๐‘“V = ๐‘”๐‘ค and ๐‘ข โˆˆ ๐ด โˆฉ ๐ต, for some ๐‘ข, V, ๐‘ค โˆˆ ๐‘Œ. Now, we show that ๐‘“V โˆˆ {๐นV}๐›ผL ; otherwise, since ๐œ“ (๐ป ({๐นV}๐›ผL , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“V, ๐‘”๐‘ฆ๐‘› ) , ๐‘‘ (๐‘“V, {๐นV}๐›ผL ))

๐‘‘ (๐‘“V, ๐ด)) โ‰ค 0. From the property ๐œ™(๐‘ข, V, ๐‘ข, V, ๐‘(๐‘ข + V), 0) โ‰ค 0 which implies ๐‘ข โ‰ค โ„ŽV, there exists โ„Ž โˆˆ (0, 1) such that ๐ป(๐ด, ๐ต) โ‰ค โ„Ž.0 = 0, so that ๐ด = ๐ต. Now, ๐‘“V โˆˆ {๐นV}๐›ผL ; to prove this, since ๐‘“V โˆˆ ๐ด, we show that ๐ด = {๐นV}๐›ผL . As ๐œ™ (๐‘„) + ๐ธ (๐‘„) โ‰ค 0,

(28)

where

๐‘‘ (๐‘“V, {๐นV}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“V, {๐บ๐‘ฆ๐‘› }๐›ผL ) , (29) ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐นV}๐›ผL )) ,

when ๐‘› โ†’ โˆž, we have that

๐‘‘ (๐‘“V, ๐ด) , ๐‘‘ (๐‘“V, {๐นV}๐›ผL )) โ‰ค 0.

(30)

โ‰ค ๐œ“ (๐ป ({๐นV}๐›ผL , ๐ต) , 0, ๐‘‘ (๐‘“V, {๐นV}๐›ผL )) โ‰ค 0.

(34)

By ๐œ“(๐‘ข, V, ๐‘ข) โ‰ค 0 โ‡’ ๐‘ข โ‰ค V, this gives ๐‘‘({๐นV}๐›ผL , ๐‘“V) โ‰ค 0 which is a contradiction of ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 0, โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ; then ๐‘‘(๐‘“V, {๐นV}๐›ผL ) = 0 and ๐‘“V โˆˆ {๐นV}๐›ผL . Also, ๐‘”๐‘ค โˆˆ {๐บ๐‘ค}๐›ผL for ๐‘ค โˆˆ ๐‘Œ. We prove this by contradiction; otherwise, since ๐œ“ (๐ป ({๐น๐‘ฅ๐‘› }๐›ผL , {๐บ๐‘ค}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , ๐‘”๐‘ค) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , (35)

๐‘‘ (๐‘“๐‘ฅ๐‘› , ๐‘”๐‘ค) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , {๐น๐‘ฅ๐‘› }๐›ผL )) โ‰ค 0.

๐œ™ (๐ป ({๐นV}๐›ผL , ๐ด) , 0, ๐ป (๐ด, {๐นV}๐›ผL ) , 0, 0, ๐‘ (0 + ๐ป (๐ด, {๐นV}๐›ผL ))) โ‰ค ๐œ™ (๐ป ({๐นV}๐›ผL , ๐ด) , 0,

When ๐‘› โ†’ โˆž, we have ๐œ“(๐ป({๐นV}๐›ผL , ๐ต), 0, ๐‘‘(๐‘“V, {๐นV}๐›ผL )) โ‰ค 0. But ๐‘“V โˆˆ ๐ต implies ๐‘‘(๐‘“V, {๐นV}๐›ผL ) = ๐‘‘({๐นV}๐›ผL , ๐‘“V) โ‰ค ๐ป({๐นV}๐›ผL , ๐ต); then

{๐น๐‘ฅ๐‘› }๐›ผL )) + ๐ธ min (๐ป ({๐น๐‘ฅ๐‘› }๐›ผL , {๐บ๐‘ค}๐›ผL ) ,

So that

(33)

๐‘‘ (๐‘“V, {๐นV}๐›ผL )) โ‰ค 0.

๐œ“ (๐‘‘ ({๐นV}๐›ผL , ๐‘“V) , 0, ๐‘‘ (๐‘“V, {๐นV}๐›ผL ))

๐‘„ = (๐ป ({๐นV}๐›ผL , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“V, ๐‘”๐‘ฆ๐‘› ) ,

๐œ™ (๐ป ({๐นV}๐›ผL , ๐ด) , 0, ๐‘‘ (๐‘“V, {๐นV}๐›ผL ) , ๐‘‘ (๐‘“V, ๐ด) ,

+ ๐ธ min (๐ป ({๐นV}๐›ผL , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“V, ๐‘”๐‘ฆ๐‘› ) ,

Letting ๐‘› โ†’ โˆž, we have ๐œ“(๐ป(๐ด, {๐บ๐‘ค}๐›ผL ), 0, ๐‘‘(๐‘“V, ๐ด)) โ‰ค 0, but ๐‘”๐‘ค โˆˆ ๐ด implies ๐‘‘(๐‘”๐‘ค, {๐บ๐‘ค}๐›ผL ) โ‰ค ๐ป(๐ด, {๐บ๐‘ค}๐›ผL ); then (31)

๐‘‘ (๐‘“V, {๐นV}๐›ผL ) , ๐‘‘ (๐‘“V, ๐ด) , ๐‘‘ (๐‘“V, ๐ด) , ๐‘‘ (๐‘“V, {๐นV}๐›ผL )) โ‰ค 0.

From the property ๐œ™(๐‘ข, V, ๐‘ข, V, 0, ๐‘(๐‘ข + V)) โ‰ค 0 which implies ๐‘ข โ‰ค โ„ŽV, there exists โ„Ž โˆˆ (0, 1) such that ๐ป({๐นV}๐›ผL , ๐ด) โ‰ค โ„Ž.0 = 0; this gives ๐ป(๐ด, {๐นV}๐›ผL ) = 0; then ๐ด = {๐นV}๐›ผL , and ๐‘“V โˆˆ {๐นV}๐›ผL . By a similar way, one can find ๐‘”๐‘ค โˆˆ {๐บ๐‘ค}๐›ผL for ๐‘ค โˆˆ ๐‘Œ. Further, ๐‘“๐‘“V = ๐‘“V and ๐‘“๐‘“V โˆˆ {๐น๐‘“V}๐›ผL so that ๐‘ข = ๐‘“๐‘ข โˆˆ {๐น๐‘ข}๐›ผL . Also, ๐‘”๐‘”๐‘ค = ๐‘”๐‘ค and ๐‘”๐‘”๐‘ค โˆˆ {๐บ๐‘”๐‘ค}๐›ผL imply ๐‘ข = ๐‘”๐‘ข โˆˆ {๐บ๐‘ข}๐›ผL . Then ๐‘“, ๐‘”, ๐น, ๐บ have a common fixed point.

๐œ“ (๐‘‘ (๐‘”๐‘ค, {๐บ๐‘ค}๐›ผL ) , 0, 0) โ‰ค ๐œ“ (๐ป (๐ด, {๐บ๐‘ค}๐›ผL ) , 0, 0) โ‰ค 0.

(36)

From ๐œ“(๐‘ข, V, V) โ‰ค 0 โ‡’ ๐‘ข โ‰ค V, this gives ๐‘‘(๐‘”๐‘ค, {๐บ๐‘ค}๐›ผL ) โ‰ค 0 which is a contradiction; then ๐‘”๐‘ค โˆˆ {๐บ๐‘ค}๐›ผL . Further, being weakly commuting and occasionally coincidentally idempotent imply that, respectively, ๐‘ข = ๐‘“V = ๐‘“๐‘“V = ๐‘“๐‘ข and ๐‘“๐‘“V โˆˆ {๐น๐‘“V}๐›ผL , so that ๐‘ข = ๐‘“๐‘ข โˆˆ {๐น๐‘ข}๐›ผL . Also, ๐‘”๐‘”๐‘ค = ๐‘”๐‘ค and ๐‘”๐‘”๐‘ค โˆˆ {๐บ๐‘”๐‘ค}๐›ผL imply ๐‘ข = ๐‘”๐‘ข โˆˆ {๐บ๐‘ข}๐›ผL . Then ๐‘“, ๐‘”, ๐น, ๐บ have a common fixed point.

Journal of Function Spaces

7

6. An Application to Integral Contractive Condition

where ๐‘„ = (๐ป ({๐น๐‘˜ ๐‘ฅ๐‘˜๐‘› }๐›ผL , {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ๐‘˜๐‘› , ๐‘”๐‘ฆ๐‘˜๐‘› ) ,

Suppose that ๐›ผ, ๐›ฝ : [0, โˆž) โ†’ [0, โˆž) are summable nonnegative Lebesgue integrable functions such that for each ๐œ– > 0, ๐œ– ๐œ– โˆซ0 ๐›ผ(๐‘ )๐‘‘๐‘  โ‰ฅ 0 and โˆซ0 ๐›ฝ(๐‘’)๐‘‘๐‘’ โ‰ฅ 0. As a simple application of Theorems 21, 25, and 26, we give the following result. Theorem 28. Let (๐‘‹, ๐‘‘) be a ๐‘-metric space, ๐‘Œ โŠ† ๐‘‹, and let โชฏ be a partial order defined on ๐‘Œ, ๐‘“, ๐‘” : ๐‘Œ โ†’ ๐‘‹ such that ๐‘“(๐‘Œ) and ๐‘”(๐‘Œ) are closed. Suppose that ๐น, ๐บ are two L-fuzzy mappings from ๐‘Œ into IL (๐‘‹) such that for each ๐‘ฅ โˆˆ ๐‘Œ and ๐›ผL โˆˆ ๐ฟ\{0L }, {๐น๐‘ฅ}๐›ผL and {๐บ๐‘ฅ}๐›ผL are nonempty closed subsets of ๐‘‹ and satisfying the following conditions

(2) (๐‘“, ๐น๐‘˜ ) and (๐‘”, ๐น๐‘™ ) are weakly commuting and occasionally coincidentally idempotent. (3) For all comparable elements ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ and ๐ธ > 0, there exist ๐œ™ โˆˆ ฮฆ such that โˆซ

0

min(๐‘„)

๐›ผ (๐‘ ) ๐‘‘๐‘  + ๐ธ โˆซ

0

๐‘‘ (๐‘“๐‘ฅ๐‘˜๐‘› , {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘˜๐‘› , {๐น๐‘˜ ๐‘ฅ๐‘˜๐‘› }๐›ผL )) . As ๐‘› โ†’ โˆž, we find that ๐œ™(๐ป(๐ด ๐‘˜ ,๐ต๐‘˜ ),0,0,๐‘‘(๐‘“V๐‘˜ ,๐ต๐‘˜ ),๐‘‘(๐‘“V๐‘˜ ,๐ต๐‘˜ ),0)

โˆซ

0

๐›ผ (๐‘ ) ๐‘‘๐‘  โ‰ค 0.

(42)

๐œ™ (๐ป (๐ด ๐‘˜ , ๐ต๐‘˜ ) , 0, 0, ๐‘‘ (๐‘“V๐‘˜ , ๐ต๐‘˜ ) , ๐‘‘ (๐‘“V๐‘˜ , ๐ต๐‘˜ ) , 0) โ‰ค 0, (43) which give ๐œ™(๐ป(๐ด ๐‘˜ ,๐ต๐‘˜ ),0,0,๐ป(๐ด ๐‘˜ ,๐ต๐‘˜ ),๐‘(๐ป(๐ด ๐‘˜ ,๐ต๐‘˜ )+0),0)

โˆซ

๐›ฝ (๐‘’) ๐‘‘๐‘’ โ‰ค 0,

(41)

So that

(1) (๐‘“, ๐น๐‘˜ ) and (๐‘”, ๐น๐‘™ ) satisfy (JCLR) property.

๐œ™(๐‘„)

๐‘‘ (๐‘“๐‘ฅ๐‘˜๐‘› , {๐น๐‘˜ ๐‘ฅ๐‘˜๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘˜๐‘› , {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL ) ,

(37)

0

โ‰คโˆซ

๐›ผ (๐‘ ) ๐‘‘๐‘ 

๐œ™(๐ป(๐ด ๐‘˜ ,๐ต๐‘˜ ),0,๐‘‘(๐‘“V๐‘˜ ,๐ด ๐‘˜ ),๐‘‘(๐‘“V๐‘˜ ,๐ต๐‘˜ ),๐‘‘(๐‘“V๐‘˜ ,๐ต๐‘˜ ),๐‘‘(๐‘“V๐‘˜ ,๐ด ๐‘˜ ))

0

where

๐›ผ (๐‘ ) ๐‘‘๐‘ 

(44)

โ‰ค 0.

๐‘„ = (๐ป ({๐น๐‘˜ ๐‘ฅ}๐›ผL , {๐น๐‘™ ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘˜ ๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘™ ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘™ ๐‘ฆ}๐›ผL ) , (38)

By (๐œ™), we have ๐ป(๐ด ๐‘˜ , ๐ต๐‘˜ ) = 0; that is, ๐ด ๐‘˜ = ๐ต๐‘˜ . As ๐‘ข๐‘˜ โˆˆ ๐ด ๐‘˜ , we show that {๐น๐‘˜ V๐‘˜ }๐›ผL = ๐ด ๐‘˜ . As โˆซ

๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘˜ ๐‘ฅ}๐›ผL )) ,

๐œ™(๐‘„)

0

๐›ผ (๐‘ ) ๐‘‘๐‘  + ๐ธ โˆซ

min(๐‘„)

0

๐›ฝ (๐‘’) ๐‘‘๐‘’ โ‰ค 0,

(45)

where where ๐‘˜ = 2๐‘› + 1, ๐‘™ = 2๐‘› + 2, ๐‘› โˆˆ N; then ๐‘“ and ๐‘” have a common fixed point, while ๐น๐‘˜ and ๐น๐‘™ have a common ๐ฟ-fuzzy fixed point.

๐‘„ = (๐ป ({๐น๐‘˜ V๐‘˜ }๐›ผL , {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL ) , ๐‘‘ (๐‘“V๐‘˜ , ๐‘”๐‘ฆ๐‘˜๐‘› ) , ๐‘‘ (๐‘“V๐‘˜ , {๐น๐‘˜ V๐‘˜ }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘˜๐‘› , {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL ) ,

Proof. Since (๐‘“, ๐น๐‘˜ ) and (๐‘”, ๐น๐‘™ ) satisfy the property (JCLR), there exist two sequences {๐‘ฅ๐‘˜๐‘› }, {๐‘ฆ๐‘˜๐‘› } in ๐‘Œ and ๐ด ๐‘˜ , ๐ต๐‘˜ โˆˆ ๐ถ๐ฟ(๐‘‹) such that lim ๐‘“๐‘ฅ๐‘˜๐‘› = lim ๐‘”๐‘ฆ๐‘˜๐‘› = ๐‘ข๐‘˜ ,

๐‘›โ†’โˆž

lim {๐น๐‘˜ ๐‘ฅ๐‘˜๐‘› }๐›ผL = ๐ด ๐‘˜ ,

(39)

lim {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL = ๐ต๐‘˜ ,

0

๐›ผ (๐‘ ) ๐‘‘๐‘  + ๐ธ โˆซ

min(๐‘„)

0

๐œ™(๐ป({๐น๐‘˜ V๐‘˜ }๐›ผL ,๐ด ๐‘˜ ),0,0,๐‘‘({๐น๐‘˜ V๐‘˜ }๐›ผL ,๐ด ๐‘˜ ),๐‘‘({๐น๐‘˜ V๐‘˜ }๐›ผL ,๐ด ๐‘˜ ),0)

๐›ผ (๐‘ ) ๐‘‘๐‘  (47)

โ‰ค 0.

with ๐‘ข๐‘˜ = ๐‘“V๐‘˜ = ๐‘”๐‘ค๐‘™ , ๐‘ข๐‘˜ โˆˆ ๐ด ๐‘˜ โˆฉ ๐ต๐‘˜ , for some ๐‘ข๐‘˜ , V๐‘˜ , ๐‘ค๐‘˜ โˆˆ ๐‘Œ. Now, we show that ๐ด ๐‘˜ = ๐ต๐‘˜ . As ๐œ™(๐‘„)

โˆซ

0

๐‘›โ†’โˆž

โˆซ

๐‘‘ (๐‘“V๐‘˜ , {๐น๐‘™ ๐‘ฆ๐‘˜๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘˜๐‘› , {๐น๐‘˜ V๐‘˜ }๐›ผL )) , which on making ๐‘› โ†’ โˆž reduces to

๐‘›โ†’โˆž

๐‘›โ†’โˆž

(46)

๐›ฝ (๐‘’) ๐‘‘๐‘’ โ‰ค 0,

(40)

By a similar way, we have {๐น๐‘˜ V๐‘˜ }๐›ผL = ๐ด ๐‘˜ . The remaining parts are easy to prove. This concludes the proof. Now, we may apply Theorem 28 with the following example.

8

Journal of Function Spaces

Example 29. Let ๐‘‹ = [0, 1], ๐‘Œ โŠ† ๐‘‹, and ๐‘‘(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ|2 ; then (๐‘‹, ๐‘‘) is a ๐‘-metric space with ๐‘ = 2. Define the partial order ๐‘ฅ โชฏ ๐‘ฆ as ๐‘ฅ โ‰ค ๐‘ฆ for each ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘‹ โชฏ1 ๐‘Œ as follows: for each ๐‘ฅ โˆˆ ๐‘‹, there exist ๐‘ฆ โˆˆ ๐‘Œ such that ๐‘ฅ โ‰ค ๐‘ฆ. Let ๐ฟ = [0, 1] and define the maps ๐‘“, ๐‘”, ๐น, ๐บ on ๐‘‹ as

3 , { { { 4 { { {1 (๐บ๐‘ฅ) (๐‘ฆ) = { , { 2 { { { {1 {4, โˆซ

1 , 10 1 ๐‘ฅ+1 if 0, there exists ๐œ™ โˆˆ ฮฆ such that

๐‘‘ (๐‘“๐‘ฅ๐‘› , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐น๐‘ฅ๐‘› }๐›ผL )) .

min(๐‘„)

(51)

๐‘‘ (๐‘“๐‘ฅ๐‘› , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐น๐‘ฅ๐‘› }๐›ผL )) = 0,

๐‘„ = (๐ป ({๐น๐‘ฅ๐‘› }๐›ผL , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , ๐‘”๐‘ฆ๐‘› ) ,

๐œ™ (๐‘„) + ๐ธ โˆซ

(50)

๐œ™ (๐ป ({๐น๐‘ฅ๐‘› }๐›ผL , {๐บ๐‘ฆ๐‘› }๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ๐‘› , ๐‘”๐‘ฆ๐‘› ) ,

where

๐‘‘ (๐‘“๐‘ฅ๐‘› , {๐น๐‘ฅ๐‘› }๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ๐‘› , {๐บ๐‘ฆ๐‘› }๐›ผL ) ,

(49)

Since lim๐‘›โ†’โˆž ๐‘“๐‘ฅ๐‘› = lim๐‘›โ†’โˆž ๐‘”๐‘ฆ๐‘› = 1/6 โˆˆ [1/6, 1] = lim๐‘›โ†’โˆž ๐น๐‘ฅ๐‘› = lim๐‘›โ†’โˆž ๐บ๐‘ฆ๐‘› , the hybrid pairs (๐‘“, ๐น) and (๐‘”, ๐บ) satisfy the property (JCLR). Also ๐‘“(1/6) = ๐‘“๐‘“(1/6) = 1/6 and ๐‘”(1/6) = ๐‘”๐‘”(1/6) = 1/6 (occasionally coincidentally idempotent). Finally, ๐‘“๐‘“(1/6) = 1/6 โˆˆ [7/54, 1] = {๐น๐‘“(1/6)}2/3 and ๐‘”๐‘”(1/6) = 1/6 โˆˆ [7/48, 1] = {๐บ๐‘”(1/6)}2/3 (weakly commuting). Let ๐œ™(๐‘ก1 , . . . , ๐‘ก6 ) = ๐‘ก1 โˆ’ โ„Ž max{๐‘ก2 , (๐‘ก3 + ๐‘ก4 )๐‘ก5 ๐‘ก6 }. Further,

๐œ™(๐ป({๐น๐‘ฅ๐‘› }๐›ผL ,{๐บ๐‘ฆ๐‘› }๐›ผL ),๐‘‘(๐‘“๐‘ฅ๐‘› ,๐‘”๐‘ฆ๐‘› ),๐‘‘(๐‘“๐‘ฅ๐‘› ,{๐น๐‘ฅ๐‘› }๐›ผL ),๐‘‘(๐‘”๐‘ฆ๐‘› ,{๐บ๐‘ฆ๐‘› }๐›ผL ),๐‘‘(๐‘“๐‘ฅ๐‘› ,{๐บ๐‘ฆ๐‘› }๐›ผL ),๐‘‘(๐‘”๐‘ฆ๐‘› ,{๐น๐‘ฅ๐‘› }๐›ผL ))

๐›ผ (๐‘ ) ๐‘‘๐‘  + ๐ธ โˆซ

๐›ฝ (๐‘’) ๐‘‘๐‘’ โ‰ค 0,

๐‘‘ (๐‘”๐‘ฆ, {๐น๐‘ฅ}๐›ผL )) .

Then โˆซ

0

๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL ) , ๐‘‘ (๐‘”๐‘ฆ, {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, {๐บ๐‘ฆ}๐›ผL ) ,

1 if 0 โ‰ค ๐‘ฆ < , 9 1 ๐‘ฅ+1 if โ‰ค ๐‘ฆ < , 9 8 ๐‘ฅ+1 if โ‰ค ๐‘ฆ โ‰ค 1, 8

min(๐‘„)

min(๐‘„)

๐‘„ = (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) ,

0

๐œ™(๐‘„)

๐›ผ (๐‘ ) ๐‘‘๐‘  + ๐ธ โˆซ

where

1 1 { { { 6 , if 0 โ‰ค ๐‘ฅ < 3 , ๐‘”๐‘ฅ = { { { ๐‘ฅ , if 1 โ‰ค ๐‘ฅ โ‰ค 1, 3 {2 if 0 โ‰ค ๐‘ฆ โ‰ค

โˆซ

0

1 1 { { { 6 , if 0 โ‰ค ๐‘ฅ < 2 , ๐‘“๐‘ฅ = { { { ๐‘ฅ , if 1 โ‰ค ๐‘ฅ โ‰ค 1, 2 {3

5 { , { { 6 { { { {4 (๐น๐‘ฅ) (๐‘ฆ) = { , { 5 { { { { {2, {3

for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Define two sequences {๐‘ฅ๐‘› } and {๐‘ฆ๐‘› } in ๐‘Œ such that {๐‘ฅ๐‘› } = {1/2 + 1/4๐‘›}, {๐‘ฆ๐‘› } = {1/3 + 1/6๐‘›}, ๐‘› โˆˆ N. Now, we show that for ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ there exist ๐œ™ โˆˆ ฮฆ such that

min(๐‘„)

๐›ผ (๐‘ ) ๐‘‘๐‘  + ๐ธ โˆซ

0

๐›ฝ (๐‘’) ๐‘‘๐‘’ โ‰ค 0,

(56)

where ๐‘„ = (๐ป ({๐น๐‘ฅ}๐›ผL , {๐บ๐‘ฆ}๐›ผL ) , ๐‘‘ (๐‘“๐‘ฅ, ๐‘”๐‘ฆ) , ๐‘‘ (๐‘“๐‘ฅ, {๐น๐‘ฅ}๐›ผL )) .

(57)

If (๐‘“, ๐น) and (๐‘”, ๐บ) satisfy (JCLR) property, weakly commuting and occasionally coincidentally idempotent, then ๐‘“ and ๐‘” have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point. Proof. It is similar to Theorem 27.

Journal of Function Spaces

Conflicts of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

References [1] J. A. Goguen, โ€œL-fuzzy sets,โ€ Journal of Mathematical Analysis and Applications, vol. 18, pp. 145โ€“174, 1967. [2] L. A. Zadeh, โ€œFuzzy sets,โ€ Information and Control, vol. 8, no. 3, pp. 338โ€“353, 1965. [3] S. a. Heilpern, โ€œFuzzy mappings and fixed point theorem,โ€ Journal of Mathematical Analysis and Applications, vol. 83, no. 2, pp. 566โ€“569, 1981. [4] J. Nadler, โ€œMulti-valued contraction mappings,โ€ Pacific Journal of Mathematics, vol. 30, pp. 475โ€“488, 1969. [5] I. Beg and M. A. Ahmed, โ€œFixed point for fuzzy contraction mappings satisfying an implicit relation,โ€ Matematicki Vesnik, vol. 66, no. 4, pp. 351โ€“356, 2014. [6] I. Beg, M. A. Ahmed, and H. A. Nafadi, โ€œCommon fixed points for hybrid pairs of fuzzy and crisp mappings,โ€ Acta Universitatis Apulensis, no. 38, pp. 311โ€“318, 2014. [7] S. Phiangsungnoen, W. Sintunavarat, and P. Kumam, โ€œFuzzy fixed point theorems for fuzzy mappings via ๐›ฝ-admissible with applications,โ€ Journal of Uncertainty Analysis and Applications, vol. 2, article 20, 2014. [8] S. Phiangsungnoen and P. Kumam, โ€œFuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces,โ€ Journal of Nonlinear Sciences and Applications. JNSA, vol. 8, no. 1, pp. 55โ€“63, 2015. [9] M. Rashid, A. Azam, and N. Mehmood, โ€œL-fuzzy fixed points theorems for L-fuzzy mappings via B-IL-admissible pair,โ€ The Scientific World Journal, vol. 2014, Article ID 853032, 8 pages, 2014. [10] M. S. Abdullahi and A. Azam, โ€œL-fuzzy fixed point theorems for L-fuzzy mappings via BFL-admissible with applications,โ€ J. Uncert. Anal. Appl, vol. 5, no. 2, pp. 1โ€“13, 2017. [11] P. Kumam and W. Sintunavarat, โ€œCommon fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces,โ€ Journal of Applied Mathematics, vol. 2011, Article ID 637958, 14 pages, 2011. [12] I. A. Bakhtin, โ€œThe contraction mapping principle in almost metric space,โ€ Functional Analysis and its Applications, vol. 30, pp. 26โ€“37, 1989. [13] M. Boriceanu, M. Bota, and A. Petru, โ€œMultivalued fractals in b-metric spaces,โ€ Central European Journal of Mathematics, vol. 8, no. 2, pp. 367โ€“377, 2010. [14] S. Czerwik, โ€œNonlinear set-valued contraction mappings in b-metric spaces,โ€ Atti del Seminario Matematico e Fisico dellโ€™Universit`a di Modena, vol. 46, no. 2, pp. 263โ€“276, 1998. [15] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, Germany, 1997. [16] M. Rashid, M. A. Kutbi, and A. Azam, โ€œCoincidence theorems via alpha cuts of L-fuzzy sets with applications,โ€ Fixed Point Theory and Applications, vol. 2014, no. 1, article no. 212, 2014. [17] M. A. Ahmed and H. A. Nafadi, โ€œCommon fixed point theorems for hybrid pairs of maps in fuzzy metric spaces,โ€ Journal of the Egyptian Mathematical Society, vol. 22, no. 3, pp. 453โ€“458, 2014. [18] H. K. Pathak and R. Rodrยดฤฑguez-Lยดopez, โ€œNoncommutativity of mappings in hybrid fixed point results,โ€ Boundary Value Problems, vol. 2013, no. 145, 2013.

9 [19] B. K. Sharma, D. R. Sahu, and M. Bounias, โ€œCommon fixed point theorems for a mixed family of fuzzy and crisp mappings,โ€ Fuzzy Sets and Systems, vol. 125, no. 2, pp. 261โ€“268, 2002. [20] M. A. Ahmed, โ€œCommon fixed points of hybrid maps and an applications,โ€ Computers & Mathematics with Applications, vol. 60, no. 7, pp. 1888โ€“1894, 2010.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at https://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

#HRBQDSDฤฎ,@SGDL@SHBR

Journal of

Volume 201

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014