CHEMIA I INZYNIERIA
EKOLOGICZNA
T. l l , N r 4 - 5
2004
Jacek A N T O N K I E W I C Z * and Czeslawa JASIEWICZ*
MINERAL COMPOSITION OF PLANTS CULTIVATED IN SOIL CONTAMINATED WITH Cd, Pb, Ni, Cu AND Zn. PART I . JERUSALEM ARTICHOKE {Helianthus tuberosus L.) S K L A D MINERALNY ROSLIN UPRAWIANYCH NA G L E B I E Z A N I E C Z Y S Z C Z O N E J Cd, Pb, Ni, Cu I Zn. CZl^SC I . TOPINAMBUR {Helianthus tuberosus L . )
Summary: A significant effect of soil pollution levels on yielding of Jerusalem artichoke was determined. Mean contents of examined elements in Jerusalem artichoke ranged as follows: 0.04-1.61 mg Cr, 17.13-786.75 mg Fe, 11.60-1337.5 mg Mn • kg"' s.m. The macroelement content in Jerusalem artichoke top parts ranged between 0.08-3.77 g Mg • kg''; 0.51-7.49 g Ca • kg"'; 0.03-0.08 g Na • kg"'; 0.77-9.04 g K • kg~'; 0.24-3.16 g P • kg"' d.m. Pasture fodder meeting cattle requirements should contain at least 0.3% P, 1.7% K , 0.7% Ca, 0.2% Mg and 0.15% Na. Considering animal nutritional requirements for the above mentioned elements it was found that only Mg and Ca content in the tested Jerusalem artichoke was fully sufficient. However, the analysed plant abundance in the other elements did not meet nutritional requirements. Key words: Jerusalem artichoke, heavy metals, mineral composition
Depending on raw material appropriation Jerusalem artichoke {Helianthus tuberosus L . ) may be cultivated for consumption, alcohol distilling or for sugar industry [1,2]. The cut down above-ground parts may be also used for fodder, silage, dry matter, compost or they may be left as green manure for the subsequent year crop [3, 4]. Jerusalem artichoke may be grown in infields without crop rotation and fertilisation because the cut green mass left on the spot may provide the fertiliser. Due to water and assimilates stored in its tubers the plant grows very well in soiless grounds, beneficently influences soil forming processes and formation of organic matter, which makes it an excellent plant for soil reclamation [5]. Because of its high resistance to chemical pollution in the environment, Jerusalem artichoke, also called tuber sunflower, grows very well in heavy metal polluted soils [6-8]. The studies aimed to determine the effect of soil pollution with heavy metals on chemical composition of Jerusalem artichoke yield biomass. * Department of Agricultural Chemistry, University of Agriculture, Al. A. Mickiewicza 21, 31-120 Krakow, tel. 0/../12/662 43 50, e-mail:
[email protected]
268
Jacek Antonkiewicz and Czeslawa Jasiewicz
Materials and methods The experiment on Jerusalem artichoke was carried out in 5 kg pots. The substratum used for the experiment was soil with a texture of clayey silt collected from the arable top layer and containing 12% of sand, 52% of silt and 35% of clay. It was acid soil with pH in 1 mol K C l • dm~^ = 5.5, cation exchange capacity (CEC) measured by Kappen's method was 12.0 cmol(+) and hydrolytic acidity 2.3 cmol(+) • kg"' of soil. Available potassium and phosphorus soil concentrations determined by Egner-Riehm's method were 148.76 mg K and 23.14 mg P • kg"* of soil d.m. The experimental design considered increasing levels of soil contamination with heavy metals and the control object, free of heavy metal addition, each in four replications. Full experimental design was shown in Table 1. Heavy metals were applied as water solutions of the following salts: 3CdS04 • SHjO, CUSO4 • 5H2O, NiS04 • 7H2O, Pb(N03)2 and ZnS04 • 7H2O (pure p.a.). All pots received equal basis fertilisation: 0.3g N as NH4NO3, 0.08 g P as KH2PO4, 0.20 g K as KH2PO4 + K C l and 0.05 g Mg as
MgS04 • 7H2O per 1 kg of soil d.m. A week prior to tuber planting heavy metals and fertilisers were mixed with the whole soil mass. Jerusalem artichoke vegetation period was 132 days. After harvest the plants were dried off with a hot air dryer at 105°C and then the amount of yield was determined. The tested plant samples were dry mineralised in a muffle furnace at 450°C. Concentrations of Cr, Fe, Mn and P were assayed by ICP-AES (specfrophotometry) method and Na, K , Ca and Mg by A A S (atomic absorption spectrometry) method. In soil samples collected after Jerusalem artichoke harvesting soil reaction (pH) was assayed by potentiometer [9]. Table 1 Heavy metal doses and soil pH after experiment Object (Obiekt)
Doses of metals [mg • kg ' d.m. soil] Dawki metali [mg • kg"' s.m. gleby]
pH [H2O]
[1 mol • dm"^ KCl]
I
Control - Kontrola
6.32
5.42
II
Cd l , P b 1 5 , N i 5 , C u 10, Zn 50
6.34
5.42
III
Cd 2, Pb 30, Ni 10, Cu 20, Zn 100
6.36
5.43
IV
Cd 4, Pb 60, Ni 20, Cu 40, Zn 200
6.33
5.35
V
Cd 8, Pb 120, Ni 40, Cu 80, Zn 400
5.33
5.02
0.04
0.05
NRI-LSD
Results and discussion Detailed data concerning the amount of yield and heavy metal concentrations in Jerusalem artichoke were given in our earlier work [6]. The analysed experimental material revealed highly diversified contents of Cr, Fe and Mn (Tab. 2). Chromium concentrations, depending on the object and plant indicator part, ranged between 0.04 and 1.61 mg • kg"' d.m., iron between 17.13 and 786.75 mg • kg"' d.m., and manganese between 11.60 and 1337.5 mg • kg"' d.m. Among the analysed indicator parts the highest concentrations of Crand Fe were found in Jerusalem artichoke roots and Mn in leaves. Per-
Mineral Composition of Plants... Part I
269
Table 2 Element contents in Jerusalem artichoke Object (Obiekt)
Stems (Lodygi)
Leaves (Liscie)
Roots (Korzenie)
Tubers (Bulwy)
Stems (Lodygi)
Cr [mg • kg-' d.m.]
Leaves (Liscie)
Roots (Korzenie)
Tubers (Bulwy)
Fe [mg • kg-' d.m.]
I
0.05
0.92
1.30
0.05
17.13
153.75
786.75
32.72
II
0.05
1.01
1.25
0.04
18.60
164.75
444.50
31.50
III
0.05
0.95
1.13
0.04
17.18
173.00
506.00
31.68
IV
0.04
1.00
1.32
0.04
18.23
178.25
630.83
31.45
V
0.11
0.88
1.61
0.05
30.50
185.00
731.20
32.55
Mn [mg - kg-' d.m.]
Mg [g kg-' d.m.]
I
32.85
200.25
41.43
11.98
0.29
3.64
0.47
0.10
II
44.20
253.75
42.30
11.60
0.27
3.77
0.44
0.09
III
42.98
347.50
48.75
14.88
0.26
3.37
0.45
0.09
IV
74.43
661.00
74.70
14.45
0.24
2.60
0.50
0.08
V
334.00
1337.50
87.53
16.05
0.96
2.47
0.46
0.09
Ca [g • kg-' d.m.]
Na [g kg-' d.m.]
I
1.02
6.12
1.01
0.51
0.034
0.039
0.059
0.053
II
1.06
6.31
1.02
0.53
0.028
0.041
0.059
0.055
III
0.98
6.77
0.98
0.56
0.032
0.042
0.059
0.054
IV
1.08
6.91
0.99
0.52
0.034
0.045
0.064
0.053
V
4.09
7.49
1.19
0.58
0.042
0.049
0.076
0.058
K [g • kg-' d.m.]
P [ g - kg-' d.m.]
I
0.94
3.26
1.47
2.69
0.30
1.84
0.68
1.45
II
0.90
3.24
1.54
2.64
0.30
1.85
0.53
1.14
III
0.77
3.34
1.68
2.97
0.24
1.58
0.56
1.23
IV
0.90
4.62
1.87
2.93
0.30
1.63
0.59
1.15
V
1.68
9.04
3.91
3.43
0.42
3.16
1.05
1.15
missible contents of the above-mentioned elements in fodder plants are 20 mg Cr, 50 mg Fe and 50-60 mg IVIn • kg"' d.m. [10]. Comparison of the microelement contents with limit values demonstrated that the researched Jerusalem Artichoke was highly abundant in these elements. According to Falkowski et al. [11] soil reaction is among the factors which considerably influence microelement uptake by plants from soil. Our investigations revelaed that with increasing pollution of soil with heavy metals Fe and Mn concentrations in Jerusalem artichoke raised too (Tab. 2). As may be inferred from the data in Tables 1 and 2 soil reaction played an important role in Fe and IvIn uptake by the investigated plant. Also Czuba and Mazur [12] and Kaczor [13] reported soil reaction effect on element uptake by plants. Diversified doses of heavy metals influenced
270
Jacek Antonkiewicz and Czeslawa Jasiewicz
macroelement levels in Jerusalem artichoke. Depending on the object and plant indicator part, Mg content ranged between 0.08 and 3.77 g • kg"\a 0.51-7.49 • kg"' , Na 0.03-0.08 g • kg-'- K O.f 7-9.04 g • kg"' and P 0.24-3.16 g • kg"' . Data in Table 2 show the highest concentrations of Mg, Ca, K and P in Jerusalem artichoke leaves, whereas roots and tubers were most abundant in Na. Permissible contents of macroelements in fodder are as follows: 2.0 g Mg, 7.0 g Ca, 1.5-2.5 g Na, 17.0-20.0 g K , 3.0 g P • kg"' d.m. [11]. The experiment demonstrated that only Jerusalem artichoke leaves met the required level considering Mg and Ca contents, whereas the other indicator parts did not meet the above-mentioned standard. Na, K , and P contents in the plant studied were relatively low, irrespective of the object and did not match the optimum recommended for good quality fodder. Sodium proved to be the most deficient element among all macroelements investigated in the described experiment. Its level was many times lower than required, despite the fact that Jerusalem artichoke is recommended among others for reclamation of saline areas. For fodder quality assessment mutual ratios between mineral components is equally important as fodder abundance in them [7, 14]. Czuba and Mazur [12] state the optimal ionic ratios for green fodder as following: K : Mg = 6 : l , K : C a = 2 : 1 , K : (Ca + Mg) = 1.6-2.2, Ca : Mg = 3 : l , C a : P = 2 : l . The Ca : P weight ratio in dry mass of Jerusalem artichoke above-ground parts assumed values higher than required, irrespective of the treatment (Fig. 1). On the other hand the above-mentioned ratio in tubers and roots was lower than optimal. Value of Ca : Mg weight ratio in stems and tubers of Jerusalem artichoke was higher than optimal but in leaves and roots it was lower. Weight K : Na proportion in Jerusalem artichoke, depending on soil contamination with heavy metals level, ranged widely. Data shown in figure indicate that K : Na ratio was unfavourable, as it exceeded the permissible value 10 [12]. The investigated plant material revealed a wide scope of quantitative ratio values F : Mn, which in the above-ground parts of Jerusalem artichoke was unfavourable because it was below one. Only in tubers the value of the abovementioned ratio remained in the optimal range, i.e. 1.5-2.5 [15], The K : Mg equivalent ratio in the above-ground parts and roots of Jerusalem artichoke assumed values lower than optimal. On the other hand with increasing level of soil contamination with heavy metals the value of this proportion in tubers of the tested plant raised too. The K : (Ca + + Mg) ratio calculated in miliequivalents for the above-ground parts and roots of Jerusalem artichoke did not fall within the range considered as optimal. In Jerusalem artichoke tubers the value of the above-mentioned proportion was within the optimal range. The value of K : Ca ratio computed equivalently in the above-ground parts and roots of Jerusalem artichoke was higher than optimal.
Conclusions 1. Concentration of microelements and macroelements in Jerusalem artichoke depended on the level of soil contamination with heavy metals and plant indicator part. 2. Determined Fe and Mn concentrations in Jerusalem artichoke leaves are much higher than the optimal level.
Mineral Composition of Plants... Part I
Objects
271
Objects
272
Jacek Antonkiewicz and Czeslawa Jasiewicz
3. Among the analysed macroelements only Mg and Ca content in Jerusalem artichoke leaves corresponded to the value considered as optimal. 4. The values of Fe : Mn, K : (Ca + Mg) ratios in Jerusalem artichoke tubers fell within the ranges considered as safe for fodder. On the other hand the K : Na ratio proved most unfavourable as it many times exceeded the optimal value. References [1] [2] [3] [4] [5]
[6]
[7] [8] [9] [10] [11] [12] [13] [14] [15]
Gutmanski I . and Pikulik R.: Biul. Inst. Hodow. Aklim. Rosl., 1994, (189), 91-100. Sawicka B.: Rocz. A R Pozn. C C C X X I I I , Ogrodn., 2000, (31), I , 4 4 7 ^ 5 1 . Aniol-Kwiatkowska J.: Wiad. Ziel., 1994, (12/94), 12-13. Tabin S.: Bulwa (Topinambur). PWRiL, Warszawa 1955, 25 pp. Klimont K., and Coral S.: Glebotworcze dzialanie trow i topinamburu na gruncie z wapnapoflotacyjnego. Mater. Konf. nt. "Przyrodnicze uzytkowanie osadow sciekowych. Ochrona i rekultywacja gruntow". Bydgoszcz 4-6 czerwca 2001, Wyd. PTIE, Inz. Ekol., 2001, 3, 198-201. Antonkiewicz J. and Jasiewicz Cz.: Ocena przydatnosci topinamburu (Helianthus tuberosus L.) do fitoremediacji gleby zanieczyszczonej Cd, Pb, Ni, Cu i Zn. Mater. Konf. I l l Ogolnopolskie Sympozjum Naukowo-Techniczne "Bioremediacja Gruntow". Wisla-Jarz?bata, 10-13 grudnia 2002 r., pp. 59-66. Bobrecka-Jamro D. and Szpunar-Krok E.: Fragm. Agron., 2002, XIX(2/74), 52-58. Jasiewicz Cz. and Antonkiewicz J.: Chem. Inz. Ekol., 2002, 9(4), 379-386. Ostrowska A., Gawlinski S. and Szczubialka Z.: Metody analizy i oceny wlasciwosci gleb i roslin. Katalog. Wyd. lOS, Warszawa 1991, 334 pp. Pres J. and Kinal S.: Zesz. Probl., PNR, 1996, (434), 1043-1061. Falkowski M., Kukulka I . and Kozlowski S.: Wlasciwosci chemiczne roslin l^kowych. Wyd. A R Poznan 2000, 132 pp. Czuba R. and Mazur T.: Wplyw nawozenia na jakosc plonow. Wyd. Nauk. PWN, Warszawa 1988, pp. 291-292. Kaczor A.: Zesz. Probl. PNR, 1998, (456), 55-62. Krzywy J. and Krzywy E.: Zesz. Probl. PNR, 2001, (480), 253-258. Warda M., Krzywiec D. and Cwintal H.: Zesz. Probl. PNR., 1996, (434), 537-542.
S K L A D M I N E R A L N Y R O S L I N U P R A W I A N Y C H NA G L E B I E Z A N I E C Z Y S Z C Z O N E J C d , Pb, Ni, C u I Z n . CZJ^SC I . T O P I N A M B U R {Helianthus tuberosus L . ) S t r e s z c z e n i e Badania przeprowadzono stosuj^c doswiadczenia wazonowe. Schemat doswiadczenia obejmowal 5 obiektow (kazdy w czterech powtorzeniach): obiekt kontrolny (bez dodatku metali ci^zkich) i 4 obiekty zawieraj^cych wzrastaj^ce dawki metali ciqzkich. Najwyzszy poziom zanieczyszczenia gleby metalami ci^zkimi wynosil: Cd - 8 mg • kg"'; Pb - 120 mg • kg''; Ni - 40 mg • kg"'; Cu - 80 mg • kg"'; Zn - 400 mg • kg"' s.m. gleby. Zawartosc Cr, Fe, Mn i P oznaczono za pomoc^ spektrometru emisyjnego z plazm^^ sprz?zon^ indukcyjnie (ICP-AES), natomiast Mg, Ca, Na i K w topinamburze slonecznik bulwiasty oznaczono za pomoc^ spektrofotometru absorpcji atomowej (ASA) firmy Philips model PU 9100X, a P kolorymetrycznie. Stwierdzono duzy wplyw poziomow zanieczyszczenia gleby metalami ci?zkimi na plonowanie topinamburu. Srednie zawartosc pierwiastkow w topinamburze miescila si? w zakresie: 0,04-1,61 mg Cr, 17,13-786,75 mg Fe, 11,60-1337,5 mg Mn • kg"' s.m. Zawartosc Mg w zaleznosci od obiektu i cz^sci wskaznikowej topinamburu wahala si? od 0,08 do 3,77 g • kg"', Ca od 0,51 do 7,49 g • kg"', Na od 0,03 do 0,08 g • kg-', K od 0,77 do 9,04 g • kg-', P od 0,24 do 3,16 g • kg-' s.m.P • kg-' s.m. Pasza pastwiskowa odpowiadaj^ca potrzebom bydla powinna zawierac przynajmniej 0,3% P, 1,7% K , 0,7% Ca, 0,2% Mg, 0,15% Na. Uwzgl?dniaj^c potrzeby zywieniowe zwierz^t na wyzej wymienione pierwiastki stwierdzono, ze jedynie zawartosc Mg i Ca w badanych lisciach topinamburu byla w pehii wystarczaj^ca. Natomiast zasobnosc, ocenianego topinamburu w pozostale pierwiastki, byla niekorzystna dla potrzeb zywieniowych. Slowa kluczowe: topinambur, metale ci^zkie, sklad mineralny