Hindawi Journal of Function Spaces Volume 2018, Article ID 5650242, 9 pages https://doi.org/10.1155/2018/5650242
Research Article Fixed Points of L-Fuzzy Mappings in Ordered ๐-Metric Spaces Ismat Beg
,1 Mohamed A. Ahmed,2 and Hatem A. Nafadi3
1
Lahore School of Economics, Lahore, Pakistan Assiut University, Assiut, Egypt 3 Port Said University, Port Said, Egypt 2
Correspondence should be addressed to Ismat Beg;
[email protected] Received 26 October 2017; Revised 20 December 2017; Accepted 11 January 2018; Published 1 March 2018 Academic Editor: Tomonari Suzuki Copyright ยฉ 2018 Ismat Beg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We prove common fixed point theorems for weakly commuting and occasionally coincidentally idempotent L-fuzzy mappings in ordered ๐-metric spaces. We also obtain common fixed point for pair of mapping satisfying (JCLR) property. An application to integral type and usual contractive condition is given.
1. Introduction In 1967, Goguen [1] introduced the notion of L-fuzzy sets as a generalization of fuzzy sets [2]. Afterward, Heilpern [3] gave the concept of fuzzy mappings and proved fixed point theorems for fuzzy contractive mappings in metric linear spaces as a generalization of Nadler [4] contraction principle. Subsequently, several authors studied the generalizations/extensions and applications of these results; in many papers sufficient conditions for the existence of fixed point for fuzzy and L-fuzzy contractive mappings in metric spaces and ๐-metric spaces are obtained (see [5โ8]). Rashid et al. [9] proved common L-fuzzy fixed point theorem in complete metric spaces. They extended the results of Heilpern [3] into L-fuzzy mappings in metric spaces. In this paper, we prove some common fixed point theorems for L-fuzzy mappings in ordered ๐-metric spaces. An application to integral type and usual contractive condition is also given, we will generalize and extend results [10, 11].
2. Preliminaries Definition 1 (see [12]). Let ๐ be a nonempty set. A mapping ๐ : ๐ ร ๐ โ [0, โ) is called ๐-metric if there exists a real number ๐ โฅ 1 such that, for every ๐ฅ, ๐ฆ, ๐ง โ ๐, we have (๐1 ) ๐(๐ฅ, ๐ฆ) = 0 โ ๐ฅ = ๐ฆ,
(๐2 ) ๐(๐ฅ, ๐ฆ) = ๐(๐ฆ, ๐ฅ), (๐3 ) ๐(๐ฅ, ๐ง) โค ๐{๐(๐ฅ, ๐ฆ) + ๐(๐ฆ, ๐ง)}. In this case, the pair (๐, ๐) is called a ๐-metric space. Definition 2 (see [13]). Let (๐, ๐) be a ๐-metric space. A sequence {๐ฅ๐ } in ๐ is called (i) convergent if and only if there exists ๐ฅ โ ๐ such that ๐(๐ฅ๐ , ๐ฅ) โ 0 as ๐ โ โ, (ii) Cauchy if and only if ๐(๐ฅ๐ , ๐ฅ๐ ) โ 0 as ๐, ๐ โ โ. A ๐-metric space is said to be complete if and only if each Cauchy sequence in this space is convergent. Let (๐, ๐) be a ๐-metric space, let ๐ถ๐ฟ(๐) denote the collection of all nonempty closed subsets of ๐, let ๐(๐) be the set of all fuzzy sets of ๐, where its ๐ผ-level sets are nonempty compact subsets of ๐, and let R+ be the set of nonnegative real numbers; define the metrics ๐ : ๐ ร ๐ถ๐ฟ(๐) โ R+ and ๐ป : ๐ถ๐ฟ(๐) ร ๐ถ๐ฟ(๐) โ R+ as ๐(๐ฅ, ๐ด) = inf ๐ฆโ๐ด๐(๐ฅ, ๐ฆ) and ๐ป(๐ด, ๐ต) = max{sup๐โ๐ด ๐(๐, ๐ต), sup๐โ๐ต ๐(๐ด, ๐)}. Notice that ๐(๐, ๐ต) โค ๐(๐, ๐) and ๐(๐, ๐ต) โค ๐ป(๐ด, ๐ต), for each ๐ โ ๐ด and ๐ โ ๐ต. Let ๐ : ๐ โ ๐, ๐น : ๐ โ ๐ถ๐ฟ(๐), and ๐ถ(๐, ๐น) be the set of the coincidence points of (๐, ๐น). Lemma 3 (see [14]). Let (๐, ๐) be a ๐-metric space, ๐ด, ๐ต โ ๐ถ๐ฟ(๐); then ๐(๐, ๐ต) โค ๐ป(๐ด, ๐ต) for all ๐ โ ๐ด.
2
Journal of Function Spaces
Definition 4 (see [15]). A partially ordered set consists of a set ๐ and a binary relation โชฏ on ๐ which satisfies the following conditions for all ๐ฅ, ๐ฆ, ๐ง โ ๐:
{๐ฆ2๐+1 } = {๐๐ฅ2๐+1 } โ ๐น๐ฅ2๐ ,
(1) ๐ฅ โชฏ ๐ฅ (reflexivity).
{๐ฆ2๐+2 } = {๐๐ฅ2๐+2 } โ ๐บ๐ฅ2๐+1 ,
(2) If ๐ฅ โชฏ ๐ฆ and ๐ฆ โชฏ ๐ฅ, then ๐ฅ = ๐ฆ (antisymmetry).
A set with a partial order โชฏ is called a partially ordered set. Let (๐, โชฏ) be a partially ordered set and ๐ฅ, ๐ฆ โ ๐. Elements ๐ฅ and ๐ฆ are said to be comparable elements of ๐ if either ๐ฅ โชฏ ๐ฆ or ๐ฆ โชฏ ๐ฅ. Definition 5. Let ๐ด and ๐ต be two nonempty subsets of (๐, โชฏ); the relation โชฏ1 between ๐ด and ๐ต is defined as ๐ด โชฏ1 ๐ต: if for every ๐ โ ๐ด there exists ๐ โ ๐ต such that ๐ โชฏ ๐. Definition 6 (see [1]). A function ๐ด : ๐ โ ๐ฟ is said to be an L -fuzzy set if ๐ด is a mapping from a nonempty set ๐ into a complete distributive lattice ๐ฟ. Definition 7 (see [9, 10, 16]). Let ๐ด be an L-fuzzy set in ๐. The ๐ผL -level set of ๐ด (denoted by ๐ด ๐ผL ) is defined as if ๐ผL โ ๐ฟ \ {0L } ,
๐ด 0L = {๐ฅ โ ๐ : 0L โชฏ๐ฟ ๐ด (๐ฅ)},
(2)
then ๐(๐น, ๐บ, ๐, ๐, ๐ฅ0 ) is called the orbit for the mappings (๐น, ๐บ, ๐, ๐).
(3) If ๐ฅ โชฏ ๐ฆ and ๐ฆ โชฏ ๐ง, then ๐ฅ โชฏ ๐ง (transitivity).
๐ด ๐ผL = {๐ฅ โ ๐ : ๐ผL โชฏ๐ฟ ๐ด (๐ฅ)}
Definition 13 (see [19]). Let (๐, ๐) be a metric space, ๐, ๐ : ๐ โ ๐, and ๐น, ๐บ : ๐ โ ๐(๐). Let ๐ฅ0 โ ๐; if there exists a sequence {๐ฆ๐ } in ๐ such that
(1)
where ๐ต denotes the closure of the set ๐ต. Definition 8 (see [9]). Let ๐ and ๐ be two arbitrary nonempty sets and IL (๐) denote the collection of all L-fuzzy sets in ๐. A mapping ๐น is called L-fuzzy mapping if ๐น is a mapping from ๐ into IL (๐). An L-fuzzy mapping ๐น is an L-fuzzy subset on ๐ ร ๐ with membership function ๐น(๐ฅ)(๐ฆ). The function ๐น(๐ฅ)(๐ฆ) is the grade of membership of ๐ฆ in ๐น(๐ฅ). Definition 9 (see [9]). Let ๐น, ๐บ be L -fuzzy mappings from an arbitrary nonempty set ๐ into IL (๐). A point ๐ง โ ๐ is called an L-fuzzy fixed point of ๐น if ๐ง โ {๐น๐ง}๐ผL , where ๐ผL โ ๐ฟ \ {0L }. The point ๐ง โ ๐ is called a common L-fuzzy fixed point of ๐น and ๐บ if ๐ง โ {๐น๐ง}๐ผL โฉ {๐บ๐ง}๐ผL . Remark 10 (see [10, 16]). If ๐ผL = 1L then the L-fuzzy fixed point is just the fixed point for the ๐ฟ-fuzzy mapping. Definition 11 (see [17]). Let (๐, ๐) be a metric space, ๐ : ๐ โ ๐, and ๐น : ๐ โ ๐ถ๐ฟ(๐). Then the pair (๐, ๐น) is said to have (CLR) property if there exists a sequence {๐ฅ๐ } in ๐ and ๐ด โ ๐ถ๐ฟ(๐) such that lim๐โโ ๐๐ฅ๐ = ๐ข โ ๐ด = lim๐โโ ๐น๐ฅ๐ , with ๐ข = ๐V, for some ๐ข, V โ ๐. Definition 12 (see [18]). Let (๐, ๐) be a metric space, ๐ โ ๐, ๐ : ๐ โ ๐, and ๐น : ๐ โ ๐ถ๐ฟ(๐). Two mappings (๐, ๐น) are said to be occasionally coincidentally idempotent if ๐2 ๐ฅ = ๐๐ฅ for some ๐ฅ โ ๐ถ(๐, ๐น).
Definition 14 (see [19]). Metric space ๐ is called ๐ฅ0 joint orbitally complete, if every Cauchy sequence of each orbit at ๐ฅ0 is convergent in ๐. Definition 15 (see [20]). Let ๐ be a mapping from a subset ๐ of a metric space (๐, ๐) into ๐ and ๐น : ๐ โ ๐ถ๐ฟ(๐); then ๐ is said to be ๐น-weakly commuting at ๐ฅ โ ๐ if ๐2 ๐ฅ โ ๐น๐๐ฅ.
3. Definitions in ๐-Metric Spaces Let (๐, ๐) be a ๐-metric space, ๐ โ ๐, ๐, ๐ : ๐ โ ๐ and ๐น, ๐บ are two L-fuzzy mappings from ๐ into IL (๐) such that, for each ๐ฅ โ ๐, ๐ผL โ ๐ฟ \ {0L }, {๐น๐ฅ}๐ผL and {๐บ๐ฅ}๐ผL are nonempty closed subsets of ๐. Similar to [11], first we rewrite some notions in ๐-metric spaces as follows. Definition 16. The pairs (๐, ๐น) and (๐, ๐บ) are said to have (JCLR) property if there exist two sequences {๐ฅ๐ } and {๐ฆ๐ } in ๐ and ๐ด, ๐ต โ ๐ถ๐ฟ(๐) such that lim ๐๐ฅ๐ = lim ๐๐ฆ๐ = ๐ข,
๐โโ
๐โโ
lim {๐น๐ฅ๐ }๐ผL = ๐ด,
๐โโ
(3)
lim {๐บ๐ฆ๐ }๐ผL = ๐ต,
๐โโ
with ๐ข = ๐V = ๐๐ค, ๐ข โ ๐ด โฉ ๐ต, for some ๐ข, V, ๐ค โ ๐. Definition 17. Two mappings ๐ and ๐น are said to be occasionally coincidentally idempotent if ๐2 ๐ฅ = ๐๐ฅ for some ๐ฅ โ ๐ถ(๐, ๐น). Definition 18. Two mappings ๐ and ๐น are said to be ๐น-weakly commuting at ๐ฅ โ ๐ if ๐๐๐ฅ โ {๐น๐๐ฅ}๐ผL . Let ฮฆ be the family of all continuous mappings ๐ : [0, โ)6 โ [0, โ) satisfying the following properties: (๐1 ) ๐น is nondecreasing in the 1st variable and nonincreasing in the 3rd, 4th, 5th, and 6th coordinate variables. (๐2 ) There exists โ โ (0, 1) such that for every ๐ข, V โฅ 0, ๐ โฅ 1 with ๐(๐ข, V, V, ๐ข, ๐(๐ข+V), 0) โค 0 or ๐(๐ข, V, ๐ข, V, 0, ๐(๐ข+ V)) โค 0 implies ๐ข โค โV. Example 19. (i) ๐(๐ก1 , ๐ก2 , ๐ก3 , ๐ก4 , ๐ก5 , ๐ก6 ) = ๐ก1 โ โ max{๐ก2 , (๐ก3 + ๐ก4 )๐ก5 ๐ก6 }. (ii) ๐(๐ก1 , ๐ก2 , ๐ก3 , ๐ก4 , ๐ก5 , ๐ก6 ) = ๐ก1 โ โ min{๐ก2 , (๐ก3 + ๐ก4 )/๐, (๐ก5 + ๐ก6 )/๐2 }, ๐ โฅ 2. (iii) ๐(๐ก1 , ๐ก2 , ๐ก3 , ๐ก4 , ๐ก5 , ๐ก6 ) = ๐ก1 โ โ๐ก2 .
Journal of Function Spaces
3
Let ฮจ be the family of continuous mappings ๐ : [0, โ)3 โ R, which is nondecreasing in the first coordinate and satisfying the following condition for each ๐ข, V โฅ 0: if ๐(๐ข, V, V) โค 0 or ๐(๐ข, V, ๐ข) โค 0, then ๐ข โค V.
but ๐ (๐ (๐ฆ1 , ๐ฆ2 ) , ๐ (๐ฆ0 , ๐ฆ1 ) , ๐ (๐ฆ0 , ๐ฆ1 ) , ๐ (๐ฆ1 , ๐ฆ2 ) , ๐ (๐ (๐ฆ0 , ๐ฆ1 ) + ๐ (๐ฆ1 , ๐ฆ2 )) , 0)
Example 20. (i) ๐(๐ก1 , ๐ก2 , ๐ก3 ) = ๐ก1 โ min{๐ก2 , (๐ก2 + ๐ก3 )/๐}, ๐ โฅ 2. (ii) ๐(๐ก1 , ๐ก2 , ๐ก3 ) = ๐ก1 โ ๐ก2 . (iii) ๐(๐ก1 , ๐ก2 , ๐ก3 ) = ๐ก1 โ (๐ก2 + ๐ก3 )/๐, ๐ โฅ 2.
โค ๐ (๐ป ({๐น๐ฅ0 }๐ผL , {๐บ๐ฅ1 }๐ผL ) , ๐ (๐๐ฅ0 , ๐๐ฅ1 ) , ๐ (๐๐ฅ0 , {๐น๐ฅ0 }๐ผL ) , ๐ (๐๐ฅ1 , {๐บ๐ฅ1 }๐ผL ) , ๐ (๐๐ฅ0 , {๐บ๐ฅ1 }๐ผL ) , 0) โค 0;
4. Common Fixed Points in Ordered ๐-Metric Spaces Theorem 21. Let (๐, ๐) be a ๐-metric space, ๐ โ ๐, and โชฏ be a partial order defined on ๐, ๐, ๐ : ๐ โ ๐ such that ๐(๐) and ๐(๐) are closed. Suppose that ๐น, ๐บ are two L-fuzzy mappings from ๐ into IL (๐) such that for each ๐ฅ โ ๐ and ๐ผL โ ๐ฟ\{0L }, {๐น๐ฅ}๐ผL and {๐บ๐ฅ}๐ผL are nonempty closed subsets of ๐ which satisfy the following conditions:
then from the property ๐(๐ข, V, V, ๐ข, ๐(๐ข + V), 0) โค 0 which implies ๐ข โค โV, there exists โ โ (0, 1) such that ๐(๐ฆ1 , ๐ฆ2 ) โค โ๐(๐ฆ0 , ๐ฆ1 ). Again, ๐ฆ2 = ๐๐ฅ2 โ {๐บ๐ฅ1 }๐ผL , ๐ฆ3 = ๐๐ฅ3 โ {๐น๐ฅ2 }๐ผL , ๐ฅ2 โชฏ ๐ฅ3 , and ๐(๐ฆ3 , ๐ฆ2 ) = ๐(๐๐ฅ3 , ๐๐ฅ2 ) โค ๐ป({๐น๐ฅ2 }๐ผL , {๐บ๐ฅ1 }๐ผL ); then ๐ (๐ป ({๐น๐ฅ2 }๐ผL , {๐บ๐ฅ1 }๐ผL ) , ๐ (๐๐ฅ2 , ๐๐ฅ1 ) ,
(1) {๐น๐ฅ}๐ผL โชฏ1 ๐(๐) and {๐บ๐ฅ}๐ผL โชฏ1 ๐(๐).
๐ (๐๐ฅ2 , {๐น๐ฅ2 }๐ผL ) , ๐ (๐๐ฅ1 , {๐บ๐ฅ1 }๐ผL ) , 0,
(2) ๐๐ฆ โ {๐น๐ฅ}๐ผL or ๐๐ฆ โ {๐บ๐ฅ}๐ผL implies ๐ฅ โชฏ ๐ฆ.
๐ (๐๐ฅ1 , {๐น๐ฅ2 }๐ผL )) โค 0.
(3) If ๐ฆ๐ โ ๐ฆ, then ๐ฆ๐ โชฏ ๐ฆ for all ๐ โ N.
(8)
Also
(4) (๐, ๐น) and (๐, ๐บ) are weakly commuting and occasionally coincidentally idempotent. (5) For all comparable elements ๐ฅ, ๐ฆ โ ๐ and ๐ธ > 0, there exists ๐ โ ฮฆ such that ๐ (๐) + ๐ธ min (๐) โค 0,
(7)
(4)
๐ (๐ (๐ฆ2 , ๐ฆ3 ) , ๐ (๐ฆ1 , ๐ฆ2 ) , ๐ (๐ฆ2 , ๐ฆ3 ) , ๐ (๐ฆ1 , ๐ฆ2 ) , 0, ๐ (๐ (๐ฆ1 , ๐ฆ2 ) + ๐ (๐ฆ2 , ๐ฆ3 ))) โค ๐ (๐ป ({๐น๐ฅ2 }๐ผL , {๐บ๐ฅ1 }๐ผL ) , ๐ (๐๐ฅ2 , ๐๐ฅ1 ) ,
(9)
๐ (๐๐ฅ2 , {๐น๐ฅ2 }๐ผL ) , ๐ (๐๐ฅ1 , {๐บ๐ฅ1 }๐ผL ) , 0, ๐ (๐๐ฅ1 , {๐น๐ฅ2 }๐ผL )) โค 0;
where ๐ = (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) ,
(5)
then from the property ๐(๐ข, V, ๐ข, V, 0, ๐(๐ข + V)) โค 0 which implies ๐ข โค โV, there exists โ โ (0, 1) such that ๐(๐ฆ2 , ๐ฆ3 ) โค โ๐(๐ฆ1 , ๐ฆ2 ) โค โ2 ๐(๐ฆ0 , ๐ฆ1 ). By induction we obtain ๐(๐ฆ๐ , ๐ฆ๐+1 ) โค โ๐ ๐(๐ฆ0 , ๐ฆ1 ). Continuing in this way, we obtain an orbit ๐(๐น, ๐บ, ๐, ๐, ๐ฅ0 ) such that ๐ฆ2๐+1 = ๐๐ฅ2๐+1 โ {๐น๐ฅ2๐ }๐ผL and ๐ฆ2๐+2 = ๐๐ฅ2๐+2 โ {๐บ๐ฅ2๐+1 }๐ผL . Further,
(6) One of ๐(๐) or ๐(๐) is ๐ฅ0 joint orbitally complete for some ๐ฅ0 โ ๐;
๐ (๐ฆ๐ , ๐ฆ๐ ) โค ๐๐ (๐ฆ๐ , ๐ฆ๐+1 ) + ๐2 ๐ (๐ฆ๐+1 , ๐ฆ๐+2 ) + โ
โ
โ
then ๐ and ๐ have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point
โค ๐๐ (๐ฆ๐ , ๐ฆ๐+1 ) + ๐2 ๐ (๐ฆ๐+1 , ๐ฆ๐+2 ) + โ
โ
โ
Proof. Let ๐ฅ0 โ ๐ and ๐ฆ0 = ๐๐ฅ0 ; then by (1), there exist ๐ฅ1 , ๐ฅ2 โ ๐ such that ๐ฆ1 = ๐๐ฅ1 โ {๐น๐ฅ0 }๐ผL and ๐ฆ2 = ๐๐ฅ2 โ {๐บ๐ฅ1 }๐ผL , from (2), ๐ฅ0 โชฏ ๐ฅ1 โชฏ ๐ฅ2 . Now, ๐(๐ฆ1 , ๐ฆ2 ) = ๐(๐๐ฅ1 , ๐๐ฅ2 ) โค ๐ป({๐น๐ฅ0 }๐ผL , {๐บ๐ฅ1 }๐ผL ); then ๐ (๐ป ({๐น๐ฅ0 }๐ผL , {๐บ๐ฅ1 }๐ผL ) , ๐ (๐๐ฅ0 , ๐๐ฅ1 ) , ๐ (๐๐ฅ0 , {๐น๐ฅ0 }๐ผL ) , ๐ (๐๐ฅ1 , {๐บ๐ฅ1 }๐ผL ) , ๐ (๐๐ฅ0 , {๐บ๐ฅ1 }๐ผL ) , 0) โค 0,
+ ๐๐โ๐โ1 ๐ (๐ฆ๐โ1 , ๐ฆ๐ )
+ ๐๐โ๐ ๐ (๐ฆ๐โ1 , ๐ฆ๐ ) ๐
โค ๐โ ๐ (๐ฆ0 , ๐ฆ1 ) ๐ก + ๐ โ
(10) ๐ (๐ฆ0 , ๐ฆ1 ) + โ
โ
โ
+ ๐๐โ๐ โ๐โ1 ๐ (๐ฆ0 , ๐ฆ1 ) =
(6)
2 ๐+1
๐โ๐ ๐ (๐ฆ0 , ๐ฆ1 ) . 1 โ ๐โ
Therefore, lim๐,๐โโ ๐(๐ฆ๐ , ๐ฆ๐ ) = 0. Hence, {๐ฆ๐ } is a Cauchy sequence. As {๐ฆ2๐+2 } is a Cauchy sequence in ๐(๐), and ๐(๐) is joint orbitally complete, therefore, there exists ๐ง โ ๐ such
4
Journal of Function Spaces
that ๐ฆ2๐+2 โ ๐ง = ๐๐ข, for ๐ข โ ๐. Next, we show that ๐ง โ {๐น๐ข}๐ผL . Since ๐ (๐) + ๐ธ min (๐) โค 0,
each ๐ฅ โ ๐, there exists ๐ฆ โ ๐ such that ๐ฅ โค ๐ฆ. Let ๐ฟ = [0, 1] and define the maps ๐, ๐, ๐น, ๐บ on ๐ as ๐๐ฅ = ๐ฅ/2, ๐๐ฅ = ๐ฅ/3, 0, { { { { { {1 (๐น๐ฅ) (๐ฆ) = { , {3 { { { {2 , {3
(11)
where ๐ = (๐ป ({๐น๐ข}๐ผL , {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ข, ๐๐ฅ2๐+1 ) , ๐ (๐๐ข, {๐น๐ข}๐ผL ) , ๐ (๐๐ฅ2๐+1 , {๐บ๐ฅ2๐+1 }๐ผL ) ,
๐ฅ , 5 ๐ฅ ๐ฅ if < ๐ฆ < , 5 4 ๐ฅ if โค ๐ฆ โค 1, 4 if 0 โค ๐ฆ โค
๐ฅ 0, if 0 โค ๐ฆ โค , { { 7 { { { {1 ๐ฅ ๐ฅ (๐บ๐ฅ) (๐ฆ) = { , if < ๐ฆ < , { 6 7 6 { { { ๐ฅ {1 , if โค ๐ฆ โค 1. {4 6
(12)
๐ (๐๐ข, {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ฅ2๐+1 , {๐น๐ข}๐ผL )) ,
(15)
then Define the sequences ๐ฅ2๐ , ๐ฅ2๐+1 , and ๐ฅ2๐+2 in ๐ as ๐ฅ2๐ = {1/(2๐ + 1)}, ๐ฅ2๐+1 = {1/(2๐ + 2)}, and ๐ฅ2๐+2 = {1/(2๐ + 3)}, ๐ โ N; then ๐ฆ2๐+1 = ๐๐ฅ2๐+1 = 1/2(2๐ + 2) and ๐ฆ2๐+2 = ๐๐ฅ2๐+2 = 1/3(2๐ + 3). Now, {๐น๐ฅ2๐ }2/3 = [1/4(2๐ + 1), 1] and {๐บ๐ฅ2๐+1 }1/4 = [1/6(2๐ + 2), 1]; then ๐๐ฅ2๐+1 โ {๐น๐ฅ2๐ }2/3 and ๐๐ฅ2๐+2 โ {๐บ๐ฅ2๐+1 }1/4 . Further, lim๐โโ ๐๐ฅ2๐+2 = lim๐โโ ๐๐ฅ2๐+1 = 0 โ [0, 1] = lim๐โโ {๐น๐ฅ2๐ }2/3 = lim๐โโ {๐บ๐ฅ2๐+1 }1/4 . Let ๐(๐ก1 , . . . , ๐ก6 ) = ๐ก1 โ โ๐ก2 ; then we have
๐ (๐ป ({๐น๐ข}๐ผL , {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ข, ๐๐ฅ2๐+1 ) , ๐ (๐๐ข, {๐น๐ข}๐ผL ) , ๐ (๐๐ฅ2๐+1 , {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ข, {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ฅ2๐+1 , {๐น๐ข}๐ผL )) โค 0, ๐ (๐ (๐ฆ2๐+2 , {๐น๐ข}๐ผL ) , ๐ (๐ง, ๐ฆ2๐+1 ) , ๐ (๐ง, {๐น๐ข}๐ผL ) ,
๐ (๐) + ๐ธ min (๐) = 0,
(13)
๐ (๐ฆ2๐+1 , ๐ฆ2๐+2 ) , ๐ (๐ง, ๐ฆ2๐+2 ) , ๐๐ (๐ฆ2๐+1 , {๐น๐ข}๐ผL )) where
โค ๐ (๐ป ({๐น๐ข}๐ผL , {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ข, ๐๐ฅ2๐+1 ) ,
๐ = (๐ป ({๐น๐ฅ2๐ }๐ผ๐ฟ , {๐บ๐ฅ2๐+1 }๐ผ๐ฟ ) , ๐ (๐๐ฅ2๐+2 , ๐๐ฅ2๐+1 ) ,
๐ (๐๐ข, {๐น๐ข}๐ผL ) , ๐ (๐๐ฅ2๐+1 , {๐บ๐ฅ2๐+1 }๐ผL ) ,
๐ (๐๐ฅ2๐+2 , {๐น๐ฅ2๐ }๐ผ๐ฟ ) , ๐ (๐๐ฅ2๐+1 , {๐บ๐ฅ2๐+1 }๐ผ๐ฟ ) ,
๐ (๐๐ข, {๐บ๐ฅ2๐+1 }๐ผL ) , ๐ (๐๐ฅ2๐+1 , {๐น๐ข}๐ผL )) โค 0.
(17)
๐ (๐๐ฅ2๐+2 , {๐บ๐ฅ2๐+1 }๐ผ๐ฟ ) , ๐ (๐๐ฅ2๐+1 , {๐น๐ฅ2๐ }๐ผ๐ฟ )) .
As ๐ โ โ ๐ (๐ (๐ง, {๐น๐ข}๐ผL ) , 0, ๐ (๐ง, {๐น๐ข}๐ผL ) , 0, 0, ๐๐ (๐ง, {๐น๐ข}๐ผL ))
(16)
(14)
โค 0.
By ๐(๐ข, V, ๐ข, V, 0, ๐(๐ข + V)) โค 0 which implies ๐ข โค โV, we have ๐(๐ง, {๐น๐ข}๐ผL ) โค โ.0 = 0. Thus, ๐ง โ {๐น๐ข}๐ผL . As ๐ง = ๐๐ข โ {๐น๐ข}๐ผL โ ๐(๐), therefore, there exists ๐ โ ๐ such that ๐ง = ๐๐. Similarly, ๐ง = ๐๐ โ {๐บ๐}๐ผL . Since the pair (๐น, ๐) are weakly commuting and occasionally coincidentally idempotent and ๐ง = ๐๐ข โ {๐น๐ข}๐ผL , then ๐ง = ๐๐ข = ๐๐๐ข = ๐๐ง; therefore, ๐ง = ๐๐ง = ๐๐๐ข โ {๐๐น๐ข}๐ผL โ {๐น๐๐ข}๐ผL = {๐น๐ง}๐ผL . Also ๐ง = ๐๐ โ {๐บ๐}๐ผL ; then ๐ง = ๐๐ = ๐๐๐ = ๐๐ง; therefore, ๐๐ง = ๐๐๐ โ {๐๐บ๐}๐ผL โ {๐บ๐๐}๐ผL = {๐บ๐ง}๐ผL . Example 22. Let ๐ โ ๐ = [0, 1] and ๐(๐ฅ, ๐ฆ) = |๐ฅ โ ๐ฆ|2 ; then (๐, ๐) is a ๐-metric space with ๐ = 2. Define the partial order ๐ฅ โชฏ ๐ฆ as ๐ฅ โค ๐ฆ for each ๐ฅ, ๐ฆ โ ๐ and ๐ โชฏ1 ๐ as follows: for
Finally, ๐0 = ๐๐0 โ [0, 1] = ๐น๐0 and ๐๐0 = ๐0 โ [0, 1] = ๐บ๐0; that is, (๐, ๐น) and (๐, ๐บ) are weakly commuting and occasionally coincidentally idempotent (๐, ๐น) and (๐, ๐บ) are weakly commuting and occasionally coincidentally idempotent. Now, ๐, ๐, ๐น, ๐บ satisfy all conditions of Theorem 21 and ๐0 = ๐0 = 0 โ [0, 1] = {๐น0}2/3 = {๐บ0}1/4 is a common fixed point. Corollary 23. Let (๐, ๐) be a complete ๐-metric space, ๐ โ ๐, and โชฏ be a partial order defined on ๐, ๐, ๐ : ๐ โ ๐ such that ๐(๐) and ๐(๐) are closed. Suppose that ๐น, ๐บ are two Lfuzzy mappings from ๐ into IL (๐) such that, for each ๐ฅ โ ๐ and ๐ผL โ ๐ฟ \ {0L }, {๐น๐ฅ}๐ผL and {๐บ๐ฅ}๐ผL are nonempty closed subsets of ๐ which satisfy conditions ((1)โ(5)); then ๐ and ๐ have a common fixed point, while ๐น and ๐บ have a common ๐ฟfuzzy fixed point. Remark 24. (1) Theorem 21 is a generalization of Theorem 2.2 [6], Theorem 14 [9], and Theorem 3.1 [8].
Journal of Function Spaces
5
(2) In Theorem 21, one may put one of ๐ = ๐ or ๐น = ๐บ or both; in this case, condition (4) has the following versions:
๐ (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) + ๐ธ min (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) โค 0, ๐ (๐ป ({๐น๐ฅ}๐ผL , {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL ))
(18)
+ ๐ธ min (๐ป ({๐น๐ฅ}๐ผL , {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) โค 0, ๐ (๐ป ({๐น๐ฅ}๐ผL , {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) + ๐ธ min (๐ป ({๐น๐ฅ}๐ผL , {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐น๐ฆ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) โค 0.
Theorem 25. Let (๐, ๐) be a ๐-metric space, ๐ โ ๐, and โชฏ be a partial order defined on ๐, ๐, ๐ : ๐ โ ๐ such that ๐(๐) and ๐(๐) are closed. Suppose that ๐น๐ is a sequence of L-fuzzy mappings from ๐ into IL (๐) such that, for each ๐ฅ โ ๐ and ๐ผL โ ๐ฟ\{0L }, {๐น๐ ๐ฅ}๐ผL are nonempty closed subsets of ๐ which satisfy the following conditions:
(1) (๐, ๐น) and (๐, ๐บ) satisfy (JCLR) property. (2) (๐, ๐น) and (๐, ๐บ) are weakly commuting and occasionally coincidentally idempotent.
(1) {๐น๐ ๐ฅ}๐ผL โชฏ1 ๐(๐) and {๐น๐ ๐ฅ}๐ผL โชฏ1 ๐(๐). (2) ๐๐ฆ โ {๐น๐ ๐ฅ}๐ผL or ๐๐ฆ โ {๐น๐ ๐ฅ}๐ผL implies ๐ฅ โชฏ ๐ฆ. (3) If ๐ฆ๐ โ ๐ฆ, then ๐ฆ๐ โชฏ ๐ฆ for all ๐ โ ๐. (4) (๐, ๐น๐ ) and (๐, ๐น๐ ) are weakly commuting and occasionally coincidentally idempotent. (5) For all comparable elements ๐ฅ, ๐ฆ โ ๐, ๐ = 2๐ + 1 and ๐ = 2๐ + 2, ๐ โ N and ๐ธ > 0, there exists ๐ โ ฮฆ such that ๐ (๐) + ๐ธ min (๐) โค 0,
๐(๐) and ๐(๐) are closed. Suppose that ๐น, ๐บ are two L-fuzzy mappings from ๐ into IL (๐) such that, for each ๐ฅ โ ๐ and ๐ผL โ ๐ฟ\{0L }, {๐น๐ฅ}๐ผL and {๐บ๐ฅ}๐ผL are nonempty closed subsets of ๐ which satisfy the following conditions:
(19)
where ๐ = (๐ป ({๐น๐ ๐ฅ}๐ผL , {๐น๐ ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ ๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐น๐ ๐ฆ}๐ผL ) , (20) ๐ (๐๐ฆ, {๐น๐ ๐ฅ}๐ผL )) .
(6) One of ๐(๐) or ๐(๐) is ๐ฅ0 joint orbitally complete for some ๐ฅ0 โ ๐, then ๐ and ๐ have a common fixed point while ๐น๐ and ๐น๐ have a common ๐ฟ-fuzzy fixed point. Proof. Put ๐น = ๐น๐ and ๐บ = ๐น๐ in Theorem 21. This concludes the proof.
(3) For all comparable elements ๐ฅ, ๐ฆ โ ๐ and ๐ธ > 0 there exists ๐ โ ฮฆ such that ๐ (๐) + ๐ธ min (๐) โค 0,
(21)
where ๐ = (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐บ๐ฆ}๐ผL ) ,
(22)
๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) ; then ๐ and ๐ have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point. Proof. Since (๐, ๐น) and (๐, ๐บ) satisfy (JCLR) property, there exist two sequences {๐ฅ๐ }, {๐ฆ๐ } in ๐ and ๐ด, ๐ต โ ๐ถ๐ฟ(๐) such that lim ๐๐ฅ๐ = lim ๐๐ฆ๐ = ๐ข,
๐โโ
๐โโ
lim {๐น๐ฅ๐ }๐ผL = ๐ด,
๐โโ
(23)
lim {๐บ๐ฆ๐ }๐ผL = ๐ต.
๐โโ
5. Common Fixed Points with (JCLR) Property
With ๐ข = ๐V = ๐๐ค and ๐ข โ ๐ด โฉ ๐ต, for some ๐ข, V, ๐ค โ ๐, we show that ๐ด = ๐ต, since
Theorem 26. Let (๐, ๐) be a ๐-metric space, ๐ โ ๐, and โชฏ be a partial order defined on ๐, ๐, ๐ : ๐ โ ๐ such that
๐ (๐) + ๐ธ (๐) โค 0,
(24)
6
Journal of Function Spaces Theorem 27. In Theorem 26, we may replace condition (3) by another: for all ๐ฅ, ๐ฆ โ ๐ and ๐ธ > 0 there exist ๐ โ ฮจ such that
where ๐ = (๐ป ({๐น๐ฅ๐ }๐ผL , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐๐ฅ๐ , ๐๐ฆ๐ ) , ๐ (๐๐ฅ๐ , {๐น๐ฅ๐ }๐ผL ) , ๐ (๐๐ฆ๐ , {๐บ๐ฆ๐ }๐ผL ) ,
(25)
+ ๐ธ min (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) ,
๐ (๐๐ฅ๐ , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐๐ฆ๐ , {๐น๐ฅ๐ }๐ผL )) .
๐ (๐V, ๐ด)) โค 0,
(26)
which gives ๐ (๐ป (๐ด, ๐ต) , 0, 0, ๐ป (๐ด, ๐ต) , ๐ (๐ป (๐ด, ๐ต) + 0) , 0) โค ๐ (๐ป (๐ด, ๐ต) , 0, ๐ (๐V, ๐ด) , ๐ (๐V, ๐ต) , ๐ (๐V, ๐ต) ,
(32)
๐ (๐๐ฅ, {๐น๐ฅ}๐ผL )) โค 0;
As ๐ โ โ, ๐ (๐ป (๐ด, ๐ต) , 0, ๐ (๐V, ๐ด) , ๐ (๐V, ๐ต) , ๐ (๐V, ๐ต) ,
๐ (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ))
(27)
then ๐ and ๐ have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point. Proof. Since (๐, ๐น) and (๐, ๐บ) satisfy (JCLR) property, there exist two sequences {๐ฅ๐ }, {๐ฆ๐ } in ๐ and ๐ด, ๐ต โ ๐ถ๐ฟ(๐) such that lim๐โโ ๐๐ฅ๐ = lim๐โโ ๐๐ฆ๐ = ๐ข, lim๐โโ {๐น๐ฅ๐ }๐ผL = ๐ด, lim๐โโ {๐บ๐ฆ๐ }๐ผL = ๐ต, with ๐ข = ๐V = ๐๐ค and ๐ข โ ๐ด โฉ ๐ต, for some ๐ข, V, ๐ค โ ๐. Now, we show that ๐V โ {๐นV}๐ผL ; otherwise, since ๐ (๐ป ({๐นV}๐ผL , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐V, ๐๐ฆ๐ ) , ๐ (๐V, {๐นV}๐ผL ))
๐ (๐V, ๐ด)) โค 0. From the property ๐(๐ข, V, ๐ข, V, ๐(๐ข + V), 0) โค 0 which implies ๐ข โค โV, there exists โ โ (0, 1) such that ๐ป(๐ด, ๐ต) โค โ.0 = 0, so that ๐ด = ๐ต. Now, ๐V โ {๐นV}๐ผL ; to prove this, since ๐V โ ๐ด, we show that ๐ด = {๐นV}๐ผL . As ๐ (๐) + ๐ธ (๐) โค 0,
(28)
where
๐ (๐V, {๐นV}๐ผL ) , ๐ (๐๐ฆ๐ , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐V, {๐บ๐ฆ๐ }๐ผL ) , (29) ๐ (๐๐ฆ๐ , {๐นV}๐ผL )) ,
when ๐ โ โ, we have that
๐ (๐V, ๐ด) , ๐ (๐V, {๐นV}๐ผL )) โค 0.
(30)
โค ๐ (๐ป ({๐นV}๐ผL , ๐ต) , 0, ๐ (๐V, {๐นV}๐ผL )) โค 0.
(34)
By ๐(๐ข, V, ๐ข) โค 0 โ ๐ข โค V, this gives ๐({๐นV}๐ผL , ๐V) โค 0 which is a contradiction of ๐(๐ฅ, ๐ฆ) โฅ 0, โ๐ฅ, ๐ฆ โ ๐; then ๐(๐V, {๐นV}๐ผL ) = 0 and ๐V โ {๐นV}๐ผL . Also, ๐๐ค โ {๐บ๐ค}๐ผL for ๐ค โ ๐. We prove this by contradiction; otherwise, since ๐ (๐ป ({๐น๐ฅ๐ }๐ผL , {๐บ๐ค}๐ผL ) , ๐ (๐๐ฅ๐ , ๐๐ค) , ๐ (๐๐ฅ๐ , (35)
๐ (๐๐ฅ๐ , ๐๐ค) , ๐ (๐๐ฅ๐ , {๐น๐ฅ๐ }๐ผL )) โค 0.
๐ (๐ป ({๐นV}๐ผL , ๐ด) , 0, ๐ป (๐ด, {๐นV}๐ผL ) , 0, 0, ๐ (0 + ๐ป (๐ด, {๐นV}๐ผL ))) โค ๐ (๐ป ({๐นV}๐ผL , ๐ด) , 0,
When ๐ โ โ, we have ๐(๐ป({๐นV}๐ผL , ๐ต), 0, ๐(๐V, {๐นV}๐ผL )) โค 0. But ๐V โ ๐ต implies ๐(๐V, {๐นV}๐ผL ) = ๐({๐นV}๐ผL , ๐V) โค ๐ป({๐นV}๐ผL , ๐ต); then
{๐น๐ฅ๐ }๐ผL )) + ๐ธ min (๐ป ({๐น๐ฅ๐ }๐ผL , {๐บ๐ค}๐ผL ) ,
So that
(33)
๐ (๐V, {๐นV}๐ผL )) โค 0.
๐ (๐ ({๐นV}๐ผL , ๐V) , 0, ๐ (๐V, {๐นV}๐ผL ))
๐ = (๐ป ({๐นV}๐ผL , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐V, ๐๐ฆ๐ ) ,
๐ (๐ป ({๐นV}๐ผL , ๐ด) , 0, ๐ (๐V, {๐นV}๐ผL ) , ๐ (๐V, ๐ด) ,
+ ๐ธ min (๐ป ({๐นV}๐ผL , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐V, ๐๐ฆ๐ ) ,
Letting ๐ โ โ, we have ๐(๐ป(๐ด, {๐บ๐ค}๐ผL ), 0, ๐(๐V, ๐ด)) โค 0, but ๐๐ค โ ๐ด implies ๐(๐๐ค, {๐บ๐ค}๐ผL ) โค ๐ป(๐ด, {๐บ๐ค}๐ผL ); then (31)
๐ (๐V, {๐นV}๐ผL ) , ๐ (๐V, ๐ด) , ๐ (๐V, ๐ด) , ๐ (๐V, {๐นV}๐ผL )) โค 0.
From the property ๐(๐ข, V, ๐ข, V, 0, ๐(๐ข + V)) โค 0 which implies ๐ข โค โV, there exists โ โ (0, 1) such that ๐ป({๐นV}๐ผL , ๐ด) โค โ.0 = 0; this gives ๐ป(๐ด, {๐นV}๐ผL ) = 0; then ๐ด = {๐นV}๐ผL , and ๐V โ {๐นV}๐ผL . By a similar way, one can find ๐๐ค โ {๐บ๐ค}๐ผL for ๐ค โ ๐. Further, ๐๐V = ๐V and ๐๐V โ {๐น๐V}๐ผL so that ๐ข = ๐๐ข โ {๐น๐ข}๐ผL . Also, ๐๐๐ค = ๐๐ค and ๐๐๐ค โ {๐บ๐๐ค}๐ผL imply ๐ข = ๐๐ข โ {๐บ๐ข}๐ผL . Then ๐, ๐, ๐น, ๐บ have a common fixed point.
๐ (๐ (๐๐ค, {๐บ๐ค}๐ผL ) , 0, 0) โค ๐ (๐ป (๐ด, {๐บ๐ค}๐ผL ) , 0, 0) โค 0.
(36)
From ๐(๐ข, V, V) โค 0 โ ๐ข โค V, this gives ๐(๐๐ค, {๐บ๐ค}๐ผL ) โค 0 which is a contradiction; then ๐๐ค โ {๐บ๐ค}๐ผL . Further, being weakly commuting and occasionally coincidentally idempotent imply that, respectively, ๐ข = ๐V = ๐๐V = ๐๐ข and ๐๐V โ {๐น๐V}๐ผL , so that ๐ข = ๐๐ข โ {๐น๐ข}๐ผL . Also, ๐๐๐ค = ๐๐ค and ๐๐๐ค โ {๐บ๐๐ค}๐ผL imply ๐ข = ๐๐ข โ {๐บ๐ข}๐ผL . Then ๐, ๐, ๐น, ๐บ have a common fixed point.
Journal of Function Spaces
7
6. An Application to Integral Contractive Condition
where ๐ = (๐ป ({๐น๐ ๐ฅ๐๐ }๐ผL , {๐น๐ ๐ฆ๐๐ }๐ผL ) , ๐ (๐๐ฅ๐๐ , ๐๐ฆ๐๐ ) ,
Suppose that ๐ผ, ๐ฝ : [0, โ) โ [0, โ) are summable nonnegative Lebesgue integrable functions such that for each ๐ > 0, ๐ ๐ โซ0 ๐ผ(๐ )๐๐ โฅ 0 and โซ0 ๐ฝ(๐)๐๐ โฅ 0. As a simple application of Theorems 21, 25, and 26, we give the following result. Theorem 28. Let (๐, ๐) be a ๐-metric space, ๐ โ ๐, and let โชฏ be a partial order defined on ๐, ๐, ๐ : ๐ โ ๐ such that ๐(๐) and ๐(๐) are closed. Suppose that ๐น, ๐บ are two L-fuzzy mappings from ๐ into IL (๐) such that for each ๐ฅ โ ๐ and ๐ผL โ ๐ฟ\{0L }, {๐น๐ฅ}๐ผL and {๐บ๐ฅ}๐ผL are nonempty closed subsets of ๐ and satisfying the following conditions
(2) (๐, ๐น๐ ) and (๐, ๐น๐ ) are weakly commuting and occasionally coincidentally idempotent. (3) For all comparable elements ๐ฅ, ๐ฆ โ ๐ and ๐ธ > 0, there exist ๐ โ ฮฆ such that โซ
0
min(๐)
๐ผ (๐ ) ๐๐ + ๐ธ โซ
0
๐ (๐๐ฅ๐๐ , {๐น๐ ๐ฆ๐๐ }๐ผL ) , ๐ (๐๐ฆ๐๐ , {๐น๐ ๐ฅ๐๐ }๐ผL )) . As ๐ โ โ, we find that ๐(๐ป(๐ด ๐ ,๐ต๐ ),0,0,๐(๐V๐ ,๐ต๐ ),๐(๐V๐ ,๐ต๐ ),0)
โซ
0
๐ผ (๐ ) ๐๐ โค 0.
(42)
๐ (๐ป (๐ด ๐ , ๐ต๐ ) , 0, 0, ๐ (๐V๐ , ๐ต๐ ) , ๐ (๐V๐ , ๐ต๐ ) , 0) โค 0, (43) which give ๐(๐ป(๐ด ๐ ,๐ต๐ ),0,0,๐ป(๐ด ๐ ,๐ต๐ ),๐(๐ป(๐ด ๐ ,๐ต๐ )+0),0)
โซ
๐ฝ (๐) ๐๐ โค 0,
(41)
So that
(1) (๐, ๐น๐ ) and (๐, ๐น๐ ) satisfy (JCLR) property.
๐(๐)
๐ (๐๐ฅ๐๐ , {๐น๐ ๐ฅ๐๐ }๐ผL ) , ๐ (๐๐ฆ๐๐ , {๐น๐ ๐ฆ๐๐ }๐ผL ) ,
(37)
0
โคโซ
๐ผ (๐ ) ๐๐
๐(๐ป(๐ด ๐ ,๐ต๐ ),0,๐(๐V๐ ,๐ด ๐ ),๐(๐V๐ ,๐ต๐ ),๐(๐V๐ ,๐ต๐ ),๐(๐V๐ ,๐ด ๐ ))
0
where
๐ผ (๐ ) ๐๐
(44)
โค 0.
๐ = (๐ป ({๐น๐ ๐ฅ}๐ผL , {๐น๐ ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ ๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐น๐ ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐น๐ ๐ฆ}๐ผL ) , (38)
By (๐), we have ๐ป(๐ด ๐ , ๐ต๐ ) = 0; that is, ๐ด ๐ = ๐ต๐ . As ๐ข๐ โ ๐ด ๐ , we show that {๐น๐ V๐ }๐ผL = ๐ด ๐ . As โซ
๐ (๐๐ฆ, {๐น๐ ๐ฅ}๐ผL )) ,
๐(๐)
0
๐ผ (๐ ) ๐๐ + ๐ธ โซ
min(๐)
0
๐ฝ (๐) ๐๐ โค 0,
(45)
where where ๐ = 2๐ + 1, ๐ = 2๐ + 2, ๐ โ N; then ๐ and ๐ have a common fixed point, while ๐น๐ and ๐น๐ have a common ๐ฟ-fuzzy fixed point.
๐ = (๐ป ({๐น๐ V๐ }๐ผL , {๐น๐ ๐ฆ๐๐ }๐ผL ) , ๐ (๐V๐ , ๐๐ฆ๐๐ ) , ๐ (๐V๐ , {๐น๐ V๐ }๐ผL ) , ๐ (๐๐ฆ๐๐ , {๐น๐ ๐ฆ๐๐ }๐ผL ) ,
Proof. Since (๐, ๐น๐ ) and (๐, ๐น๐ ) satisfy the property (JCLR), there exist two sequences {๐ฅ๐๐ }, {๐ฆ๐๐ } in ๐ and ๐ด ๐ , ๐ต๐ โ ๐ถ๐ฟ(๐) such that lim ๐๐ฅ๐๐ = lim ๐๐ฆ๐๐ = ๐ข๐ ,
๐โโ
lim {๐น๐ ๐ฅ๐๐ }๐ผL = ๐ด ๐ ,
(39)
lim {๐น๐ ๐ฆ๐๐ }๐ผL = ๐ต๐ ,
0
๐ผ (๐ ) ๐๐ + ๐ธ โซ
min(๐)
0
๐(๐ป({๐น๐ V๐ }๐ผL ,๐ด ๐ ),0,0,๐({๐น๐ V๐ }๐ผL ,๐ด ๐ ),๐({๐น๐ V๐ }๐ผL ,๐ด ๐ ),0)
๐ผ (๐ ) ๐๐ (47)
โค 0.
with ๐ข๐ = ๐V๐ = ๐๐ค๐ , ๐ข๐ โ ๐ด ๐ โฉ ๐ต๐ , for some ๐ข๐ , V๐ , ๐ค๐ โ ๐. Now, we show that ๐ด ๐ = ๐ต๐ . As ๐(๐)
โซ
0
๐โโ
โซ
๐ (๐V๐ , {๐น๐ ๐ฆ๐๐ }๐ผL ) , ๐ (๐๐ฆ๐๐ , {๐น๐ V๐ }๐ผL )) , which on making ๐ โ โ reduces to
๐โโ
๐โโ
(46)
๐ฝ (๐) ๐๐ โค 0,
(40)
By a similar way, we have {๐น๐ V๐ }๐ผL = ๐ด ๐ . The remaining parts are easy to prove. This concludes the proof. Now, we may apply Theorem 28 with the following example.
8
Journal of Function Spaces
Example 29. Let ๐ = [0, 1], ๐ โ ๐, and ๐(๐ฅ, ๐ฆ) = |๐ฅ โ ๐ฆ|2 ; then (๐, ๐) is a ๐-metric space with ๐ = 2. Define the partial order ๐ฅ โชฏ ๐ฆ as ๐ฅ โค ๐ฆ for each ๐ฅ, ๐ฆ โ ๐ and ๐ โชฏ1 ๐ as follows: for each ๐ฅ โ ๐, there exist ๐ฆ โ ๐ such that ๐ฅ โค ๐ฆ. Let ๐ฟ = [0, 1] and define the maps ๐, ๐, ๐น, ๐บ on ๐ as
3 , { { { 4 { { {1 (๐บ๐ฅ) (๐ฆ) = { , { 2 { { { {1 {4, โซ
1 , 10 1 ๐ฅ+1 if 0, there exists ๐ โ ฮฆ such that
๐ (๐๐ฅ๐ , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐๐ฆ๐ , {๐น๐ฅ๐ }๐ผL )) .
min(๐)
(51)
๐ (๐๐ฅ๐ , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐๐ฆ๐ , {๐น๐ฅ๐ }๐ผL )) = 0,
๐ = (๐ป ({๐น๐ฅ๐ }๐ผL , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐๐ฅ๐ , ๐๐ฆ๐ ) ,
๐ (๐) + ๐ธ โซ
(50)
๐ (๐ป ({๐น๐ฅ๐ }๐ผL , {๐บ๐ฆ๐ }๐ผL ) , ๐ (๐๐ฅ๐ , ๐๐ฆ๐ ) ,
where
๐ (๐๐ฅ๐ , {๐น๐ฅ๐ }๐ผL ) , ๐ (๐๐ฆ๐ , {๐บ๐ฆ๐ }๐ผL ) ,
(49)
Since lim๐โโ ๐๐ฅ๐ = lim๐โโ ๐๐ฆ๐ = 1/6 โ [1/6, 1] = lim๐โโ ๐น๐ฅ๐ = lim๐โโ ๐บ๐ฆ๐ , the hybrid pairs (๐, ๐น) and (๐, ๐บ) satisfy the property (JCLR). Also ๐(1/6) = ๐๐(1/6) = 1/6 and ๐(1/6) = ๐๐(1/6) = 1/6 (occasionally coincidentally idempotent). Finally, ๐๐(1/6) = 1/6 โ [7/54, 1] = {๐น๐(1/6)}2/3 and ๐๐(1/6) = 1/6 โ [7/48, 1] = {๐บ๐(1/6)}2/3 (weakly commuting). Let ๐(๐ก1 , . . . , ๐ก6 ) = ๐ก1 โ โ max{๐ก2 , (๐ก3 + ๐ก4 )๐ก5 ๐ก6 }. Further,
๐(๐ป({๐น๐ฅ๐ }๐ผL ,{๐บ๐ฆ๐ }๐ผL ),๐(๐๐ฅ๐ ,๐๐ฆ๐ ),๐(๐๐ฅ๐ ,{๐น๐ฅ๐ }๐ผL ),๐(๐๐ฆ๐ ,{๐บ๐ฆ๐ }๐ผL ),๐(๐๐ฅ๐ ,{๐บ๐ฆ๐ }๐ผL ),๐(๐๐ฆ๐ ,{๐น๐ฅ๐ }๐ผL ))
๐ผ (๐ ) ๐๐ + ๐ธ โซ
๐ฝ (๐) ๐๐ โค 0,
๐ (๐๐ฆ, {๐น๐ฅ}๐ผL )) .
Then โซ
0
๐ (๐๐ฅ, {๐น๐ฅ}๐ผL ) , ๐ (๐๐ฆ, {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, {๐บ๐ฆ}๐ผL ) ,
1 if 0 โค ๐ฆ < , 9 1 ๐ฅ+1 if โค ๐ฆ < , 9 8 ๐ฅ+1 if โค ๐ฆ โค 1, 8
min(๐)
min(๐)
๐ = (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) ,
0
๐(๐)
๐ผ (๐ ) ๐๐ + ๐ธ โซ
where
1 1 { { { 6 , if 0 โค ๐ฅ < 3 , ๐๐ฅ = { { { ๐ฅ , if 1 โค ๐ฅ โค 1, 3 {2 if 0 โค ๐ฆ โค
โซ
0
1 1 { { { 6 , if 0 โค ๐ฅ < 2 , ๐๐ฅ = { { { ๐ฅ , if 1 โค ๐ฅ โค 1, 2 {3
5 { , { { 6 { { { {4 (๐น๐ฅ) (๐ฆ) = { , { 5 { { { { {2, {3
for all ๐ฅ, ๐ฆ โ ๐. Define two sequences {๐ฅ๐ } and {๐ฆ๐ } in ๐ such that {๐ฅ๐ } = {1/2 + 1/4๐}, {๐ฆ๐ } = {1/3 + 1/6๐}, ๐ โ N. Now, we show that for ๐ฅ, ๐ฆ โ ๐ there exist ๐ โ ฮฆ such that
min(๐)
๐ผ (๐ ) ๐๐ + ๐ธ โซ
0
๐ฝ (๐) ๐๐ โค 0,
(56)
where ๐ = (๐ป ({๐น๐ฅ}๐ผL , {๐บ๐ฆ}๐ผL ) , ๐ (๐๐ฅ, ๐๐ฆ) , ๐ (๐๐ฅ, {๐น๐ฅ}๐ผL )) .
(57)
If (๐, ๐น) and (๐, ๐บ) satisfy (JCLR) property, weakly commuting and occasionally coincidentally idempotent, then ๐ and ๐ have a common fixed point, while ๐น and ๐บ have a common ๐ฟ-fuzzy fixed point. Proof. It is similar to Theorem 27.
Journal of Function Spaces
Conflicts of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.
References [1] J. A. Goguen, โL-fuzzy sets,โ Journal of Mathematical Analysis and Applications, vol. 18, pp. 145โ174, 1967. [2] L. A. Zadeh, โFuzzy sets,โ Information and Control, vol. 8, no. 3, pp. 338โ353, 1965. [3] S. a. Heilpern, โFuzzy mappings and fixed point theorem,โ Journal of Mathematical Analysis and Applications, vol. 83, no. 2, pp. 566โ569, 1981. [4] J. Nadler, โMulti-valued contraction mappings,โ Pacific Journal of Mathematics, vol. 30, pp. 475โ488, 1969. [5] I. Beg and M. A. Ahmed, โFixed point for fuzzy contraction mappings satisfying an implicit relation,โ Matematicki Vesnik, vol. 66, no. 4, pp. 351โ356, 2014. [6] I. Beg, M. A. Ahmed, and H. A. Nafadi, โCommon fixed points for hybrid pairs of fuzzy and crisp mappings,โ Acta Universitatis Apulensis, no. 38, pp. 311โ318, 2014. [7] S. Phiangsungnoen, W. Sintunavarat, and P. Kumam, โFuzzy fixed point theorems for fuzzy mappings via ๐ฝ-admissible with applications,โ Journal of Uncertainty Analysis and Applications, vol. 2, article 20, 2014. [8] S. Phiangsungnoen and P. Kumam, โFuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces,โ Journal of Nonlinear Sciences and Applications. JNSA, vol. 8, no. 1, pp. 55โ63, 2015. [9] M. Rashid, A. Azam, and N. Mehmood, โL-fuzzy fixed points theorems for L-fuzzy mappings via B-IL-admissible pair,โ The Scientific World Journal, vol. 2014, Article ID 853032, 8 pages, 2014. [10] M. S. Abdullahi and A. Azam, โL-fuzzy fixed point theorems for L-fuzzy mappings via BFL-admissible with applications,โ J. Uncert. Anal. Appl, vol. 5, no. 2, pp. 1โ13, 2017. [11] P. Kumam and W. Sintunavarat, โCommon fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces,โ Journal of Applied Mathematics, vol. 2011, Article ID 637958, 14 pages, 2011. [12] I. A. Bakhtin, โThe contraction mapping principle in almost metric space,โ Functional Analysis and its Applications, vol. 30, pp. 26โ37, 1989. [13] M. Boriceanu, M. Bota, and A. Petru, โMultivalued fractals in b-metric spaces,โ Central European Journal of Mathematics, vol. 8, no. 2, pp. 367โ377, 2010. [14] S. Czerwik, โNonlinear set-valued contraction mappings in b-metric spaces,โ Atti del Seminario Matematico e Fisico dellโUniversit`a di Modena, vol. 46, no. 2, pp. 263โ276, 1998. [15] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, Germany, 1997. [16] M. Rashid, M. A. Kutbi, and A. Azam, โCoincidence theorems via alpha cuts of L-fuzzy sets with applications,โ Fixed Point Theory and Applications, vol. 2014, no. 1, article no. 212, 2014. [17] M. A. Ahmed and H. A. Nafadi, โCommon fixed point theorems for hybrid pairs of maps in fuzzy metric spaces,โ Journal of the Egyptian Mathematical Society, vol. 22, no. 3, pp. 453โ458, 2014. [18] H. K. Pathak and R. Rodrยดฤฑguez-Lยดopez, โNoncommutativity of mappings in hybrid fixed point results,โ Boundary Value Problems, vol. 2013, no. 145, 2013.
9 [19] B. K. Sharma, D. R. Sahu, and M. Bounias, โCommon fixed point theorems for a mixed family of fuzzy and crisp mappings,โ Fuzzy Sets and Systems, vol. 125, no. 2, pp. 261โ268, 2002. [20] M. A. Ahmed, โCommon fixed points of hybrid maps and an applications,โ Computers & Mathematics with Applications, vol. 60, no. 7, pp. 1888โ1894, 2010.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at https://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
#HRBQDSDฤฎ,@SGDL@SHBR
Journal of
Volume 201
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014