Microstructure and Mechanical Properties of Ti-6Al

0 downloads 0 Views 7MB Size Report
Feb 28, 2017 - Ti-6Al-4V Fabricated by Vertical Wire Feeding with ... Keywords: vertical wire feeding; laser additive manufacturing; ..... Martina, F.; Colegrove, P.A.; Williams, S.W.; Meyer, J. Microstructure of interpass rolled wire + arc additive.
applied sciences Article

Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Vertical Wire Feeding with Axisymmetric Multi-Laser Source Jie Fu 1 , Lin Gong 1, *, Yifei Zhang 2 , Qianru Wu 1 , Xuezhi Shi 1 , Junchao Chang 2 and Jiping Lu 1 1

2

*

School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; [email protected] (J.F); [email protected] (Q.W.); [email protected] (X.S.); [email protected] (J.L.) Shenyang Siasun Robot Automation Co., Ltd., Shenyang 110168, China; [email protected] (Y.Z.); [email protected] (J.C.) Correspondence: [email protected]; Tel.: +86-10-6891-5017

Academic Editor: Peter Van Puyvelde Received: 10 January 2017; Accepted: 23 February 2017; Published: 28 February 2017

Abstract: Vertical wire feeding with an axisymmetric multi-laser source (feeding the wire vertically into the molten pool) has exhibited great advantages over LAM (laser additive manufacturing) with paraxial wire feeding, which has an anisotropic forming problem in different scanning directions. This paper investigates the forming ability of vertical wire feeding with an axisymmetric multi-laser source, and the microstructure and mechanical properties of the fabricated components. It has been found that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability with no anisotropic forming problem when fabricating the complex parts in a three-axis machine tool. Most of the grains in the samples are equiaxed grains, and a small amount of short columnar grains exist which are parallel to each other. The microstructure of the fabricated samples exhibits a fine basket-weave structure and martensite due to the fast cooling rate which was caused by the small size of the molten pool and the additional heat dissipation from the feeding wire. The static tensile test shows that the average ultimate tensile strength is 1140 MPa in the scanning direction and 1115 MPa in the building direction, and the average elongation is about 6% in both directions. Keywords: vertical wire feeding; laser additive manufacturing; Ti-6Al-4V titanium alloy

1. Introduction Ti-6Al-4V titanium alloy was widely used in the aerospace and military industries due to its excellent specific strength, high shear modulus, low density and thermal expansion coefficient [1–3]. However, traditional manufacturing methods of Ti-6Al-4V titanium alloy, such as forging or cutting, which have the disadvantages of a high buy-to-fly ratio and low manufacturing flexibility, are not economical. The laser additive manufacturing (LAM) process which fabricates Ti-6Al-4V titanium alloy with a near net shape has no restriction in the component shapes. It has been popular in recent studies [4–7] and has been widely used to fabricate complex components in aerospace and other industries [1]. The typical grain structure in the fabricated Ti-6Al-4V titanium alloy samples is coarse columnar prior β grains, which arise due to high temperature gradients and distribute approximately parallel to the building direction [8]. Wire and powder are the two main material forms of the Ti-6Al-4V in LAM process [6,9]. SLM (Selective Laser Melting) is a typical LAM method which uses powder as the feedstock. It has the advantages of high manufacturing capacity and accuracy. Compared with powder, using wire as the feedstock form has the great advantages of high efficiency, low cost and simple handling and storage

Appl. Sci. 2017, 7, 227; doi:10.3390/app7030227

www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 227    Appl. Sci. 2017, 7, 227  Appl. Sci. 2017, 7, 227  

2 of 10  22 of 10  of 11

storage  storage operation  operation during  during the  the manufacturing  manufacturing process  process [9,10].  [9,10]. Therefore,  Therefore, it it has  has received  received more  more  attentions in recent research activities [11–16].  operation during the manufacturing process [9,10]. Therefore, it has received more attentions in recent attentions in recent research activities [11–16].  LAM with wire feeding can be divided into vertical wire research activities [11–16]. LAM with wire feeding can be divided into vertical wirefeeding and paraxial wire feeding [9,17].  feeding and paraxial wire feeding [9,17].  LAM with wire feeding evolved from laser wire feed welding, so paraxial wire feeding accounts for  LAM with wire feeding can be divided into vertical wire feeding and paraxial wire feeding [9,17]. LAM with wire feeding evolved from laser wire feed welding, so paraxial wire feeding accounts for  the majority of the wire feeding methods, and the schematic drawing of it is indicated in Figure 1a.  LAM with wire feeding evolved from laser wire feed welding, so paraxial wire feeding accounts for the majority of the wire feeding methods, and the schematic drawing of it is indicated in Figure 1a.  Although it is easy to implement, there is an anisotropic forming problem in the deposition process  the majority of the wire feeding methods, and the schematic drawing of it is indicated in Figure 1a. Although it is easy to implement, there is an anisotropic forming problem in the deposition process  due  to  different  wire  kinds  of  in  Although it is easy to feed  implement, there [18].  is[18].  an There  anisotropic forming problem infeed  the orientations  deposition process due  to  different  wire  feed orientations  orientations  There are  are three  three  kinds  of wire  wire  feed  orientations  in the  the  deposition  process,  which  are  shown  in  Figure  2.  The  depositions  from  front  feeding  and  side  due to different wire feed orientations [18]. There are three kinds of wire feed orientations in the deposition  process,  which  are  shown  in  Figure  2.  The  depositions  from  front  feeding  and  side  feeding have a smoother surface than back feeding [19], and the smoothest surface can be obtained  deposition process, which are shown in Figure 2. The depositions from front feeding and side feeding feeding have a smoother surface than back feeding [19], and the smoothest surface can be obtained  when the wire is positioned at the leading edge of the molten pool in front feeding [20]. Due to the  have a smoother surface than back feeding [19], and the smoothest surface can be obtained when the when the wire is positioned at the leading edge of the molten pool in front feeding [20]. Due to the  different forming morphologies in different wire feed orientations, different layer thicknesses may  wire is positioned at the leading edge of the molten pool in front feeding [20]. Due to the different different forming morphologies in different wire feed orientations, different layer thicknesses may  appear in the same layer, especially when forming large complex components.     forming morphologies in different wire feed orientations, different layer thicknesses may appear in appear in the same layer, especially when forming large complex components.  Vertical  wire  feeding  with  an axisymmetric  multi‐laser source  can  be  realized  by  the same layer, especially when forming large complex components. Vertical  wire  feeding  with  an axisymmetric  multi‐laser source  can  be  realized  by exchanging  exchanging  the  position  of  laser  head  wire  as  paraxial  wire  Vertical feeding anand  axisymmetric multi-laser source with  can bethe  realized by exchanging the     the  position wire of the  the  laser with head  and  wire feeder,  feeder,  as compared  compared  with  the  paraxial  wire feeding.  feeding.  The schematic diagram is shown in Figure 1b. It is obvious that the wire feeding orientation will not  position of the laser head and wire feeder, as compared with the paraxial wire feeding. The schematic The schematic diagram is shown in Figure 1b. It is obvious that the wire feeding orientation will not  change no matter what the scanning direction is in the deposition process. Therefore, there will be no  diagram is shown in Figure 1b. It is obvious that the wire feeding orientation will not change no change no matter what the scanning direction is in the deposition process. Therefore, there will be no  anisotropic  problem  in  process,  but  few  done  matter whatforming  the scanning direction isthe  indeposition  the deposition process. Therefore, there have  will bebeen  no anisotropic anisotropic  forming  problem  in the  deposition  process,  but  few studies  studies  have  been  done to  to  characterize  the  forming  ability  of  vertical  wire  feeding  with  an  axisymmetric  multi‐laser  source.  forming problem in the deposition process, but few studies have been done to characterize the forming characterize  the  forming  ability  of  vertical  wire  feeding  with  an  axisymmetric  multi‐laser  source.  Thus,  aim  this  paper  to  the  ability  of  wire  feeding  ability of vertical with an axisymmetric multi-laser source. Thus, the aim of this with  paper is Thus, the  the  aim of  of wire this feeding paper is  is  to investigate  investigate  the forming  forming  ability  of vertical  vertical  wire  feeding  with an  an  axisymmetric  multi‐laser  source  as  well  as  the  microstructure  and  mechanical  properties  of  the  to investigate the forming ability vertical wire with an axisymmetric multi-laser source as axisymmetric  multi‐laser  source ofas  well  as  the feeding microstructure  and  mechanical  properties  of  the  fabricated components.    well as the microstructure and mechanical properties of the fabricated components. fabricated components.   

   Figure 1. The schematic of laser additive  additive manufacturing with: (a) paraxial wire feeding; (b) vertical Figure 1. The schematic of laser  Figure 1. The schematic of laser  additive manufacturing with: (a) paraxial wire feeding; (b) vertical  manufacturing with: (a) paraxial wire feeding; (b) vertical  wire feeding. wire feeding.  wire feeding. 

(a) (a)

(b) (b)

Wire feeding direction  Wire feeding direction 

Top view Top view Wire feeding direction  Wire feeding direction 

Wire feeding direction  Wire feeding direction 

(c) (c) Scanning direction  Scanning direction 

Figure 2. The schematic of wire feed orientations: (a) front feeding; (b) back feeding; (c) side feeding.  Figure 2. The schematic of wire feed orientations: (a) front feeding; (b) back feeding; (c) side feeding.  Figure 2. The schematic of wire feed orientations: (a) front feeding; (b) back feeding; (c) side feeding.   

Appl. Sci. 2017, 7, 227

3 of 11

Appl. Sci. 2017, 7, 227   

3 of 10 

2.2. Experiment  Experiment 2.1. Deposition Process 2.1. Deposition Process  The LAM equipment is shown in Figure 3. The additive manufacturing device is mounted on the The LAM equipment is shown in Figure 3. The additive manufacturing device is mounted on  three-axis CNC machine (Shenyang Siasun Robot Automation Co., Ltd., Shenyang, China) which uses the three‐axis CNC machine (Shenyang Siasun Robot Automation Co., Ltd., Shenyang, China) which  Simens 828D control control  system system  (SIEMENS, Berlin, Germany) as shown Figurein  3a. The stroke uses  Simens numerical 828D  numerical  (SIEMENS,  Berlin,  Germany)  as inshown  Figure  3a.    ofThe stroke of each axis is 1000 mm (X), 800 mm (Y) and 600 mm (Z), all of which are driven by servo  each axis is 1000 mm (X), 800 mm (Y) and 600 mm (Z), all of which are driven by servo motor (Shenyang Siasun Robot Automation Co., Ltd., Shenyang, China) and ball screw (Shenyang Siasun motor (Shenyang Siasun Robot Automation Co., Ltd., Shenyang, China) and ball screw (Shenyang  Robot Automation Co., Ltd., Shenyang, China). Siasun Robot Automation Co., Ltd., Shenyang, China).  The additive manufacturing device consists of four functional modules: laser focusing module, The additive manufacturing device consists of four functional modules: laser focusing module,  vertical wire feeding module, shielding gas module and water-cooling module as shown in Figure 3b. vertical wire feeding module, shielding gas module and water‐cooling module as shown in Figure 3b.  InIn the laser focusing module, three laser beams are focused onto the wire at a certain angle (in this  the laser focusing module, three laser beams are focused onto the wire at a certain angle (in this paper,  angle  between  the  laser  55°).  In  vertical  wire  feeding  module,    paper, thethe  angle between thethe  wirewire  andand  the laser beambeam  is 55◦is  ). In vertical wire feeding module, the wire isthe wire is fed vertically to the substrate. The additive manufacturing device driven by the actuator  fed vertically to the substrate. The additive manufacturing device driven by the actuator moves moves along the arranged path, thus the components can be formed. Argon gas is injected around  along the arranged path, thus the components can be formed. Argon gas is injected around the feeding the tofeeding  to oxidation prevent  metal  oxidation  at  high  temperatures.  The  water provides cooling  cooling module to wire preventwire  metal at high temperatures. The water cooling module provides cooling to the laser head to ensure long‐term stable operation. The operating temperature  the laser head to ensure long-term stable operation. The operating temperature of the laser head is of the laser head is 10 to 25 °C.    10 to 25 ◦ C.

 

  Figure  3.  (a)  The  schematic  of  the  laser  additive  manufacturing  equipment;  (b)  The  equipment  of  Figure 3. (a) The schematic of the laser additive manufacturing equipment; (b) The equipment of vertical wire feeding with an axisymmetric multi‐laser source; (c) the additive manufacturing device  vertical wire feeding with an axisymmetric multi-laser source; (c) the additive manufacturing device of of vertical wire feeding.  vertical wire feeding.

Two  components  were  fabricated  in  this  experiment:  one  for  the  forming  ability  test  and  the  Two components were fabricated in this experiment: one for the forming ability test and the other other for the microstructural and mechanical properties tests. The shape of the component fabricated  for the microstructural and mechanical properties tests. The shape of the component fabricated for for the forming ability test consists of circles and polyline in all directions to test the forming ability  and  anisotropic  problem  of  vertical  wire  feeding  method.  The  tool‐path  of  it ability is:  first,  the forming abilityforming  test consists of circles and polyline in all directions to test the forming and scanning a circle with a diameter of 50 mm;  twelve  angle  star  inscribed  anisotropic forming problem of vertical wiresecond,  feedingscanning  method.a The tool-path of it which  is: first, scanning circle is 55 mm and circumcircle is 95 mm in diameter; third, scanning a circle with a diameter of  a circle with a diameter of 50 mm; second, scanning a twelve angle star which inscribed circle is 55 mm 100 circumcircle mm;  finally,  additive  manufacturing  device  is  by  0.8  mm  and ofrepeat  the  finally, first    and is the  95 mm in diameter; third, scanning a raised  circle with a diameter 100 mm; three steps.  the additive manufacturing device is raised by 0.8 mm and repeat the first three steps.

Appl. Sci. 2017, 7, 227   

4 of 10 

For convenience, a cuboid block with the size of 81 mm × 40 mm × 40 mm was fabricated for the  4 of 11 microstructure  observation  and  mechanical  properties  tests.  The  tool‐path  of  the  cuboid  block  is  shown in Figure 4.  For cuboid block with size of 81 mm × 40 alloy  mm ×substrate  40 mm was fabricated The convenience, components awere  fabricated  on the a  Ti‐6Al‐4V  titanium  with  the  size for of    the microstructure observation and mechanical properties tests. The tool-path of the cuboid block is 150 mm × 150 mm × 5 mm. The process parameters used of  the  two  components  in the deposition  Appl. Sci. 2017, 7, 227    4 of 10  shown in Figure 4. process are given in Table 1.  For convenience, a cuboid block with the size of 81 mm × 40 mm × 40 mm was fabricated for the  The components were fabricated on a Ti-6Al-4V titanium alloy substrate with the size of microstructure  observation  and  mechanical  properties  tests.  The  tool‐path  of  the  cuboid  block  is  Table  1.  Process  used  in parameters vertical  wire  feeding  with  axisymmetric  multi‐laser    150 mm ×shown in Figure 4.  150 mm × 5parameters  mm. The process used of the twoan  components in the deposition source process.  The  in components  process are given Table 1. were  fabricated  on  a  Ti‐6Al‐4V  titanium  alloy  substrate  with  the  size  of    Appl. Sci. 2017, 7, 227

150 mm × 150 mm × 5 mm. The process parameters used of  the  two  components  in the deposition  Unit Parameter Set process are given in Table 1.  Table 1. Process parameters used in vertical wire feeding with an axisymmetric multi-laser

Laser wavelength  Laser power (total)  source process.  Diameter of laser beam Deposition speed  Laser wavelength Laser wavelength  Wire‐feed speed  Laser power (total) Laser power (total)  Diameter of laser beam Wire feed angle  Diameter of laser beam Deposition speed Deposition speed  Layer thickness  Wire-feed speed Wire‐feed speed  Diameter of wire  Wire feed angle Wire feed angle  Layer thickness Deposit spacing  Layer thickness 

μm  976  kW  1.65  mm  3  Set Unit Parameter Unit Parameter Set mm/min 500  µm μm  976  976 mm/min kW 1.65 kW  1.65 2200  mm 3 °  mm  3  55  mm/min 500 mm/min 500  0.8  mm  mm/min mm/min 2200  2200 ◦ mm  1.2  °  55  55 mm 0.8 mm  mm  0.8  3 

source process. Table  1.  Process  parameters  used  in  vertical  wire  feeding  with  an  axisymmetric  multi‐laser   

Diameter of wire Diameter of wire  Deposit spacing Deposit spacing 

mm mm  mm

mm 

1.2  3 

1.2 3

layer thickness

3mm 3mm

0.8mm layer thickness 0.8mm

81mm 81mm

substrate substrate

  

  

Figure 4. The tool path of the cuboid sample block.  Figure 4. The tool path of the cuboid sample block.

Figure 4. The tool path of the cuboid sample block. 

2.2. Mechanical Characterization 

2.2. Mechanical Characterization 2.2. Mechanical Characterization  The scanning direction (T direction) and building direction (L direction) of the block sample are  shown  in  Figure  5a.  Three  tensile  specimens  were  obtained  from  the (L middle  of  the  block  in  each  The scanning direction (T direction) and building direction direction) of the block sample The scanning direction (T direction) and building direction (L direction) of the block sample are  direction  by  wire‐cutting  techniques  (Figure  5b,c).  Static  tensile  tests  at  room  temperature  were  are shown in Figure 5a. Three tensile specimens obtained the middle ofblock  the block in shown  in carried out on an INSTRON 5966 material testing machine (INSTRON, Boston, MA, USA). The max  Figure  5a.  Three  tensile  specimens  were were obtained  from from the  middle  of  the  in  each  each direction by wire-cutting techniques (Figure Static tensile tests atacquired  room temperature direction  by  wire‐cutting  techniques  (Figure  5b,c).  Static  tensile  tests  at  room  temperature  were  load  capacity  of  it  is  10  kN  and  the  drive  type  is 5b,c). powerful  motors.  The  strain  is  by  video‐extensometer  (INSTRON, 5966 Boston,  MA,  USA).  The machine cross‐head (INSTRON, displacement  Boston, speed  was    were carried out on an INSTRON material testing MA, USA). carried out on an INSTRON 5966 material testing machine (INSTRON, Boston, MA, USA). The max  0.01 mm/s.  The load capacity of it is 10 kN and the drive type is powerful motors. strain is acquired load max capacity  of  it  is  10  kN  and  the  drive  type  is  powerful  motors.  The  The strain  is  acquired  by  by video-extensometer (INSTRON, Boston, MA,USA).  USA).The  Thecross‐head  cross-head displacement  displacement speed  speed was video‐extensometer  (INSTRON,  Boston,  MA,  was    0.01 mm/s. 0.01 mm/s. 

  Figure 5. (a) The block sample fabricated by vertical wire feeding with an axisymmetric multi‐laser  source; (b) tensile specimen obtained from the sample; (c) the dimensions of tensile specimens. 

  Figure 5. (a) The block sample fabricated by vertical wire feeding with an axisymmetric multi‐laser  Figure 5. (a) The block sample fabricated by vertical wire feeding with an axisymmetric multi-laser source; (b) tensile specimen obtained from the sample; (c) the dimensions of tensile specimens.  source; (b) tensile specimen obtained from the sample; (c) the dimensions of tensile specimens.

Appl. Sci. 2017, 7, 227 Appl. Sci. 2017, 7, 227   

5 of 11 5 of 10 

2.3. Microstructure and Morphology  2.3. Microstructure and Morphology The  samples samples  for for  microstructural microstructural  and and  macrostructural macrostructural  characterization characterization  can  be  obtained obtained  from from  The can be each  direction. direction.  The  paper  (180, (180,  360, 360,  600, 600,  1000, 1000,  2000), 2000),  then then  each The samples  samples were  were firstly  firstly polished  polished with  with SiC  SiC paper etching for 20 s using a solution consisting of 2% HF (hydrofluoric acid) and 6% HNO 3  (nitric acid).  etching for 20 s using a solution consisting of 2% HF (hydrofluoric acid) and 6% HNO3 (nitric acid). Light microscopy pictures were taken with a Leica DM4000M optical microscope (Leica Microsystems,  Light microscopy pictures were taken with a Leica DM4000M optical microscope (Leica Microsystems, Wechsler, Hesse, Germany). And macrostructural pictures were taken with a Canon DSLR Camera  Wechsler, Hesse, Germany). And macrostructural pictures were taken with a Canon DSLR Camera (NIKON CORPORATION, Tokyo, Japan). All the grains sizes were determined by ImageJ software  (NIKON CORPORATION, Tokyo, Japan). All the grains sizes were determined by ImageJ software (2.1.4.7, National Institutes of Health, Bethesda, MD, USA).  (2.1.4.7, National Institutes of Health, Bethesda, MD, USA).   3. Results 3. Results  3.1. Macrostructure 3.1. Macrostructure  The component for the forming ability test is shown in Figure 6. It is obvious that the surface The component for the forming ability test is shown in Figure 6. It is obvious that the surface  morphology Moreover,   morphology  of of  the the  circles circles  was was  smooth smooth  and and  there there  was was no no difference difference in in all all directions. directions.  Moreover,  the formation was steady in all the corners, where the surface morphology was smooth as well.  well.   the  formation  was  steady  in  all  the  corners,  where  the  surface  morphology  was  smooth  as  The deposition process of the component was stable, as observed. Thereby, there was no anisotropic The deposition process of the component was stable, as observed. Thereby, there was no anisotropic  forming problem in vertical wire feeding with an axisymmetric multi-laser source process and it had forming problem in vertical wire feeding with an axisymmetric multi‐laser source process and it had  aa strong forming ability which can form the complex structure in a three‐axis machine tool.  strong forming ability which can form the complex structure in a three-axis machine tool. The surface of the sample block shows shiny areas where the molten pool was arranged like fish The surface of the sample block shows shiny areas where the molten pool was arranged like fish  scales, as shown in Figure 5a. The size of the single track was about 5 mm in width and 0.8 mm in scales, as shown in Figure 5a. The size of the single track was about 5 mm in width and 0.8 mm in  height under the present process parameters.   height under the present process parameters. 

  Figure 6. The forming part fabricated by laser additive manufacturing with vertical wire feeding.  Figure 6. The forming part fabricated by laser additive manufacturing with vertical wire feeding.

3.2. Grains  3.2. Grains Figure 7 shows the macrostructures of the samples in the T (scanning direction) and L (building  Figure 7 shows the macrostructures of the samples in the T (scanning direction) and L (building direction) directions. In the L direction, there were fine equiaxed grains evenly distributed with an  direction) directions. In the L direction, there were fine equiaxed grains evenly distributed with average size of 81.5 μm, as shown in Figure 7a,c. In the T direction, most of the grains were equiaxed  an average size of 81.5 µm, as shown in Figure 7a,c. In the T direction, most of the grains were equiaxed grains  as  well,  but  some  columnar  grains  mixed  with  them,  as shown in Figure 7b. The columnar  grains as well, but some columnar grains mixed with them, as shown in Figure 7b. The columnar grains were all short columnar grains (the aspect ratio of was less than five), as observed in Figure 7d;  grains were all short columnar grains (the aspect ratio of was less than five), as observed in Figure 7d; the  average  size  of  the  short  columnar  grains  was  338.6  μm  in  length  and  122.5  μm  in  width.    the average size of the short columnar grains was 338.6 µm in length and 122.5 µm in width. The  average  size  of  the  equiaxed  grains  in  the  T  direction  was  101.9  μm  (Figure  7e).  A  very  The average size of the equiaxed grains in the T direction was 101.9 µm (Figure 7e). A very important important  phenomenon  could  be  observed  as  well:  the  position  of  the  short  columnar  grains  phenomenon could be observed as well: the position of the short columnar grains coincided with the coincided with the moving path of the molten pool edge from one side to the other in the T direction,  moving path of the molten pool edge from one side to the other in the T direction, and the distance and the distance between the two parallel short columnar grains was 3 mm, which was the same as  between the two parallel short columnar grains was 3 mm, which was the same as the deposit spacing. the deposit spacing.   

Appl. Sci. 2017, 7, 227   

6 of 10 

Appl. Sci. 2017, 7, 227 Appl. Sci. 2017, 7, 227   

6 of 11 6 of 10 

  Figure 7. Macrostructure of the fabricated samples: (a) all fine equiaxed grains evenly distributed in  the L direction (building direction); (b) most of the grains in the T direction (scanning direction) are  equiaxed grains and a small amount of short columnar grains (aspect ratio less than five) which are  parallel  to  each  other.  Optical  micrographs  showing  the  microstructure  of  the  fabricated samples:    (c)  equiaxed  grains  in  the  L  direction;  (d)  short  columnar  grains  and  (e)  equiaxed  grains  in   the    T direction.  Figure 7. Macrostructure of the fabricated samples: (a) all fine equiaxed grains evenly distributed in  Figure 7. Macrostructure of the fabricated samples: (a) all fine equiaxed grains evenly distributed the L direction (building direction); (b) most of the grains in the T direction (scanning direction) are  in the L direction (building direction); (b) most of the grains in the T direction (scanning direction) 3.3. Microstructure  equiaxed grains and a small amount of short columnar grains (aspect ratio less than five) which are  are equiaxed grains and a small amount of short columnar grains (aspect ratio less than five) which parallel  to  each  other.  Optical  micrographs  of    microstructures  of  the  sample  in showing  the  two the  directions  are  shown  in  Figure  samples: 8  with  a  areThe  parallel to each other. Optical micrographs showing themicrostructure  microstructure ofthe  the fabricated samples:  fabricated (c)  equiaxed  grains  in  the  L  direction;  (d)  short  columnar  grains  and  (e)  equiaxed  grains  in  the    magnification  500  times.  microstructures  of  the  two  directions  (α’)  (c) equiaxed of  grains in the LThe  direction; (d) short columnar grains and (e)exhibited  equiaxed martensite  grains in the T direction.  morphology  T direction. (Figure  8a,b),  which  differs  from  the  Ti‐6Al‐4V  component  fabricated  by  laser 

deposition  with  powders  which  exhibits  a  coarse  α  phase  [21,22].  The  martensite  morphology  3.3. Microstructure  proves that the cooling rate is faster compared with other AM process.  3.3. Microstructure The  diameters  of  the  laser  beams  in  References  [9]  and  [21]  were  4.7  mm  and  5  mm,  which  The  microstructures  sample  the  two  directions  are  Figure  8  with  a  The microstructures of of  thethe  sample in thein  two directions are shown in shown  Figure 8in  with a magnification means the size of the molten pool will be at least about 7 mm [9,21]. However, the size of the molten  magnification  of  500  times.  The  microstructures  of  the  two  directions  exhibited  martensite  (α’)  of pool was smaller in this paper, about 5 mm; in this case, the heat can dissipate quickly. Moreover,  500 times. The microstructures of the two directions exhibited martensite (α’) morphology morphology  (Figure  8a,b),  which  differs  from  the  Ti‐6Al‐4V  fabricated  laser  (Figure 8a,b), which differs from the Ti-6Al-4V component fabricated component  by laser deposition with by  powders the wire was inserted into the molten pool in the deposition process, which can take away part of the  deposition  with  powders  which  exhibits  a  coarse  α  phase  [21,22].  The  martensite  morphology  which exhibits a coarse α phase [21,22]. The martensite morphology proves that the cooling rate is heat. Thereby, the cooling rate was faster in vertical wire feeding with an axisymmetric multi‐laser  proves that the cooling rate is faster compared with other AM process.  faster compared with other AM process. source using the current process parameters, resulting in a martensite morphology.  The  diameters  of  the  laser  beams  in  References  [9]  and  [21]  were  4.7  mm  and  5  mm,  which  means the size of the molten pool will be at least about 7 mm [9,21]. However, the size of the molten  pool was smaller in this paper, about 5 mm; in this case, the heat can dissipate quickly. Moreover,  the wire was inserted into the molten pool in the deposition process, which can take away part of the  heat. Thereby, the cooling rate was faster in vertical wire feeding with an axisymmetric multi‐laser  source using the current process parameters, resulting in a martensite morphology. 

  Figure 8. Optical micrographs showing the microstructure of the fabricated samples in: (a) T direction;  Figure 8. Optical micrographs showing the microstructure of the fabricated samples in: (a) T direction; (b) L direction.  (b) L direction.

The diameters of the laser beams in References [9] and [21] were 4.7 mm and 5 mm, which means the size of the molten pool will be at least about 7 mm [9,21]. However, the size of the molten pool was   smaller in this paper, about 5 mm; in this case, the heat can dissipate quickly. Moreover, the wire was Figure 8. Optical micrographs showing the microstructure of the fabricated samples in: (a) T direction;  (b) L direction. 

Appl. Sci. 2017, 7, 227

7 of 11

inserted into the molten pool in the deposition process, which can take away part of the heat. Thereby, the cooling rate was faster in vertical wire feeding with an axisymmetric multi-laser source using the Appl. Sci. 2017, 7, 227    7 of 10  current process parameters, resulting in a martensite morphology.

3.4. Mechanical Properties  3.4. Mechanical Properties The results of the static tensile tests at room temperature are shown in Figure 9. The average  The results of the static tensile tests at room temperature are shown in Figure 9. The average ultimate tensile strength was 1140.33  MPa with  standard  deviation  of  11.59  in the T direction  ultimate tensile strength was 1140.33 MPa with thethe  standard deviation of 11.59 in the T direction and and 1114.67 MPa with  the  standard  deviation  of  20.81  in the L direction. However, the increase in  1114.67 MPa with the standard deviation of 20.81 in the L direction. However, the increase in the the ultimate tensile strength resulted in a low strain (about 6%). The high strength and low ductility  ultimate tensile strength resulted in a low strain (about 6%). The high strength and low ductility of the of the samples were mainly caused by the martensite.  samples were mainly caused by the martensite. The components components fabricated fabricated by by LAM LAM with with paraxial paraxial wire wire feeding feeding usually usually exhibit exhibit anisotropic anisotropic  The mechanical properties properties  different  directions  which  is  caused  by  the  development  of  coarse  mechanical in in  different directions which is caused by the development of coarse columnar columnar grains [23,24].  grains [23,24]. Due to the large number of equiaxed grains, it is obvious that although the samples obtained  Due to the large number of equiaxed grains, it is obvious that although the samples obtained from  the  T  direction  a  better  strength  and  ductility  the obtained samples from obtained  from  the    from the T direction hadhad  a better strength and ductility than the than  samples the L direction, L  direction,  the  difference  between  the  two  directions  became  smaller  when  compared  with  the  the difference between the two directions became smaller when compared with the components components fabricated by the paraxial internal wire feeding method [9]. Therefore, the anisotropy  fabricated by the paraxial internal wire feeding method [9]. Therefore, the anisotropy problem of the problem of the mechanical properties has been greatly improved.  mechanical properties has been greatly improved.

  Figure 9. Ultimate tensile strength and strain of the block sample fabricated by vertical wire feeding  Figure 9. Ultimate tensile strength and strain of the block sample fabricated by vertical wire feeding with an axisymmetric multi‐laser source.  with an axisymmetric multi-laser source.

4.4. Discussion  Discussion ItIt is observed that the sample block shows the novel grain morphology. All the columnar grains  is observed that the sample block shows the novel grain morphology. All the columnar grains are short columnar grains, and the position of the short columnar grains coincides with the edge of  are short columnar grains, and the position of the short columnar grains coincides with the edge of the the  molten  pool one from  one  to  the  other  in  the  T  The direction.  The  distance  the  regions  molten pool from side to side  the other in the T direction. distance between thebetween  regions where short where short columnar grains occur is the same as the track spacing. According  to  our  knowledge,  columnar grains occur is the same as the track spacing. According to our knowledge, this phenomenon this phenomenon has never been found in LAM or other AM process. The explanation is as follows.  has never been found in LAM or other AM process. The explanation is as follows. There are are two two dominant dominant solidification solidification mechanisms mechanisms in in the the local local molten molten pool pool during during the the LAM LAM  There process, namely the heterogeneous nucleation on partially melted wire for equiaxed grains and the  process, namely the heterogeneous nucleation on partially melted wire for equiaxed grains and the epitaxial growth growth  from  the  pool  bottom  for  columnar  grains.  The  competition  between  them  epitaxial from the pool bottom for columnar grains. The competition between them determines determines the component grain morphology [25]. The growth direction of the columnar grains is in  the component grain morphology [25]. The growth direction of the columnar grains is in the same the same direction as the temperature gradient in the molten pool. The high temperature gradients  direction as the temperature gradient in the molten pool. The high temperature gradients promote the promote the growth of coarse columnar grains and make them grow throughout the sample [26].    growth of coarse columnar grains and make them grow throughout the sample [26]. In  the  vertical  wire  feeding  process,  the  width  of  the  molten  pool  was  about  5  mm,  and  the  diameter  of  the  wire  was  1.2  mm,  which  is  nearly  a  quarter  of  the  width  of  the  molten  pool.  Therefore the wire can take away part of the heat flow, and the temperature gradient of the molten  pool  was  disturbed  in  this  way.  When  the  wire  was  inserted  into  the  molten  pool  during  the  deposition  process,  the  wire  could  conduct  a  portion  of  the  heat  flow,  as  shown  in  Figure  10.    The  temperature  guidance  was  disturbed,  thus  preventing  the  epitaxial  growth  of  the  columnar  grains  at  the  bottom.  Hence,  the  heterogeneous  nucleation  on  partially  melted  wire  for  equiaxed 

Appl. Sci. 2017, 7, 227

8 of 11

In the vertical wire feeding process, the width of the molten pool was about 5 mm, and the diameter of the wire was 1.2 mm, which is nearly a quarter of the width of the molten pool. Therefore the wire can take away part of the heat flow, and the temperature gradient of the molten pool was disturbed in this way. When the wire was inserted into the molten pool during the deposition process, the wire could conduct a portion of the heat flow, as shown in Figure 10. The temperature guidance was disturbed, thus preventing the epitaxial growth of the columnar grains at the bottom. Hence, Appl. Sci. 2017, 7, 227    8 of 10  the heterogeneous nucleation on partially melted wire for equiaxed grains can be the main solidification mechanism inthe  themain  molten pool, and itmechanism  grows at the between and the molten pool, grains  can  be  solidification  in interface the  molten  pool,  the and wire it  grows  at  the  interface  resulting in the formation of Figure 10a. between the wire and the molten pool, resulting in the formation of Figure 10a.    However, for  for the  the edge  edge of  of the  the molten  molten pool  pool where  where the  the impact  impact of  of the  the wire  wire was  was small,  small, a  a high  high However,  temperature gradient still existed, leading to the formation of short columnar grains. Thereby, when the temperature gradient still existed, leading to the formation of short columnar grains. Thereby, when  molten pool solidifies, short columnar grains will be formed on both sides of the molten pool and the molten pool solidifies, short columnar grains will be formed on both sides of the molten pool and  equiaxed grains formed in the middle. When the molten pool moves the next track, remelting equiaxed  grains will will bebe  formed  in  the  middle.  When  the  molten  pool  to moves  to  the  next  track,  will occur,will  which makes the short columnar of thegrains  original molten pool molten  remelt, pool  contributing remelting  occur,  which  makes  the  short grains columnar  of  the  original  remelt,  to the formation of equiaxed grains. New, short columnar grains will be formed at both sides of the contributing to the formation of equiaxed grains. New, short columnar grains will be formed at both  molten pool, as shown in Figure 10b. sides of the molten pool, as shown in Figure 10b. 

  Figure  10.  (a)  The  schematic  of  the  grain  solidification  in  molten  pool;  (b)  the  schematic  of  the  Figure 10. (a) The schematic of the grain solidification in molten pool; (b) the schematic of the formation formation of grain morphology.  of grain morphology.

When the Ti‐6Al‐4V block is deposited layer by layer, the morphology (see Figure 11) appears  When the Ti-6Al-4V block is deposited layer by layer, the morphology (see Figure 11) appears at last. So the block sample shows the grain morphology (Figure 7), where short columnar grains are  at last. So sample showsThat  the grain morphology 7), where short the  columnar grains parallel  to  the the block building  direction.  is  the  reason  why (Figure the  distance  between  two  parallel  are parallel to the building direction. That is the reason why the distance between the two parallel columnar grains is the same as the deposit spacing.  columnar grains is the same as the deposit spacing.

formation of grain morphology. 

When the Ti‐6Al‐4V block is deposited layer by layer, the morphology (see Figure 11) appears  at last. So the block sample shows the grain morphology (Figure 7), where short columnar grains are  parallel  to  the  building  direction.  That  is  the  reason  why  the  distance  between  the  two  parallel  Appl. Sci. 2017, 7, 227 9 of 11 columnar grains is the same as the deposit spacing. 

  Figure 11. The schematic of the grain morphology of the fabricated sample.  Figure 11. The schematic of the grain morphology of the fabricated sample.

5. Conclusions In this paper, the forming ability of LAM with coaxial wire feeding and the microstructure and mechanical properties of the fabricated component were investigated. Vertical wire feeding with an axisymmetric multi-laser source can eliminate the anisotropic forming problem in the deposition process. No matter whether the tool path is round or polyline, the forming morphology of the sample deposited by the vertical wire feeding method is smooth and there is no difference in all directions. A conclusion can be drawn that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability. The samples fabricated by the vertical wire feeding method at the current process parameters exhibited fine equiaxed grains and some short columnar grains (parallel to each other). The average size of the equiaxed grains was about 91.7 µm. The average size of the short columnar grains was 339.6 µm in width and 122.5 µm in height. The microstructure of the samples exhibited fine basket-weave and martensite morphology. The static tensile tests showed that the average strain of the samples was about 6%, and the average ultimate tensile strength of the L direction and T direction was 1140.33 MPa and 1114.67 MPa, respectively. The ultimate tensile strength difference of the two directions (L and T) becomes smaller. Therefore, vertical wire feeding with an axisymmetric multi-laser source at the current process parameters can improve the ultimate tensile strength, and the anisotropy of the mechanical properties of the fabricated parts can be largely eliminated. Acknowledgments: This research is supported by the National Natural Science Foundation of China (No. 51405018), the Discipline Group Innovation Collaboration Project of China Association for Science and Technology (No. 2016XKYL05), Fundamental research of the State Ministry (No. JCKY2016602B007) and the Excellent Young Scholars Research Fund of the Beijing Institute of Technology (No. 2016CX04026). The authors would like to thank the anonymous reviewers for their helpful comments and suggestions to improve the quality of this paper. Author Contributions: Jie Fu, Lin Gong, Yifei Zhang conceived and designed the experiments; Junchao Chang and Yifei Zhang performed the experiments; Lin Gong and Xuezhi Shi analyzed the data; Jiping Lu contributed reagents/materials/analysis tools; Jie Fu, Lin Gong and Qianru Wu wrote the paper. Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2017, 7, 227

10 of 11

References 1. 2.

3. 4.

5. 6. 7. 8. 9.

10.

11. 12. 13.

14. 15.

16.

17. 18. 19. 20. 21. 22.

Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium alloys for aerospace applications. Adv. Eng. Mater. 2003, 5, 419–427. [CrossRef] Rawal, S.; Brantley, J.; Karabudak, N. Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In Proceedings of the International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 12–14 June 2013; pp. 5–11. Peters, M.; Hemptenmacher, J.; Kumpfert, J.; Leyens, C. Titan und titanlegierungen: Struktur, gefüge, eigenschaften. In Titan und Titanlegierungen; Wiley-VCH: Weinheim, Germany, 2002; pp. 1–37. Zhang, M.; Liu, C.; Shi, X.; Chen, X.; Chen, C.; Zuo, J.; Lu, J.; Ma, S. Residual stress, defects and grain morphology of Ti-6AL-4V alloy produced by ultrasonic impact treatment assisted selective laser melting. Appl. Sci. 2016, 6, 304. [CrossRef] Shi, X.; Ma, S.; Liu, C.; Chen, C.; Wu, Q.; Chen, X.; Lu, J. Performance of high layer thickness in selective laser melting of Ti-6Al-4V. Materials 2016, 9, 975. [CrossRef] Ravi, G.A.; Qiu, C.; Attallah, M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Mater. Lett. 2016, 179, 104–108. [CrossRef] Hong, M.-H.; Min, B.K.; Kwon, T.-Y. The influence of process parameters on the surface roughness of a 3D-printed Co–Cr dental alloy produced via selective laser melting. Appl. Sci. 2016, 6, 401. [CrossRef] Liu, C.M.; Tian, X.J.; Tang, H.B.; Wang, H.M. Microstructural characterization of laser melting deposited Ti–5AL-5Mo–5V–1Cr–1Fe near β titanium alloy. J. Alloys Compd. 2013, 572, 17–24. [CrossRef] Brandl, E.; Palm, F.; Michailov, V.; Viehweger, B.; Leyens, C. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Mater. Des. 2011, 32, 4665–4675. [CrossRef] Ader, C.; Brosemer, M.; Freyer, C.; Fricke, H.; Hennigs, D.; Klocke, F.; Kühne, V.; Meiners, W.; Over, C.; Pleteit, H. Research on layer manufacturing techniques at fraunhofer. In Proceedings of the Solid Freeform Fabrication Symposium 2004, Austin, TX, USA, 2–4 August 2004; pp. 26–37. Santos, E.C.; Shiomi, M.; Osakada, K.; Laoui, T. Rapid manufacturing of metal components by laser forming. Int. J. Mac. Tools Manuf. 2006, 46, 1459–1468. [CrossRef] Martina, F.; Colegrove, P.A.; Williams, S.W.; Meyer, J. Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components. Metall. Mater. Trans. A 2015, 46, 6103–6118. [CrossRef] Brandl, E.; Schoberth, A.; Leyens, C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng. A 2012, 532, 295–307. [CrossRef] Baufeld, B.; Biest, O.V.D.; Gault, R. Additive manufacturing of Ti–6AL–4V components by shaped metal deposition: Microstructure and mechanical properties. Mater. Des. 2010, 31, S106–S111. [CrossRef] Lopes, G.; Miranda, R.; Quintino, L.; Rodrigues, J. Additive manufacturing of Ti-6Al-4V based components with high power fiber lasers. In Virtual and Rapid Manufacturing; Tailor & Francis Group: London, UK, 2008; pp. 369–374. Shi, X.; Ma, S.; Liu, C.; Wu, Q.; Lu, J.; Liu, Y.; Shi, W. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties. Mater. Sci. Eng. A 2017, 684, 196–204. [CrossRef] Wang, Y.K.; Shi, S.H.; Fu, G.Y.; Li, C.S. Research on the key process parameters in direct laser deposition using coaxial inside-beam wire feeding. Appl. Mech. Mater. 2010, 43, 401–404. [CrossRef] Kim, J.D.; Peng, Y. Plunging method for ND: YAG laser cladding with wire feeding. Opt. Lasers Eng. 2000, 33, 299–309. [CrossRef] Sui, H.M.; Bi, G.; Folkes, J.; Pashby, I. Deposition of Ti–6AL–4V using a high power diode laser and wire, part I: Investigation on the process characteristics. Surf. Coat. Technol. 2008, 202, 3933–3939. Syed, W.U.H.; Li, L. Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition. Appl. Surf. Sci. 2005, 248, 518–524. [CrossRef] Lu, Y.; Tang, H.B.; Fang, Y.L.; Liu, D.; Wang, H.M. Microstructure evolution of sub-critical annealed laser deposited Ti–6AL–4V alloy. Mater. Des. 2012, 37, 56–63. [CrossRef] Kelly, S.M.; Kampe, S.L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization. Metall. Mater. Trans. A 2004, 35, 1861–1867. [CrossRef]

Appl. Sci. 2017, 7, 227

23. 24. 25.

26.

11 of 11

Qiu, C.; Adkins, N.J.E.; Attallah, M.M. Selective laser melting of invar 36: Microstructure and properties. Acta Mater. 2015, 103, 382–395. [CrossRef] Simonelli, M.; Tse, Y.Y.; Tuck, C. Effect of the build orientation on the mechanical properties and fracture modes of slm Ti–6AL–4V. Mater. Sci. Eng. A 2014, 616, 1–11. [CrossRef] Wang, T.; Zhu, Y.Y.; Zhang, S.Q.; Tang, H.B.; Wang, H.M. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J. Alloys Compd. 2015, 632, 505–513. [CrossRef] Fu, H.; Guo, J.; Liu, L.; Li, J. Directional Solidification and Processing of Advanced Materials; The Science Press: Beijing, China, 2008; p. 498. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents