Modelling the late effects of cancer treatment on the ovary

2 downloads 96 Views 19MB Size Report
cancer treatment on the ovary .... And/or if we know MFD after treatment ... Cancer treatment and gonadal func&on: experimental and established strategies for ...
University  of  St  Andrews School  of  Computer  Science

Modelling the late effects of cancer treatment on the ovary

Edinburgh Fertility 2016 Tom  Kelsey  

Overview

✓  

2   ✗  

•  Models  of  the  healthy   •  Equa/ons   popula/on   •  Sta/s/cs   –  non-­‐growing  follicles   –  ovarian  volume      

•  Model  valida/on   •  Use  of  the  models  to   predict/quan/fy/ es/mate  late  effects   School  of  Computer  Science

–  p-­‐values   –  Correla/on  coefficients     –  Confidence  intervals        

•  Deriva/on  details   •  Funding  logos   •  Photos  of  colleagues   Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

Non-Growing Follicles

3  

•  Ovarian reserve –  Born with a population that declines until menopause –  NGFs are selected for maturation

•  Impossible to measure in vivo –  Using current technologies

•  Populations are counted in vitro –  Typically histological examination of stained tissue

School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

NGFs – Wallace & Kelsey 2010

Wallace  WH,  Kelsey  TW.     Human  ovarian  reserve  from  concep/on  to  the  menopause.   PLoS   ONE.  2010;5(1):e8772.   School  of  Computer  Science

4  

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

NGFs – Wallace & Kelsey 2010

School  of  Computer  Science

5  

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

Ovarian Volume

6  

•  Indirect measure of ovarian reserve •  Possible to measure in vivo –  2D & 3D ultrasound

•  The assumption is that a large ovary contains more NGFs than a small one –  Clearly true when comparing pre- and postmenopausal ovaries –  We have no evidence for this assumption for pre-menopausal ages

School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

7  

Kelsey  TW,  Dodwell  SK,  et  al.     Ovarian  volume  throughout  life:  a  validated  norma/ve  model.     Tom  Kelsey  -­‐  Edinburgh  Fer/lity     PLoS   ONE.  2013;8(9):e71465     School  of  Computer  Science

20th  June  2016  

Model Validation

8  

•  We  internally  validate  models  before   submission  for  review   –  Careful  checks  that  the  best  model  isn’t  based  on   a  chance  configura/on  of  the  data  

•  Ideally,  we  want  external  valida-on   –  Comparison  of  our  predic/ons  to  observa/ons   made  at  a  later  date  ...   –  ...  and  in  another  lab    

•  If  observa/ons  are  close  to  predic/ons,  the   predic/ve  model  is  a  useful  guide  to  normal   values  &  ranges   –  if  not,  it’s  back  to  the  drawing  board   School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

Depmann  M,  Faddy   MJ,  et  al.     The  rela/on   between  varia/on   in  size  of  the   primordial  follicle   pool  and  age  at   natural  menopause     J  Clin  Endocrinol   Metab  2015;100(6)  

9  

Predicted   in  2010  

Observed   in  2015  

School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

10  

McLaughlin  M,  Kelsey  TW,  et  al.   An  externally  validated  age-­‐related  model  of  mean  follicle  density  in  the  cortex  of  the  human   Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016   ovary.   J  Assist  Rep  Gen.  2015;32(7):1089-­‐95.   School  of  Computer  Science

Using the models to assess infertility 11   •  We  have  external  valida/on,  and  a  con/nuous   endeavor  to  improve  models  as  new  data   become  available   –  Also  jus/fying/tes/ng  the  inherent  assump/ons    

•  We  now  take  the  models  as  a  base-­‐line   –  Represen/ng  the  popula/on  aher  zero-­‐dose  

•  If  we  know  age  at  POI  aher  known  doses  ...     •  ...  And/or  if  we  know  MFD  aher  treatment   •  We  can  es/mate  the  damage  done  to  the   ovarian  reserve  by  the  treatment   Tom  Kelsey  -­‐  Edinburgh  Fer/lity    

20th  June  2016  

Using the models to assess infertility 12  

Tom  Kelsey  -­‐  Edinburgh  Fer/lity    

20th  June  2016  

Predicting POI after radiotherapy

13  

Anderson  RA,  Mitchell  RT,  Kelsey  TW,  Spears  N,  Telfer  EE,  Wallace  WH.     Cancer  treatment  and  gonadal  func/on:  experimental  and  established  strategies  for  fer/lity   preserva/on  in  children  and  young  adults.   Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016   Lancet  Diabetes  Endocrinol.  2015;3(7):556-­‐67.  

Effective Sterilising Doses

14  

Anderson  RA,  Mitchell  RT,  Kelsey  TW,  Spears  N,  Telfer  EE,  Wallace  WHB.     Cancer  treatment  and  gonadal  func/on:  experimental  and  established  strategies  for  fer/lity   preserva/on  in  children  and  young  adults.   Lancet  Diabetes  Endocrinol.  2015;3(7):556-­‐67.   Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

15  

McLaughlin  M,  Kelsey  TW,  Wallace  WHB,  Anderson  RA,  Telfer  EE.     Non-­‐growing  follicle  density  is  increased  following  ABVD  chemotherapy  in  the  adult  human   ovary.   Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016   Data  not  published  

Summary

16  

•  NGFs  and  ovarian  volumes  introduced  here  

–  Other  models  have  been  derived,  validated  &  published   –  Uterine  volume1,  inhibin  B  (males)2,  testosterone  (males)3,   AMH,  ...   –  Other  applica/ons  have  been  published   –  PCOS,  breast  cancer4,  IVF,  diabetes5,  ...  

•  Each  is  a  mul/-­‐disciplinary  effort  to  iden/fy,  collect  &   analyse  data   –  Our  own,  and  data  published  by  others  

•  Followed  by  model  deriva/on,  selec/on  &  (levels  of)   valida/on   •  Our  aim  is  useful  and  accurate  quan/fica/on  of  the   effects  of  treatment(s)  on  the  fer/lity  of  survivors  of   cancer   School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

References

17  

1.  Kelsey,  T.  W.,  Ginbey,  E.,  et  al.  (2016).  A  Validated   Norma/ve  Model  for  Human  Uterine  Volume  from  Birth   to  Age  40  Years.  PloS  one,  6,  e0157375.   2.  Kelsey,  T.  W.,  Miles,  A.,  et  al.  (2016).  A  Norma/ve  Model   of  Serum  Inhibin  B  in  Young  Males.  PloS  one,  4,  e0153843.   3.  Kelsey,  T.  W.,  Li,  L.  Q.,  et  al.  (2014).  A  validated  age-­‐ related  norma/ve  model  for  male  total  testosterone   shows  increasing  variance  but  no  decline  aher  age  40   years.  PloS  one,  10,  e109346.   4.  Phillips,  K.  A.,  Collins,  I.  M.,  et  al.  (2016).  An/-­‐Mullerian   hormone  serum  concentra/ons  of  women  with  germline   BRCA1  or  BRCA2  muta/ons.  Human  reproduc:on,  5,   1126–1132.   5.  Iliodromi/,  S.,  Sassarini,  J.,  et  al.    (2016).  Accuracy  of   circula/ng  adiponec/n  for  predic/ng  gesta/onal  diabetes:   a  systema/c  review  and  meta-­‐analysis.  Diabetologia,  4,   692–699.   School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016  

Thank You

18  

 

Any  ques/ons?  

School  of  Computer  Science

Tom  Kelsey  -­‐  Edinburgh  Fer/lity     20th  June  2016