Modal Masters and Component Mode Method - TUBdok

3 downloads 435 Views 159KB Size Report
that substructuring with modal masters is equivalent to the component mode method with fixed boundaries. This suggests a further reduction of cost for.
                            ! "#$%#  &   ' ()  *+,,---( () , ,*, 

                

               

 

        

                                              

  

             

    

  



     !   !   !  

  



  

             

    

              

        Æ     "                                

      

 

       

#       

       $   %          

                                              

   

      !          

&

 $  '()! '*)! '&&)! % +                              !                    '&,)                     

 $%

- .              

              



/



     

                              !       $%          0 !            1          $ 1%              "           

     

   

                             

 2  3          '4)             

5

!        

        $  '&6)%                                  0 '6)   7   8  '&) +!                                            



    

9           

 -  





 







 

$&%

 

         

    

   3     

     

  !     

     

      !  $         

                  

     







 %   $&%     



  

   



 





  -   

       



 



     

#               $,%!       



  

 

$,%

 ! 

         

 

  -   ,

$6%

 

 

    

           :    

-

       ;  ',)   ')%                     2               !  









  

   3      

 

 !    !                       



/

             ?             

    

 

-

 

           

    -   



      ?         ?  -

1  ?          


















   !



- .!    

 % -   $%

$



 % -    :    :

$



!   

  

 

!

-

   

&



  

          0 !                !     











$% 

 % - .

$

   

 % % - .

$ $

  

                 $&,%                                           

$H%





!  H 

$% 

 $%     

         



            

  5                    

    $   

   

$%% 

 

           2                    

        3       

0 !

                                          7                 $&&%



     

    

    1 

    

1 $ - & ! " - & #1 %  

  



 9              1$ 1%              1   1% - 1 1  1 : 1  1    

  1 & :   1  1   1 1   1

   

1$

-

$

  :

$ :

 

%

  



1  



 1$ 1%        1$ 1%  1$  1% - .

/         1            !  

         #I 

4

$&6%



          

2           $&%      

  



   A



 





1    -  1    



2            









$&
 % 

      

! 6B*&EB*,! &B*(

'() N @ 2              

  % &  '  (

! &,&>.( E &>&(! &B>4

'*) N @ 2             

    

  % &  '  (

! &B,
! (  )   ,  &  ' 

!    *B 

!   ,.(E,&
'&6) 0 O                    0 Q  MM 7   @!  !

! / ) !  *   ( 

 

!    O!   ,6 E

6,! " ! &BB> 7    +    Q  

&&