Jan 3, 2001 ... Operation and Control of Micro-Grids. Needs and Challenges ... Power
Generation Applications ... U. S. Electricity Market $250 Billion Per Year.
HICSS-34
Tutorial 14
January 3, 2001
mGrid Operation and Control PSERC Robert H. Lasseter University of Wisconsin Giri Venkataramanan University of Wisconsin A. P. Sakis Meliopoulos Georgia Institute of Technology © 2001 University of Wisconsin Board of Regents
University of Wisconsin and Georgia Institute of Technology
1
HICSS-34
Tutorial 14
Micro-Grid Operation and Control Robert H. Lasseter
University of Wisconsin A.P.Sakis Meliopoulos Georgia Institute of Technology Giri Venkataramanan University of Wisconsin R.H.Lasseter
University-of-Wisconsin
PSERC
Outline 1. Overview of Micro-sources (1/2 hr) 2. Problems and Issues related to Distribution Systems (1 hr) 3. Power Electronics (1hr) 4. Operation and Control of Micro-Grids Needs and Challenges (1/2Hr)
R.H.Lasseter
University-of-Wisconsin
PSERC
Power Generation Applications 100s MWs Central Plant
Power Generation
kWs
Distributed Generation 1 MW T/D grid On site generation •Peaking units: •Cost deferrals: •Voltage support:
•Back-up power •Local power & heat •Isolated site •Local voltage support •Cost reduction •Load management
Micro Grid R.H.Lasseter
University-of-Wisconsin
PSERC
Micro-Turbine Basics Hot Air Recuperator Turbine
Generator
Air
Power electronics
Compressor 3 Phase ~ 480V AC R.H.Lasseter
University-of-Wisconsin
PSERC
70kW Micro turbine •Installed at $1000/kW (target is $350/kW) •Efficiency 30%
•Air foil bearings •expect in excess of 40,000 hours of reliable operation. •Operation speed 90,000-100,000 RPMs R.H.Lasseter
University-of-Wisconsin
PSERC
Fuel cell System
R.H.Lasseter
University-of-Wisconsin
PSERC
Automotive Influence on Fuel Cell Development Experimental F.C. car (Toyota)
1997
Prototype F.C. cars (G.M., DC., Toyota)
Production of F.C. vehicles
2005
2000 Daimler-Chrysler $324 million investment
Fuel cell buses commonplace
Car Fuel Cells must be under $100/kW R.H.Lasseter
University-of-Wisconsin
PSERC
Ballard PEM Fuel Cell
R.H.Lasseter
University-of-Wisconsin
PSERC
7 kW Plug Power System PEM Fuel Cell/water heater
QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.
R.H.Lasseter
University-of-Wisconsin
PSERC
Distributed Generation Business Characterization U. S. Electricity Market $250 Billion Per Year Distributed Generation Expected to Capture 1020% of Market in 10 years Players - Illustrative List Allied-Signal • Micro-Turbines Siemens • Fuel Cells Solar Turbine/Caterpillar Tractor • Engines/turbines Capstone Turbine • Micro-Turbines GE • Fuel Cells/Turbines Others - Ballard, Allison, Williams, Plug Power, PowerCell R.H.Lasseter University-of-Wisconsin Commercial Units/Packaged Solutions Coming to Market PSERC
Generation Efficiencies 1 MW 70% With CHP
60% 50%
CHP
Hybrid Fuel cell
CCTG
Fuel Cell Micro Turbine
40%
Gas Turbine Reciprocating Engines
30% 20% 10kW
100kW
R.H.Lasseter
1 MW
Old steam 10MW
University-of-Wisconsin
100MW
1000MW
PSERC
On Site Generation Efficiencies 30/80%
Microturbine
30-200 kW
PA Fuel Cells
200-2000 kW 40/78%
PEM Fuel Cells
5-250 kW
Hybrid FC/MT
200-2500 kW 66 kV 24-66 kV 4-16 kV 120-480 V
University-of-Wisconsin
PSERC
Micro-source Issues • • • • • • •
Low power < 100 kw Low voltage 120-480 volts Inertia-less Power electronic interface Interconnection cost Control (large numbers) Market interactions
R.H.Lasseter
University-of-Wisconsin
PSERC
Micro Source Dynamics DC Bus
Generator
AC AC DC
• Type of Inverter • Response of “Prime Mover”
R.H.Lasseter
University-of-Wisconsin
PSERC
Inverter P-Q response
Line Commutated pu
CSI - Line Commutated VSI - PWM with Voltage Linecontrol
P & Q
R.H.Lasseter
University-of-Wisconsin Time seconds
PSERC
20 sec
R.H.Lasseter
University-of-Wisconsin
PSERC
Micro-Source Dynamics DC Bus
AC AC
Power Source DC Power 1.0
Fuel Cells 20-100 seconds
Micro-turbine
0.5 0.0 R.H.Lasseter
10 time sec.
20
University-of-Wisconsin
PSERC
Load Tracking Problem Power electronics – Inertia-less system – Fast response
Instantaneous power balance – Connect to grid – Use storage on dc bus – Storage on the ac bus – Include rotating machines in Micro-grid
R.H.Lasseter
University-of-Wisconsin
PSERC
Quality of Power Perspectives UTILITIES
CUSTOMER’S
There are less than four
Electricity problems disrupting equipment and production are originated by voltage sags, with duration less than 1/2 second
interruptions per year with a cumulative interrupted average of less than 2-hours/year
95 percent of interruptions are due to faults or outages on the T/D system 80 percent of the interruptions are due to distribution system components R.H.Lasseter
There are about 10-15 times per year that voltage sags occur with the voltage dropping below 70%
Production equipment contains electronics sensitive to power quality problems University-of-Wisconsin
PSERC
Micro-grid concept assumes: • Large clusters of micro-sources and storage systems • Close to loads with possible CHP applications • Provide Quality of Power required by Customer • Presented to the grid as a single controllable unit (load & source)
R.H.Lasseter
University-of-Wisconsin
PSERC
Load Control using a Connected Micro Grid Load control
Pload
Control P set point R.H.Lasseter
University-of-Wisconsin
PSERC
Next 1. Problems and Issues related to Distribution Systems Power 2. Power Electronics Sources
R.H.Lasseter
University-of-Wisconsin
PSERC
mGrid Operation and Control Problems and Issues Related to Distribution Systems
A. P. Sakis Meliopoulos Georgia Institute of Technology
Tutorial 14 HICSS-34 Jan 3, 2001
Georgia Tech
PSERC 1
The mGRID Concept – Distribution System Backbone Photovoltaics Interface Protection
RTU
Micro-Grid Management System
Converter
CATV& Communications RTU
RTU Control
Data Aqcuisition
Sensitive Load RTU Static Conditioner
Fuel Cell
Variable Speed Drives Converter
Interface Protection Interface Protection Converter
Georgia Tech
Microturbine / Generator
PSERC 2
Distribution System Backbone Issues Safety Voltage Profile Power Quality Reliability Protection Unbalance/Asymmetry Stray Voltages and Currents Electromagnetic Compatibility Issues Non-autonomous/Autonomous Operation PSERC Georgia Tech
3
Safety
Let-Go Current (Milliamperes) - RMS
100
80
60
40
sheep
300
Kiselev Dogs Dogs Ferris Dogs
Fibrillating Current (mA RMS)
Let-Go Current
200
100
50%
20
0.5%
Let-Go Threshold
Minimum Fibrillating Current (0.5%)
Maximum Non-Fibrillating Current (0.5%)
99.5% Dangerous Current
pigs
calves
Ventricular Fibrillation
0 0
20
40 60 80 Body Weight (kg)
100
Safe Current 0 5
10
50
100
500
1000
Frequency (Hz)
Georgia Tech
5000
PSERC 4
The Electrocution Parameters
B
A1
A2
rbody B
A1
A2
Veq req
Georgia Tech
PSERC 5
Applicable Standards (IEEE & IEC): Non-Fibrillating Body Current as a Function of Shock Duration
PSERC Georgia Tech
6
Earth Current / GPR / Worst Case Condition
P ro g ra m X F M - P a g e 1 o f 1 c : \ w m a s te r \ ig s \ d a t a u \ g p r _ e x 0 1 - M a y 1 4 , 2 0 0 0 , 0 1 : 5 1 :4 4 . 0 0 0 0 0 0 - 2 0 0 0 0 0 . 0 s a m p le s / s e c - 2 4 0 0 0 S a m p le s 2 .5 0 1
P h a s e _ A _ L in e _ C u r r e n t_ _ B U S 1 0 (k A )
1 .6 9 4 8 8 7 .3 m 8 0 .7 6 m -7 2 5 .8 m -1 .5 3 2 -2 .3 3 9 -3 .1 4 6 -3 .9 5 2 1 .0 5 2
E a r t h _ C u r r e n t _ _ G r o u n d _ a t _ B U S 2 0 (k A )
7 1 7 .1 m
Important Issues
3 8 2 .5 m 4 7 .8 1 m -2 8 6 .8 m -6 2 1 .5 m -9 5 6 .1 m -1 .2 9 1 -1 .6 2 5 4 4 .0 2 0
4 4 .0 4 0
4 4.06 0
4 4 .0 8 0
4 4 .1 0 0
Grounding and Bonding Single Ground/Multi Ground Load/DER Configuration Transmission Interconnection
PSERC
Georgia Tech
7
Power Quality Disturbances Lightning Switching Power Faults Feeder Energization inrush currents, Motor Start Loading imbalance Harmonics, Resonance EMI
Impact on End User Voltage Distortion, Sags, Swells, Outages and Imbalances
Design Options Configuration Grounding Overvoltage Protection (arresters), Fault Protection Use of Steel/Aluminum conduit, Etc.
Georgia Tech
PSERC 8
Lightning Caused Voltage Sags, Swells and Outages
S wf
S A
B
C
N
S dt
D
PSERC Georgia Tech
9
Lightning Caused Voltage Sags, Swells and Outages Effects of Grounding and Protection
PSERC Georgia Tech
10
Voltage Sags & Swells and Grounding R0/X1 6
Coefficient of Grounding
95/164
5
100/173
4
C
90/155
3
g
actual VLG = no min al VLG
85/147
2 80/138
1
75/129 70/121
X0/X1 0 57/100
1
2 65/117
Georgia Tech
3
4
5
6
PSERC 11
Voltage Sags & Swells During a Ground Fault A A V
A
V
A
V
A
A
A
L
B U S 10
B U S 20
R
B U S 30
B U S 40
G
Close
Transmission Line Voltage & Current Profile Distribution Line, 12 kV Displayed Quantity
Voltage Reference
Volt age
Remote Earth
Current
Neutral
Nominal Voltage 6.92
Plot Mode Absolute
kV (L-L)
Deviation
Voltage (kV)
Ground 2.00
Distance 1.250
0.00
_A -5.810
-2.00
_B 0.3334
-4.00
_A -6.00 _B _C _N -8.00 0.00 BUS40
_C 0.9744
V
A
V
A
V
A
Comments The Data of the Figure can be used to generate nomograms and statistical distributions of voltage sags and swells for a specific location (IEEE P1346) A better approach is outlined next
_N 0.00 0.75
1.50 2.25 Distance (miles)
Program IGS - Form CODE_102A
Georgia Tech
3.00
3.75 BUS50
PSERC 12
Statistical Distribution of Voltage Sags/Swells 4.0 Fuse
Transformer
L1 N L2
3.0 Sensitive Electronic Equipment G
Ground Loop
Ground Rods
Probabilistic Approach to Power Quality Analysis
Voltage (kV)
Arrester
2.0
1.0
PQ Characterization 106
Design Options for PQ Enhancement
Georgia Tech
105
104
103
102
10
PSERC 1
0.1
Frequency (Hz)
13
0.01
Ferroresonance 5
Comments 2 PHASES ENERGIZED
Maximum Overvoltage (pu)
4
Resonance Between the Inductance of a Steel Core and the Circuit Capacitance
3
Vulnerable Systems: Medium Voltage Cable with Transformers/Regulators
1 PHASE ENERGIZED
2
Cases of “Stuck” Pole – Single Phase Protection 1
0
0.1
1
10
100
Capacitive/Inductive Impedance Ratio
Georgia Tech
1000
PSERC 14
Comments
Harmonic Resonance
Harmonic Resonance Has Multiple Modes and Resonance Frequencies BUS100
BUS90
System May Be Vulnerable When Resonance Coincides with a Harmonic Frequency
BUS80 1
BUS110 BUS120
2
BUS30
BUS40 BUS50 BUS60
When Problem is Known, Solution is Very Simple Detuning
BUS70
Positive Sequence Frequency Scan at Bus BUS70/ P
Frequency Scan At 2-Node Port: BUS70_A to BUS70_N
Impedance Magnitude
Impedance Magnitude
334.5
100
334.5
10.0
Magnitude (Ohms)
Magnitude (Ohms)
163.4
10.0
Magnitude (Ohms)
1000
100
Frequency (Hz)
872.1 1.00
0.100
1.00 0.00
400
800
1200
1600
2000
Table
0.00
400
800
1200
Frequency (Hz)
Frequency (Hz)
Impedance Phase
Impedance Phase
Frequency (Hz)
150
80.0
334.5
75.0
40.0
Phase (Degrees)
120
Phase ( Deg)
Frequency (Hz)
0.00
5.501
Phase ( Deg)
Magnitude (Ohms)
1000
1600
2000
Table Frequency (Hz)
0.00
Phase (Degrees)
-75.0
-150
-40.0
-225
-80.0 0.00
400
800
1200 Frequency (Hz)
Pro gram WinIGS - Fo rm FSCAN_RES
Georgia Tech
1600
2000
Close
0.00
400
800
1200 Frequency (Hz)
Pro gram WinIGS - Fo rm FSCAN_RES
1600
2000
Close
PSERC 15
Reliability Reliability Indices for Distribution Systems (Utility Perspective)
Reliability Measures (Customer Perspective)
SAIFI: System Average Interruption Frequency Index (interruptions/year and customer)
Voltage Sags Voltage Swells Momentary Outages Load Interruption EMI
SAIFI =
Total Number of Customer Interruptions per Year Total Number of Customers Served
SAIDI: System Average Interruption Duration Index (hours/year and customer) SAIDI =
Total Number of Customer Interruptions Durations per Year Total Number of Customers Served
CAIDI: Customer Average Interruption Duration Index (hours/interruption) CAIDI =
Total Number of Customer Interruption Durations per Year Total Number of Customer Interruptions
ASAI: Average Service Availability Index Total Customer Hours Service Availability per Year ASAI = Customer Hours Service Demand
Georgia Tech
Comments Good Methods for Utility Applications Exists (Markovian) End User/DER Methods Needs Further Research (NonMarkovian Processes)
PSERC 16
Cost of Reliability Example Power requirements: 3000 VA power Average power consumption is 2000 Watts Power utility reliability: SAIFI = 1.5, SAIDI = 45, Momentary = 30 Sector customer damage function: commercial per Table Below
Calculations MWhrs consumed: 17.52 Cost of two 20 minute outages: (3.0)(17.52)(2) = 105.12 Cost of five 1 minute outages: (1.0)(17.52)(5) = 87.60 Cost of momentary: (1.0)(17.52)(30) = 525.60 Annual cost of interruptions: 718.32
Comments Cost of utility power (assuming $0.10 pwr kWhr): $1,752 per year
Survey of Cost of Interruption Sector Customer Damage Function ($/MWhr) Sector\Duration Residential Commercial Industrial Large User
Mom 0 1.0 6.0 2.0
Georgia Tech
1 Min 0 1.0 6.0 2.0
20 min 0.1 3.0 13.0 2.0
1 hr 0.4 10.0 24.0 3.0
4 hr 3.0 36.0 64.0 3.0
8 hr 6.0 74.0 106.0 4.0
24 hrs 20 94.0 135.0 5.0
PSERC 17
Reliability Research Issues Battery Energy = 15 min Cap Prob Freq Dur R
R
0 300 600 900
R
5e-4 3e-6 3e-3 0.996
13.0 9e-4 0.46 13.5
0.3 30 58 648
Battery Energy = 30 min I
I
I
Cap Prob Freq Dur 0 300 600 900
7.2e-5 13.0 0.3 2.7e-5 5e-3 47 3.8e-3 0.52 65 0.9961 13.5 648
PSERC Georgia Tech
18
Protection Typical DERs Protection
Protection Issues Fault Protection (Current Limited DERs, Remote Contribution, Ground Impedance, etc.) Faulted Circuit Indication Fault Location and Isolation Detection of Hot “Down” Conductors
PSERC Georgia Tech
19
Unbalance/Asymmetry Most Power Circuits Are Asymmetric
1 zmax − zmin S1 = 2 z1
1 ymax − ymin S2 = 2 y1
Asymmetry Factor
0.06
0.04
Series Admittance
0.02
Shunt Admittance
0.0 180
660
1140
1620
2100
Frequency (Hz)
Other Sources Single Phase Loads End Use Equipment Induction Motors
Georgia Tech
PSERC 20
Induction Motor Response to Unbalance/Asymmetry Typical Distribution System Example Close
Device Terminal Multimeter Case:
BUS100
Device:
System Asymmetry and Imbalance Example Induction Motor
BUS90
Total Power
Voltage
L-G
Phase Quantities
Per Phase Power
Current
L-L
Symmetric Comp
BUS80 1
BUS30
BUS110 BUS120
2
BUS40
MCLOAD1_A
BUS50 BUS60 BUS70 1 MCLOAD2 IM
Voltages MCLOAD1_B
2
MCBUS1
MCLOAD1_C RGROUND
ANGSPEED2 MCLOAD1 IM
ANGSPEED1
Combined Effects of System Component Asymmetry and Imbalanced Loads
Va Sa S Sc Ia Sb
Ic
Ref Vc
Currents MCLOAD1_A
Comments
Va Vb Vc
MCLOAD1_B MCLOAD1_C
Ia Ib Ic
Ib
P 367.6 kW, Q 178.3 kVar S = 4 08.5 kVA, PF = 89.97 % Pa 120.2 kW, Qa 69.04 kVar Pb 114 .8 kW, Qb 50.20 kVar Pc 132.5 kW, Qc 59.09 kVar Va = 255.2 V, 55.34 Deg Vb = 24 5.3 V, -63.85 Deg Vc = 24 9.0 V, 175.7 Deg Ia = 54 3.0 A, 25.4 7 Deg Ib = 510.9 A, -87.4 6 Deg Ic = 582.9 A, 151.6 Deg
Vb
Pro gram WinIGS - Fo rm FDR_M ULTIM ETER
Important Factors: Configuration Transformers Load Balancing
Georgia Tech
PSERC 21
Stray Voltages and Currents ~ I sky Sky Wire
Comments
HA LA HB
LB LC
HC Neutral
~ I neutral
Counterpoise
Ground Mat
~ I counterpoise
Ground Rod
Ground Rod
~ I earth
CATV
Single Phase Loads Generate Current Flow in the Parallel Path of Neutral and Soil/Grounds Typical Distribution 50-70% in Neutral, 50-30% in Soil/Grounds Neutral Voltage Typically 2 to 12 Volts
Properly Designed mGRIDs can Practically Eliminate Stray Voltages and Currents
Georgia Tech
PSERC 22
Electromagnetic Compatibility Issues SOURCE BUS10
Magnetic Field Near Nonmagnetic Conduit Enclosed Circuit
BUS100
G
Plot Circle Radius
0.500
Return
Plot Along Straight Line Plot Along Conduit Centered Circle
Feet
Update
BUS200
Magnetic Field
6.00 inches 375
Example of Two Series Circuits in Magnetic and Aluminum Conduits
MilliGauss
300
225
150
BUS400
75.0 1Ph
0.00 0.00
Magnetic Field Near Steel Conduit Enclosed Power Circuit (ID=3) Plot Circle Radius
0.50
Zoom All
Angle
319.1
Field
270
360
365.9
Update
Magnetic Field
6.00 inches
Zoom Out
180 Angle(Degrees)
Program GEM I - Form EM F_CI RCLE
Plot Along Conduit Centered Circle
Feet
Zoom In
Return
Plot Along Straight Line
90.0
Comments
76.0
72.0
EMI can generate serious problems
MilliGauss
68.0
64.0
60.0
56.0 0.00
Zoom In
Zoom Out
Zoom All
Angle
Program GEM I - Form EM F_CI RCLE
Georgia Tech
90.0
244.1
180 Angle(Degrees)
Field
270
360
75.81
The mGRID concept offers an opportunity to rethink design issues and optimize EMI performance
PSERC 23
WEMPEC
Inverters in Microgrids
Giri Venkataramanan Department of Electrical and Computer Engineering University of Wisconsin-Madison 3 Jan 2001
[email protected] 3 Jan 2001
Microgrids Short Course
GV 1
WEMPEC
Outline • Description of inverter types and characteristics • Inverter control objectives • Inverter dynamic modeling • Summary
3 Jan 2001
Microgrids Short Course
GV 2
WEMPEC
Inverter types PWM inverter z Multilevel inverter z Naturally commutated current source inverter z
3 Jan 2001
Microgrids Short Course
GV 3
WEMPEC
PWM Synthesis – A, B & C phases Vdc Va
Vb
Vc
• Phase shift between waveforms may be varied • Amplitude of waveforms may be dissimilar • All the three phase voltages could have an average Vdc/2 common mode voltage • Causes a neutral shift • Will cancel out in the line-line voltages 3 Jan 2001
Microgrids Short Course
GV 4
WEMPEC
Realization using IGBTs
Vdc
3 Jan 2001
Va
Vb
Microgrids Short Course
Vc
GV 5
WEMPEC
Multilevel Inverters
Vdc
+ other phases
Vdc Vdc
+ other phases
Vdc
3 Jan 2001
Microgrids Short Course
GV 6
WEMPEC
Typical waveforms Pole voltage Vdc Vdc/2
Line-Line Voltage
Stepped synthesis also possible 3 Jan 2001
Microgrids Short Course
GV 7
WEMPEC
Three Phase Current Source Inverter • Two Pole Three Throw Switches
Stiff Current
1P3T
1P3T
3 Jan 2001
Microgrids Short Course
GV 8
WEMPEC
CSI Converter Realization (Thyristors) z
1P3T
Stiff current
z
Natural commutation Leading power factor load
Three phase a voltages
1P3T
3 Jan 2001
Microgrids Short Course
GV 9
WEMPEC
3 wire direct output • DC voltage level has to be bigger than peak lineline voltage • No path for zero sequence currents from inverter
3 Jan 2001
Microgrids Short Course
GV 10
WEMPEC
4 wire interface using star-delta transformer • DC voltage level free variable because of transformer turns ratio • Zero sequence currents on star side circulates within the loop of the delta side
3 Jan 2001
Microgrids Short Course
GV 11
WEMPEC
Single line equivalent circuit and phasor diagram Vi
Vi IL
IL Vo
It
Vo It
Vac
Vac
• Vac – PCC voltage • Vo – Point of Load (POL) Voltage 3 Jan 2001
Microgrids Short Course
GV 12
WEMPEC
Microgrid Energy and Power Quality Management Functions • Load profile control • Source utilization • Peak-shaving • Reactive power injection • POL voltage control • Voltage imbalance correction
3 Jan 2001
Microgrids Short Course
GV 13
WEMPEC
Voltage sag correction Nominal condition Vi
IL Vo
It
Vac
Operation under sag (Same real power transfer level)
Operation under sag (Reduced real power to grid)
3 Jan 2001
Microgrids Short Course
GV 14
WEMPEC
Voltage imbalance correction
• Input voltage – Brown • Output voltage – Cyan • Phase currents – Green • Note increase in current stress on phases with large sag 3 Jan 2001
Microgrids Short Course
GV 15
WEMPEC
Fault Management
Vi
IL
It
Vo
Vac
Fault
3 Jan 2001
Microgrids Short Course
GV 16
WEMPEC
Operation under transients Load transients z System transients z
– –
Capacitor switching Power quality events
Delayed source response z Islanding z Reconnection z
3 Jan 2001
Microgrids Short Course
GV 17
WEMPEC
Key Control Issues Power flow control z Frequency control z Local voltage control z Reactive power control z
Power sharing z Frequency matching z
3 Jan 2001
Microgrids Short Course
GV 18
WEMPEC
Power throughput of inverter VacVo sin δ P= Xt 2
Vo VacVo cos δ Q= − Xt Xt
3 Jan 2001
Microgrids Short Course
• Angle between Vac and Vo determines power flow • Magnitude of Vo determines reactive power flow
GV 19
WEMPEC
Modeling objectives • Need to model dynamic properties • Control input and real power flow or power angle • Control input and reactive power flow or voltage magnitude
3 Jan 2001
Microgrids Short Course
GV 20
WEMPEC
Typical controller structure (classical) + Vac 1
+ Voltage command
+
Current Regulator
Voltage Controller -
PWM Converter and LC Filter
-
Vo
Ls
It
IL Vi
Current feedback
Voltage feeback
3 Jan 2001
Microgrids Short Course
GV 21
WEMPEC
Typical controller structure Flux vector + Vac 1
+ Flux command
PWM Converter and LC Filter
Flux Regulator
Vo
-
Vi Flux feedback
1 λi
Vi
s
IL
λi
3 Jan 2001
It
Ls
Microgrids Short Course
Vo It Vac
GV 22
WEMPEC
Key control variables Magnitude and Phase angle Modulation input z Inverter output z Filter inductor current output z Capacitor voltage output z
3 Jan 2001
Microgrids Short Course
GV 23
WEMPEC
Key control variables
m(t ) = m(t ) e
j∠m ( t )
vi (t ) = vi (t ) e
j∠vi ( t )
iL (t ) = iL (t ) e
j∠iL ( t )
vo (t ) = vo (t ) e
j∠vo ( t )
Instantaneous phase quantities are projections of the rotating vectors on appropriate axes 3 Jan 2001
Microgrids Short Course
GV 24
WEMPEC
Dynamic Equations d L iL = vdc m cos(∠m − ∠iL ) − vo cos(∠vo − ∠iL ) dt d L iL ∠iL = vdc m sin(∠m − ∠iL ) − vo sin(∠vo − ∠iL ) dt
vo d C vo = iL cos(∠iL − ∠vo ) − dt R vo d C vo ∠vo = iL sin(∠iL − ∠vo ) − dt R
3 Jan 2001
Microgrids Short Course
GV 25
WEMPEC
Steady state operating condition 0 = Vdc M cos(∠M − ∠I L ) − Vo cos(∠Vo − ∠I o ) L I L ω = Vdc M sin(∠M − ∠I L ) − Vo sin(∠Vo − ∠I L ) 0 = I L cos(∠I L − ∠Vo ) −
Vo R
C Vo ω = I L sin(∠I L − ∠Vo ) −
3 Jan 2001
Microgrids Short Course
Vo R
GV 26
WEMPEC
Steady state operating condition 0 = Vdc M cos(φ miL ) − Vo cos φvoiL L I L ω = Vdc M sin φ miL − Vo sin φvoiL 0 = I L cos φiL vo −
Vo R
C Vo ω = I L sin φiLvo −
Vo R
Classical phasor solution 3 Jan 2001
Microgrids Short Course
GV 27
WEMPEC
Small signal model at operating point x&= Ax + Bu y = Ex + Fu 0 −ω IL A= Vo RC I L ω I L
3 Jan 2001
ωI L 0
~ u= m
− Vo LR I L − ωC Vo 2
IL L − ω Vo 1 RC
−1 RC −ω Vo
2 − ωC Vo 2 IL L 2 − Vo 2 LR I L ω Vo −1 RC
Microgrids Short Course
~ iL ~ ∠i x = ~L v o ~ ∠vo
Vdc cos φ miL L V sin φ dc miL B= L IL 0 0
GV 28
WEMPEC
Transfer function z
Magnitude of modulation to output voltage 60 MG(f k)
40 20 0 10
1 .10
100
3
1 .10
3
1 .10
4
fk 0
AG( f k) 90
180 10
1 .10
100
4
fk 3 Jan 2001
Microgrids Short Course
GV 29
WEMPEC
Perturbations in time domain 200 Voac( t , 1000 ) Voa ( t , 1000 )
0
200
0
1
2
3
4
5
6
7
8
9
10
t ⋅ 1000 50 Ioa( t , 1000 ) Ioac( t , 1000 )
0
50
0
1
2
3
4
5
6
7
8
9
10
t ⋅ 1000
3 Jan 2001
Microgrids Short Course
GV 30
WEMPEC
Vectors on the Complex Plane 300 200 100 Im( Vocomplex( t , 1000 ) )
0 100 200 300
300
200
100
0
100
200
300
Re( Vocomplex( t , 1000 ) )
60
Output current complex vector 40 20 Im( Iocomplex( t , 500 ) )
0 20 40 60
60
40
20
0
20
40
60
Re ( Iocomplex( t , 500 ) )
3 Jan 2001
Microgrids Short Course
GV 31
WEMPEC
Properties of the dynamic model Eigen frequencies of small signal model
−313.396 + 629.17i −313.396 − 629.17i −313.396 + 509.17i −313.396 − 509.17i
3 Jan 2001
Eigen frequencies of LC filter (incl. damping effects)
= 569 Hz
Excitation frequency
= 60 Hz
Microgrids Short Course
GV 32
WEMPEC
Dynamic interaction issues z z z z z z z 3 Jan 2001
Angle input to output transfer functions Cross coupling transfer functions Selection of controllers and tuning Outer loop effects (Real and reactive power, droop, etc.) Frequency synchronization Interactions between multiple parallel units EMI filter interactions Microgrids Short Course
GV 33
WEMPEC
z z z z z z z 3 Jan 2001
Summary
Inverter modeling important aspect of microgrid design Stiff dc bus with adequate storage decouples prime mover dynamics Inverter dynamic model based on rotating vectors Model reduces to phasor model at steady state Small signal model properties outlined Various transfer functions can be determined, (esp. angle and frequency) Extend and integrate into system models Microgrids Short Course
GV 34
Operation and Control of Micro-Grids Robert H. Lasseter University of Wisconsin
R.H.Lasseter
University-of-Wisconsin
PSERC
Micro-grid concept assumes: • Large clusters of micro-sources and storage systems • Close to loads with possible CHP applications • Customer Quality of Power • Presented to the grid as a single controllable unit (load & source)
R.H.Lasseter
University-of-Wisconsin
PSERC
• Solid state breaker • Generation & storage • Motor Loads
Micro Grid open
13.8 kV
480V
480V 6
5 8
M5 M8
R.H.Lasseter
480V
9 M9
University-of-Wisconsin
PSERC
Control of P &Q using PWM Inverters
Vinv
E
Inverter
P ∝δ p 0
Q ∝Vinv
Vinv
δ
0 R.H.Lasseter
University-of-Wisconsin
E PSERC
Basic P Q Controller Va V
b
Vc E
a
E
b
Ec
ψv Flux Vector Calculator
ψv o
δv
Inverter Flux Vector Control
ψE
Flux Vector Calculator
δE
Ea Eb Ec
R.H.Lasseter
e
Po
Ib c
Switch
δP o
Ia I
Inverter r
P&Q Calculation
P _
+
_ Q
+
p-i
δP o
p-i
ψv o
Qo
University-of-Wisconsin
PSERC
Basic P & Q Response
P
Current
Q
R.H.Lasseter
University-of-Wisconsin
PSERC
Micro Grid connected to T/D Grid Micro-Sources Provide • Control of local bus voltage • Control of base power flow Fast Load tracking is provided by the grid Micro Grid: Dispatchable load to the grid
R.H.Lasseter
University-of-Wisconsin
PSERC
Micro Grid
• P control • V control of 8 & 9
13.8 kV
480V
480V 6
5 8
M5 M8
R.H.Lasseter
480V
9 M9
University-of-Wisconsin
PSERC
P V controller
8 on Bus 8
9 on Bus 9
R.H.Lasseter
University-of-Wisconsin
PSERC
Isolated Micro Grid Issues • Instantaneous power balance – Use storage on dc bus – Storage on the ac bus – Include rotating machines in Micro-grid
• Load Sharing • Frequency Control R.H.Lasseter
University-of-Wisconsin
PSERC
Island System P ~ Sin(δ1−δ2)
V2 / δ 2
L2 Increase L 2 R.H.Lasseter
V/ 1 δ1
L1 University-of-Wisconsin
PSERC
P ~ Sin(δ1−δ2) ω0
V1
ω0 > ω1 > ω2
V2 δ2 R.H.Lasseter
University-of-Wisconsin
PSERC
Frequency Droop ω ωo
P02
P01
ω1
ω min P P2max P1max R.H.Lasseter
University-of-Wisconsin
PSERC
Power Droop ωi (t) = ω 0 − mi (Pc,i − Pi (t)) ω + +
E
s _
ωo
δ
P
k" s
Pc
+
_
_
_ m
+
1 s
+
_ k'
+
p-i
δP o
-
Po
R.H.Lasseter
University-of-Wisconsin
PSERC
P V Controller with Droop ψ E0
Eo
1
ω
ω
E
+ _
s
V
Flux Vector Calculation
I ωo Po R.H.Lasseter
ψE ψ
Q E P&Q Calculation
p-i
I
ψ
vo
v
Inverter Flux δv Vector Control
δE
P Power with droop
University-of-Wisconsin
δ
Po
PSERC
Island Micro Grid
• Solid state breaker • Generation & storage • Motor Loads open
13.8 kV
480V
480V
Non-critical Loads 6
5 8
M5 M8
Critical Loads R.H.Lasseter
480V
9 M9
Critical Loads University-of-Wisconsin
PSERC
Voltage on Buses 8 & 9
R.H.Lasseter
University-of-Wisconsin
PSERC
Injected P & Q Buses 8 & 9
R.H.Lasseter
University-of-Wisconsin
PSERC
Frequency Droop ω ωo
P02
P01
ω1
ω min P P2max P1max R.H.Lasseter
University-of-Wisconsin
PSERC
Frequency Hz
Frequency at bus 8
Time seconds
R.H.Lasseter
University-of-Wisconsin
PSERC
Sensitive loads (Quality & Service)
Power Quality is the attribute of electric power which enables utility customers’ electrical and electronic equipment to operate as intended
R.H.Lasseter
University-of-Wisconsin
PSERC
Voltage Sensitivity 5-10 cycles 150
100
CBEMA
Type 1 50 Type 2 CBEMA
0 1 0 -1 100
R.H.Lasseter
101
102
103
DurUniversity-of-Wisconsin at ion ( 6 0 Hz Cy c les)
PSERC
Shunt current injection Restored Voltage
Voltage Sag 1.0
1.0
0
0
-1.0
-1.0
injected current Critical Load R.H.Lasseter
University-of-Wisconsin
PSERC
Premium Power Micro Source
•Power Power Source •UPS •Voltage control unbalance frequency R.H.Lasseter
AC DC DC
University-of-Wisconsin
DC
PSERC
Voltage Sag Regulator -* Vs=0 V d
dq
abc -
Negative component V c
V s PID
Ø s
V q
dq-
s V
dq
V + V dq
V s
abc
+* Inverter
s
+ V c
+
d abc
dq-
dq+
PID
-
+ V q dq+
+ Ø s
dq
abc
Positive component R.H.Lasseter
University-of-Wisconsin
PSERC
Inverter Response to SLG
R.H.Lasseter
University-of-Wisconsin
PSERC
Micro Grids & Premium Power • Generation Close to loads – Local reliability – Possible CHP applications
• Premium Power – UPS functions – Back-up service – Custom Power functions
R.H.Lasseter
University-of-Wisconsin
PSERC
Research Needs 1. Clear interfaces/functions to the Grid 2. Micro-Grid protection 3. Plug & play controls 4. Placement tools including CHP.
R.H.Lasseter
University-of-Wisconsin
PSERC