Models for Railway Track Allocation - Zuse Institute Berlin

4 downloads 76047 Views 3MB Size Report
Nov 16, 2007 - Line+Price. Planning. TS-OPT. 94-97 ... APP can be solved in ... arc price analyse network track price analyse request bundle price useful to.
Models for Railway Track Allocation Thomas Schlechte Joint work with Ralf Borndörfer Martin Grötschel 16.11.2007 ATMOS 2007 Sevilla Thomas Schlechte

 Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

[email protected]

http://www.zib.de/schlechte

2

Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results

Thomas Schlechte

3

Planning in Public Transport

Tracks

Timetables

Vehicles

Crews

Strategic

Tactical

Operational

Stage

Stage

Stage

Stops

Thomas Schlechte

Lines/Freq.

Cycles

Connections

Rotations

Duties

4

Traffic Projects @ ZIB

 MCF

92-94 94-97

VS-OPT

97-00

DS-OPT

VS: BVG

00-03

IS-OPT

DS: BVG

03-07 Thomas Schlechte

TS-OPT

Line+Price Planning

Telebus

CS-OPT

5

Planning in Public Transport TS-OPT

VS-OPT

DS-OPT

IS-OPT

CS-OPT

B1 – B15

Tracks

Timetables

Vehicles

Crews

Strategic

Tactical

Operational

Stage

Stage

Stage

Stops Thomas Schlechte

Lines/Freq.

Cycles

Connections

Rotations

Duties

6

Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results

Thomas Schlechte

7

The Problem (TraVis by M.Kinder)

Thomas Schlechte

8

Schedule in 3d

Thomas Schlechte

9

Conflict-Free-Allocation

Thomas Schlechte

10

Railway Timetabling – State of the Art             

Charnes and Miller (1956), Szpigel (1973), Jovanovic and Harker (1991), Cai and Goh (1994), Schrijver and Steenbeck (1994), Carey and Lockwood (1995) Nachtigall and Voget (1996), Odijk (1996) Higgings, Kozan and Ferreira (1997) Brannlund, Lindberg, Nou, Nilsson (1998), Lindner (2000), Oliveira and Smith (2000) Caprara, Fischetti and Toth (2002), Peeters (2003) Kroon and Peeters (2003), Mistry and Kwan (2004) Barber, Salido, Ingolotti, Abril, Lova, Tormas (2004) Semet and Schoenauer (2005), Caprara, Monaci, Toth and Guida (2005) Kroon, Dekker and Vromans (2005), Vansteenwegen and Van Oudheusden (2006), Cacchiani, Caprara, T. (2006), Cachhiani (2007) Caprara, Kroon, Monaci, Peeters, Toth (2006)

non-cyclic timetabling literature Thomas Schlechte

11

Complexity 2

1

Proposition [Caprara, Fischetti, Toth (02)]:

5 4 3

OPTRA/TTP is NP-hard. 5 4 3 2 1

Proof: Reduction from Independent-Set. 5 4 3 2 1 s Thomas Schlechte

(1,2) (2,3) (2,4) (3,4) (4,5) t

12

Track Allocation Problem



Thomas Schlechte

Train Requests

Scheduling Digraph

Timetable

13

Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results

Thomas Schlechte

14

Packing Models

 Conflict graph  Cliques  Perfect

Cacchiani (2007) – Path Compatibility Graphs Thomas Schlechte

A

B

15

Arc Packing Problem

Variables 

Arc occupancy (request i uses arc a)

Constraints 

Flow conservation and



Arc conflicts (pairwise )

Objective Thomas Schlechte



Maximize proceedings

(PPP) transformation from arc to path variables (see Cachhiani (2007))

16

Packing Models  Proposition: The LPrelaxation of APP can be solved in polynomial time.  … and in practice.

Thomas Schlechte

17

Novel Model

 Track Digraph  Timeline(s)  Config paths

Thomas Schlechte

A

B

Artificial arcs represent valid successors !

18

Path Coupling Problem

Variables 

Path und config usage (request i uses path p, track j uses config q)

Constraints 

Path and config choice



Path-config-coupling (track capacity)

Objective Function Thomas Schlechte



Maximize proceedings

(ACP) transformation from path to arc variables (see Borndörfer, S. (2007))

19

Linear Relaxation of PCP

dual variable

Thomas Schlechte

information about

useful to

bundle price

analyse request

track price

analyse network

arc price

-

20

Dualization

Thomas Schlechte

21

Pricing of x-variables

Pricing Problem(x) : Acyclic shortest path problems for each slot request i with modified cost function c ! Thomas Schlechte

22

Pricing of y-variables

Pricing Problem(y) : Acyclic shortest path problem for each track j with modified cost function c ! Thomas Schlechte

23

Observation

Thomas Schlechte

24

And analogously ...

Thomas Schlechte

25

Pricing Upper Bound

• Lemma [ZR-07-02]: Given (infeasible) dual variables of PCP and let vLP(PCP) be the optimum objective value of the LP-Relaxtion of PCP, then:

Thomas Schlechte

26

Model Comparison • Theorem [ZR-07-02]: The LP-relaxations of ACP and PCP can be solved in polynomial time.

APP’

• Lemma [ZR-07-02]: vLP(PCP) = vLP(ACP)

APP

PPP

ACP

PCP

= vLP(APP) = vLP(PPP) ≤ vLP(APP´)

Thomas Schlechte

27

Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results

Thomas Schlechte

28

Two Step Approach TS-OPT

Thomas Schlechte

Duals by Duals by Bundle CPLEX Method

1. LP Solving

Column Generation

2. IP Solving

Rapid Branching Heuristic

Pricing by Dijkstra’s Shortest Path

29

Branch-Bound-Price or Dive-Generate

Evaluation of only few highly different subproblems at iteration j to reach IP-Solutions fast. Thomas Schlechte

30

Rapid Branching Node selection of set of fixed to 1 variables by using perturbated cost function (bonus close to 1.0).

Update Upper Bound

Go on if target was reached, otherwise pseudo-backtrack. Thomas Schlechte

Column Generation

31

Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results

Thomas Schlechte

32

Results • Test Network • 45

Tracks

• 37

Stations

•6

Traintypes

• 10

Trainsets

• 146 Nodes • 1480 Arcs • 96

Station Capacities

• 4320 Headway Times

Thomas Schlechte

33

Model Comparison • Test Scenarios • 146 Train Requests • 285 Train Requests • 570 Train Requests

• Flexibility • 0-30 Minutes • earlier departure penalties • late arrival penalties • train type depending profits

Thomas Schlechte

34

Run of TS-OPT /LP Stage

Thomas Schlechte

35

Model Comparison

Thomas Schlechte

36

Model Comparison

For details see [ZR-07-02, ZR-07-20]. Thomas Schlechte

37

Outlook Algorithmic Developments • Bundle method • Model refinement (connections) • Adaptive IP Heuristics • Dynamic Discretization

Simulation of results by

Thomas Schlechte

Thank you for your attention !

Thomas Schlechte Fon (+49 30) 84185-317 Zuse-Institut Berlin (ZIB) für Fax (+49 30) 84185-269 Thomas Schlechte  Konrad-Zuse-Zentrum Informationstechnik Berlin (ZIB) Takustr. 7, 14195 Berlin [email protected] Deutschland www.zib.de/schlechte [email protected]

http://www.zib.de/schlechte

Suggest Documents