Morphological and qualitative characteristics of

0 downloads 0 Views 810KB Size Report
Wir bedanken uns bei Prof. Dr. Qiao-. Sheng Guo, Institute & School of Chi- ..... Sui monti di Siberia. Erboristeria. Domani 2002; 10:62–77. 3. Asdal A, Galambosi ...
ort- und Kultivierungsbedingungen zu sehen. Möglicherweise spielt auch das verwendete Pflanzenmaterial eine Rolle. So belegen die Versuchsergebnisse von He et al. (7), dass die Verläufe der Bildung von Tanshinonen beim Chinesischen Salbei unter gleichen Kulturbedingungen aufgrund der verschiedenen Genotypen stark variieren.

Schlussfolgerungen Unter den Standortsbedingungen in Groß-Gerau werden bei einjähriger Nutzung von Salvia miltiorrhiza die besten Wurzelerträge und ein hoher Gehalt an Tanshinon IIA erzielt, der dem Chinesischen Arzneibuch (Mindestgehalt von 0,2 % Tanshinon IIA) entspricht. Die Ebenkultur ist gegenüber der Dammkultur ertragsüberlegen. Dies sollte bei der Entwicklung der Erntemethode für Salvia miltiorrhiza berücksichtigt werden. Gegenwärtig wird in der Praxis aus erntetechnologischen Gründen die Dammkultur bevorzugt. Die negativen Effekte der Dammkultur, die auch von den Bodenverhältnissen beeinflusst werden, können jedoch durch eine flachere Ausprägung der Dämme oder durch Bodenbedeckung (Mulch, Vlies) vermindert werden.

Danksagung Wir bedanken uns bei Prof. Dr. QiaoSheng Guo, Institute & School of Chinese Medicinal Materials, Nanjing Agricultural University, China, für die Bereitstellung des Saatguts und der Referenzsubstanzen.

Literatur 1.

Adams JD, Wang R, Yang J, Lien EJ. Preclinical and clinical examinations

of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chinese Medicine 2006;1(3). http://www. cmjournal.org/content/1/1/3. 2. Avanci NC, Luche DD, Goldman GH, Goldman MHS. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research 2010;9(1):484–505. 3. Bomme U, Bauer R, Heubl G. Feldanbau von Salvia miltiorrhiza Bunge, einer in Deutschland neuen Heilpflanzenart aus der traditionellen chinesischen Medizin. Z. Arzn. Gew. Pfl. 2009;14(1):25–31. 4. Chinesisches Arzneibuch. Staatliche Kommission für Arzneibuch, Verlag für Chemie Industrie, Beijing, VR China 2005;52–53. 5. Cheng TO. Cardiovascular effects of Danshen. International Journal of Cardiology 2007;9–22. 6. Guo QS. Anbau von Arzneipflanzen. High Education Press, China 2004;209–214. 7. He CE, Wie J, Jin Y, Chen S. Bioactive components of the roots of Salvia miltiorrhizae: Changes related to harvest time and germplasm line. Industrial Crops and Products 2010;32:313-317. 8. Li CG, Sheng S, Pang ECK, May B, Xue CCL. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge. Chemistry & Biodiversity 2011;8:699–709. 9. Man X, Wang Y, Row KH. Solvent extraction of Tanshinone IIA from Salvia miltiorrhiza Bunge. Korean Chem. Eng. Rev. 2008;46(4):6660–6664. 10. Sheng SJ. Cultivation and quality studies of Danshen (Salvia miltiorrhiza)

11.

12.

13.

14.

15.

in Australia. Dissertation, RMIT University 2007. Sheng SJ, Pang ECK, Xue CCL, Li CG. Seasonal variations in bioactive marker contents in Australian-grown Salvia miltiorrhiza roots. Chemistry & Biodiversity 2009;6(4):551–560. Wang XY, Cui GH, Huang LQ, Qui DY. Effects of methyl jasmonate on accumulation and release of tanshinones in suspension cultures of Salvia miltiorrhiza hairy root. ZhongguoZhong Yao ZaZhi 2007;32(4):300-302. Xu YY, Wan RZ, Lin YP, Yang L, Chen Y, Liu CX. Recent advance on research and application of Salvia miltiorrhiza. Asian Journal of Pharmacodynamics and Pharmacokinetics 2007;7(2):99–130. Yan Q, Hu ZD, Wu YJ. Synergistic effects of biotic and abiotic elicitors on the production of tanshinones in Salvia miltiorrhiza hairy root culture 2006. http://www.ncbi.nlm.nih.gov/ pubmed.1659299. Zhou L, Zuo Z, Chow MSS. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. The Journal of Clinical Pharmacology 2005:1345–1359.

Anschriften der Verfasser Young-Hyun Sung (Dipl. oec. troph.) Prof. Dr. Bernd Honermeier Institut für Pflanzenbau und Pflanzenzüchtung I Biomedizinisches Forschungszentrum Seltersberg (BFS) Justus-Liebig Universität Gießen Schubertstr. 81 35392 Gießen Eingang: 10. Juli 2012 Annahme: 9. Oktober 2012

N. Aiello, R. Bontempo, C. Vender, G. Innocenti and S. Dall’Acqua

Morphological and qualitative characteristics of Rhodiola rosea L. wild populations of Trentino, Italy Introduction Rhodiola rosea L. (Crassulaceae) is a dioecious perennial plant, with a thick, fleshy and fragrant rhizome when cut. It grows in the mountains of North and Central Europe, southwards to the Pyrenees, Central Italy

and Bulgaria (14). Moreover it also occurs in North America (Canada and USA) and Asia (China, Kazakhstan, Uzbekistan, Mongolia, Russian Federation) (5). In Italy, it is widely distributed on siliceous substrates of alpine meadows, from 1500 to 3000 m of al-

Z Arznei- Gewurzpfla | 18(1): 41–45 | © Agrimedia GmbH & Co. KG 2013

titude, and from Liguria to the FriuliVenezia Giulia region (13). Roseroot or golden root is a medicinal plant that has many traditional and medicinal uses. The underground part of this species is valued for its ability to enhance human resistance to stress or

41

Originalbeiträge

Aiello N et al. | Characteristics of Rhodiola rosea wild populations of Trentino, Italy

Aiello N et al. | Characteristics of Rhodiola rosea wild populations of Trentino, Italy Tab. 1: Geographic coordinates, altitude and harvest date of surveying locations Tab. 1: Geographische Koordinaten, Höhe und Erntezeitpunkt bezogen auf die verschiedenen Wuchsstandorte

Original contributions

Location (Ort) Geographic coordinates (Geographische Koordinaten) Altitude (m a.s.l.) (Höhe (m ü.d.M.)) Surveying date (Erntezeitpunkt) (2010)

Lago Lagorai 46°14‘09‘‘N 11°31‘42‘‘E

Malga Cadria 45°55‘50‘‘N 10°41‘00‘‘E

Passo Rolle 46°17‘17‘‘N 11°47‘12‘‘E

Malga Bondolo 46°25‘53‘‘N 10°40‘31‘‘E

Rifugio Larcher 46°10‘17‘‘N 11°26‘56‘‘E

Passo Manghen 45°55‘25‘‘N 10°30‘59‘‘E

1877

1971

2174

1840

2420

2116

16th August (16. August)

24th August (24. August)

1st September (1. September)

16th September (16. September)

21st September (21. September)

10th August (10. August)

fatigue. Major constituents of the root extract are the phenylpropanoids (rosavin, rosin, rosarin, all specific to R. rosea) and the phenylethanol derivatives (salidroside and tyrosol) (5, 11, 12). Nowadays, extracts of this species are increasingly used in herbal medicines or nutraceutical products. In some European countries, Italy included, this species is protected and its collection is limited or not allowed. Its cultivation is becoming increasingly necessary due to the more stringent rules of protection issued in those countries where it is collected from natural sites, e.g. Russia, Mongolia, China etc. (2, 9, 10) and also due to the increased demand by herbal or pharmaceutical companies. During the last years, the Unità di ricerca per il Monitoraggio e la Pianificazione Forestale of Villazzano (Trento) has been gathering data and seeds of different alpine medicinal and aromatic plants with the aim of having a wider knowledge about these species in situ and carrying out an ex situ cultivation to assess their diversity and to verify if some accessions could give interesting results for a future selection work. In this paper the results concerning the morphological traits and content of valuable substances of six roseroot wild populations collected in situ in 2010 in Trentino (Italy) to assess their diversity are reported.

Materials and methods Plant material and morphological evaluation In August–September 2010, the morpho-qualitative traits of six roseroot wild populations were recorded in some locations of the Trento province (Trentino-Alto Adige region) (Tab. 1). The altitude of the locations ranged between 1840 (Malga Bondolo) (Fig. 1) and 2420 (Rifugio Larcher al Cevedale) m

42

above sea level. The climate of the locations surveyed can be classified as continental alpine, with an annual average temperature and rainfall of < 9 °C and 1000 mm, respectively, and up to 1500 mm rainfall (7). The geology was heterogeneous with calcareous, siliceous bedrock and mixed sediments (4). According to the descriptors list proposed by Asdal et al. (3), the morphological parameters were recorded on 31 plants (August–September 2010), at the beginning of senescence when the leaves and shoots began to discolour, while the inflorescences of the male plants were dry and the inflorescences of the female plants were either dry or, in some plants, ripe but not dry. The ipogeal part of the plants of the six populations had a thick rhizome, one or more main roots and, in the majority of cases, absence of rootlets, but often with more or less dead tissue (dark red). Unfortunately the roots of each plant could not be collected completely due to difficult soil conditions (rocky ground, very deep roots, etc.), and in consequence, the root weight of the single plants could not be determined. The qualitative characteri-

Fig 1: Rhodiola rosea population in its natural habitat at Malga Bondolo Abb. 1: Rhodiola rosea-Population am natürlichen Standort Malga Bondolo

stics of the underground organs of six plants were determined with the material being previously washed and cut into small pieces by hand and dried at 50 °C in a ventilated oven for 48–50 hours. The traits recorded are reported in Table 2. The following characteristics were also registered: erectness of shoots (prostrate, medium and erect); sex of plant (male, female and plants that had not flowered); form of leaves (oblong, ovate, oval and counterovate); toothing of leaves (site of teeth: absent, only at the top, less and more than half of leaf; form of teeth: sharp and blunt).

Abstract

Rhodiola rosea L. is a medicinal plant with many traditional and medicinal uses. The underground part is valued for its ability to enhance human resistance to stress or fatigue. During the last years, the Unità di ricerca per il Monitoraggio e la Pianificazione Forestale of Villazzano (Trento) has been gathering data and seeds of different alpine medicinal and aromatic plants with the aim of having a wider knowledge about these species in situ and carrying out an ex situ cultivation to assess their diversity and to verify if some accessions could give interesting results for future selection work. This paper reports the morphological and phytochemical data of the six wild roseroot populations collected in situ in 2010 in Trentino (Italy). Analytical determinations were obtained by HPLC-DAD. The measured data were as follows: length of shoots 23–44 cm, number of shoots 17–38, thickness of shoots 3.8–5 mm, leaf length 20.7–44.5 mm, leaf width 5.3–6.5 mm, salidroside content 0.27–1.16 %, rosavin content 0.25–0.56 %, rosin content 0.015–0.049 %. In particular, the plants collected in Malga Bondolo, followed by Rifugio Larcher, had the highest values in all the recorded traits.

Keywords

morphological characteristics, Rhodiola rosea, rosavin, rosin, salidroside, wild collection

Z Arznei- Gewurzpfla | 18(1): 41–45 | © Agrimedia GmbH & Co. KG 2013

Phytochemical analysis The dried plant material was ground. 200 mg of the resulting powder were extracted with 5 mL of 50 % methanol (v/v) and sonicated in an ultrasound bath for 15 minutes (two repetitions). The sample was centrifuged (3000 rpm) and the supernatant was recovered. The extraction protocol was repeated with further 5 mL of 50 % methanol (v/v). After centrifugation, the supernatants were combined and collected in a volumetric flask and diluted to 15 mL with 50 % methanol (v/v). Determination of the plant constituents was achieved by HPLC-DAD. For this, an Agilent 1260 Infinity system equipped with an autosampler, a thermostated column compartment and a photodiode array detection (DAD) system was used. The chromatograms were recorded using OpenLAB CDS (ChemStation edition for LC and LC/ MS System). The analyses were carried out on a Poroshell 120 EC-C18 column (4.6 × 50 mm; 2.7 µm). The mobile phase was composed of (A) water acidified with 1 % with formic acid and (B) acetonitrile. Gradient elution was as follows: start with 90 % (A), then in 2 minutes to 80 % (A), in 3.5 minutes to 20 % (A), in 4 minutes to 0 % (A). The elution continued for 4.5 minutes with 0 % A, then column regeneration was performed in 1 minute. The flow rate was 1.6 mL/min at a pressure of 250– 290 bar. The column temperature was set at 40 °C. The sample injection volume was 5 µL. The detector monitored the eluent at 254 nm and at 280 nm. As reference compounds, salidroside and rosin (PhytoLab GmbH) were used. Salidroside solutions were prepared in the range of 3.5 μg/mL and 140 μg/ mL (limit of detection (LOD) 3 μg/mL and limit of quantification (LOQ) 9 μg/ mL), rosin solutions were prepared in the range of 0.32 μg/mL and 210 μg/mL (LOD=0.5 μg/mL and LOQ 1.5 μg/mL). Rosin and rosavin were expressed as rosin equivalents. Statistical analysis Morphological and chemical data were subjected to non-parametric (KruskallWallis’ test and multiple pairwise comparisons with Dunn’s procedure/ two-tailed test) and parametric (oneway ANOVA and multiple pairwise

comparisons with Tukey (HSD) test, on previously transformed percentages by Bliss’s formula) analysis, using the statistical software XLSTAT.

Results All parameters recorded on the aerial and ipogeal parts of the plants of the six roseroot populations showed statistically significant differences. As shown in the Tables 2 and 3, wide variation was detected for the traits with variation coefficients ranging from 25.6 % (leaf width) to 82.6 % (salidroside content). The shoot length varied between 23.1 and 43.7 cm. The plants from Lago Lagorai, Malga Bondolo and Rifugio Larcher (39 cm on average) were significantly higher than the ones from the other locations. The Malga Bondolo population had thicker stems than the other four ones (4.8 mm on average), but not compared to the Rifugio Larcher population. The plants from Malga Cadria showed a lower number of shoots than those from the other five locations (16.8 compared to 33.9 on average). With respect to the leaves, the plants found in Malga Bondolo had the longest ones (44.5 mm) and differed in this trait significantly from all others plants, while the plants with the narrowest leaves were in Passo Rolle (5.3 mm), but the statistical difference of this trait was only with respect to the leaves of Malga Bondolo.

Concerning the concentration of valuable plant components, the highest salidroside content was found in the plants from Malga Bondolo (1.16 %), but no statistical difference to the plants from Rifugio Larcher was given. The highest rosavin content was found in the plants from Passo Manghen (0.56 %), but a statistical difference was only given with respect to the plants from Lago Lagorai (0.25 %). The highest rosin content was found in the plants of Passo Manghen (0.049 %) but a statistical difference was only given with respect to the plants of Malga Cadria (0.015 %). Finally, all populations had: erect shoots, an acute-lanceolate leaf shape (leaf form not reported in the descriptor list (3)) and a sharp toothing of the leaf. Concerning the leaf toothing (site of teeth) the following results were obtained: mostly only at the tip in the plants from Lago Lagorai and Malga Cadria and less than half of leaf in the plants of the other populations.

Discussion To our knowledge, only limited data about some morphological characteristics of roseroot wild populations are available in the literature. Asdal et al. (3) reported data of the characterization of R. rosea accessions in Finland, Iceland, Norway and Sweden based on the results obtained in the SPIMED project (2002–2005). The Finnish accessions

Morphologische und phytochemische Merkmale wilder Rhodiola rosea L. Populationen im Trentino, Italien Zusammenfassung

Rhodiola rosea L. ist eine Heilpflanze mit vielen traditionellen und medizinischen Anwendungen. Der unterirdische Teil ist dafür bekannt, die menschliche Widerstandsfähigkeit gegen Stress oder Müdigkeit zu erhöhen. In den letzten Jahren hat die Unità di ricerca per il Monitoraggio e la Pianificazione Forestale in Villazzano (Trient) Daten und Samen verschiedener alpiner Arznei- und Gewürzpflanzen gesammelt mit dem Ziel, ein breiteres Wissen über diese Arten in situ zu erlangen und einen ex situ Anbau durchzuführen, um ihre Diversität zu beurteilen und um zu überprüfen, ob einige Popula­tionen interessante Ergebnisse für künftige Selektionen geben könnten. Dieser Artikel berichtet über die morphologischen und phytochemischen Daten der sechs in situ im Trentino (Italien) im Jahr 2010 gesammelten wilden Rosenwurzpopulationen. Analytische Bestimmungen wurden mittels HPLC-DAD durchgeführt. Die erhobenen Daten waren wie folgt: Trieblänge 23–44 cm, Triebanzahl 17–38, Durchmesser der Triebe 3,8–5 mm, Blattlänge 20,7–44,5 mm, Blattbreite 5,3–6,5 mm, Salidrosidgehalt 0,27–1,16 %, Rosavingehalt 0,25–0,56 %, Rosingehalt 0,015–0,049 %. Insbesondere die in Malga Bondolo gesammelten Pflanzen, gefolgt von denen in Rifugio Larcher, zeigten die höchsten Werte bei allen aufgezeichneten Merkmalen.

Schlagwörter

morphologische Merkmale, Rhodiola rosea, Rosavin, Rosin, Salidrosid, Wildsammlung

Z Arznei- Gewurzpfla | 18(1): 41–45 | © Agrimedia GmbH & Co. KG 2013

43

Original contributions

Aiello N et al. | Characteristics of Rhodiola rosea wild populations of Trentino, Italy

Aiello N et al. | Characteristics of Rhodiola rosea wild populations of Trentino, Italy

Original contributions

Tab. 2: Shoots and leaves characteristics recorded on wild roseroot populations Tab. 2: Trieb- und Blättereigenschaften der Rosenwurzpopulationen am Wildstandort Population (Population)

Sex of the plants (Geschlecht der Pflanzen) (1)

Lago Lagorai Malga Cadria Passo Rolle Malga Bondolo Rifugio Larcher Passo Manghen Average (Durchschnitt) St. dev. (Standardabweichung) Min (Minimum) Max (Maximum) CV (%) (4)

12 M; 11 F; 8 NF 14 M; 16 F; 1 NF 14 M; 16 F; 1 NF 19 M; 12 F; 0 NF 16 M; 15 F; 0 NF 20 M; 9 F; 2 NF

 

Shoot length (Trieblänge) (cm) 38.1 ± 8.8 AB 32.0 ± 8.1 BC 24.7 ± 9.9 CD 43.7 ± 7.2 A 35.2 ± 7.1 AB 23.1 ± 6.0 D

Number of shoots per plant (Triebzahl pro Pflanze) 29,0 ± 16,7 A 16,8 ± 15,6 B 30,2 ± 23,1 A 42,5 ± 28,7 A 29,6 ± 16,0 A 38,4 ± 25,0 A

Stem thickness (Stängeldicke) (2) (mm) 4.0 ± 0.9 B 3.9 ± 0.9 B 3.0 ± 1.0 C 5.0 ± 0.9 A 4.5 ± 0.9 AB 3.8 ± 0.9 B

Leaf length (Blattlänge) (3)

Leaf width (Blattbreite) (3)

(mm) 31.8 ± 7.4 B 29.5 ± 4.6 B 22.6 ± 5.7 C 44.5 ± 8.1 A 20.7 ± 5.7 C 29.2 ± 3.5 B

(mm) 5.9 ± 1.6 ab 5.3 ± 0.9 ab 5.3 ± 1.2 b 6.5 ± 1.9 a 5.8 ± 1.0 ab 5.3 ± 1.5 ab

32.8

31,1

4.0

29.7

5.7

10.7

22,7

1.1

9.7

1.5

10.0

3,0

1.7

12.3

2.7

55.0 32.5

112,0 72,9

7.3 26.8

62.3 32.8

12.3 25.6

(1) M: Male, F: Female, NF: Plants had not flowered. (2) Measured 2 cm above basis. (3) Leaf number 10 from the top, mean value of 3 leaves from random shoots. (4) Coefficient of variation. Mean (± S.D.) values followed by the same letters are not significantly different at P< 0.05 (lower case letters) and at P< 0.1 or P< 0.001 (upper case letters) according to Dunn's procedure/two-tailed test. (1) M: Männlich, F: Weiblich, NF: Pflanzen haben nicht geblüht. (2) Gemessen 2 cm über dem Stängelgrund. (3) 10. Blatt unterhalb der Spitze, Mittelwert aus 3 Blättern von zufällig gewählten Trieben. (4) Variationskoeffizient. Mittelwerte (± Std.Abw.) mit demselben Buchstaben sind nicht signifikant unterschiedlich bei P< 0,05 (kleine Buchstaben) und bei P< 0,01 oder P< 0,001 (große Buchstaben) gemäß Dunns Prozedur/Zweiseitiger Test.

were generally dense and compact, with a shoot height between 8 and 25 cm, and the leaves had a length of 30–50 mm and their form was oblong and ovate. The Swedish accessions varied from prostrate to erect with large diversity in leaf shape, and the leaves ranged in length from 8 to 23 mm and in width from 6 to 12 mm. In Finland Galambosi et al. (9) found 39 to 121 shoots per plant in three wild populations. The assessments carried out on the plants of six Italian golden root populations showed that they had always erect and higher shoots and a different leaf form (acute-lanceolate) than those of the Finnish and Swedish accessions, while they had a lower shoot number per plant than those of the Finnish wild populations. Moreover, the leaves of the Italian golden root populations were shorter than those of the Finnish accessions, but narrower than those of the Swedish ones. With regard to the active principles of the underground parts of the wild populations, Buchwald et al. (6) and Altantsetseg et al. (1), reporting other authors, gave the following values: rosavin 0.4–3.7 % and salidroside 0.13–1.9 %. Elameen et al. (8) found a rosavin content of 0.29–8.6 %, a salidroside concentration of 0.003–1.3 % and a rosin content of 0.008–0.48 % in 95

44

roseroot clones of a Norwegian collection. Compared to this, a rosavin content of 1.23–1.55 %, a salidroside concentration of 1.28–2.06 %, and a rosin content of 0.18–0.25 % were found in three Finnish wild populations (9). The content of active principles of the Italian golden root populations were within the range of the data reported in the above mentioned studies, however, with low average values of the Italian populations.

Conclusions The six golden root populations growing in situ and collected in the Trentino in 2010 showed wide variability both in the morphological and phytochemical characteristics. An extension of the study to more populations and also to ex situ cultivation of seedlings obtained from these populations is intended. Moreover, the populations from Malga Bondolo and Rifugio Larcher seem to have interesting morphological and qualitative characteristics to be considered for breeding programs.

Acknowledgments Authors thank Dr. F. Prosser and F. Zara of the Museo Civico di Rovereto (Trento) for the advice concerning the roseroot locations. This work is part of the project

„FAO-RGV” financed by the Ministry of Agricultural, Food and Forestry Policies.

References 1. Altantsetseg K, Przybyl JL, Weglarz Z, Geszprych A. Content of bio­logically active compounds in roseroot (Rhodiola sp.) raw material of different derivation. Herba Polonica 2007; 53(4):20–25. 2. Artemov IA, Korolyuk EA, Kosterin OE. Flora officinale dell’Altai. Sui monti di Siberia. Erboristeria Domani 2002; 10:62–77. 3. Asdal A, Galambosi B, Olson K, Bladh KW, Porvaldsdottir E. Rhodiola rosea L.. Spice- and Medicinal Plants in the Nordic and Baltic Countries. Conservation of Genetic Resources. Report from a project group at the Nordic Gene Bank, Alnarp 2006:94–104. 4. Bosellini A, Castellarin A, Dal Piaz GV, Nardin M. Carta litologica e dei lineamenti strutturali del Trentino (1:200 000). Servizio Geologico della Provincia Autonoma di Trento, Trento 1999. 5. Brown RP, Gerbarg PL, Ramazanov Z. Rhodiola rosea. A phytomedicinal overview. HerbalGram 2002; 56:40–52.

Z Arznei- Gewurzpfla | 18(1): 41–45 | © Agrimedia GmbH & Co. KG 2013

Tab. 3: Qualitative characteristics determined on the underground organs of the wild roseroot populations Tab. 3: Qualitative Merkmale der unterirdischen Organe von Rosenwurzpopulationen am Wildstandort Population (Population) Lago Lagorai Malga Cadria Passo Rolle Malga Bondolo Rifugio Larcher Passo Manghen Average (Durchschnitt) St. dev. (Standardabweichung) Min (Minimum) Max (Maximum) CV (%)

Salidroside (Salidrosid) (%) 0.46 ± 0.38 BC 0.44 ± 0.21 BC 0.27 ± 0.17 C 1.16 ± 0.29 A 1.12 ± 0.81 AB 0.38 ± 0.18 BC

Rosin (Rosin) (%) 0.021 ± 0.018 AB 0.015 ± 0.080 B 0.027 ± 0.017 AB 0.037 ± 0.021 AB 0.046 ± 0.025 AB 0.049 ± 0.022 A

Rosavin (Rosavin) (%) 0.25 ± 0.08 b 0.31 ± 0.21 ab 0.33 ± 0.16 ab 0.48 ± 0.14 ab 0.44 ± 0.24 ab 0.56 ± 0.17 a

0.64

0.033

0.39

0.53

0.022

0.19

0.04

0.005

0.08

2.40

0.085

0.86

82.6

67.6

49.2

Mean (± S.D.) values followed by the same letters are not significantly different at P< 0,05 (lower case letters) and at P< 0,01 or P< 0,001 (upper case letters) according to Tukey (HSD) test. Mittelwerte (± Std.Abw.) mit demselben Buchstaben sind nicht signifikant unterschiedlich bei P< 0,05 (kleine Buchstaben) und bei P< 0,01 oder P< 0,001 (große Buchstaben) gemäß Tukey (HSD) Test.

6. Buchwald W, Mscisz A, Krajewska-Patan A, Furmanowa M, Mielcarek S, Mrozikiewicz PM. Contents of biologically active compounds in Rhodiola rosea roots during the vegetation period. Herba Polonica 2006; 4:39–43. 7. Eccel E, Saibanti S. Inquadramento climatico dell’altopiano di Lavarone-Vezzena nel contesto generale trentino. Studi Trent. Sci. Nat. Acta Geol. 2005; 82:111–121. 8. Elameen A, Klemsdal SS, Dragland S, Fjellheim S, Rognli OA. Genetic diversity in a germplasm collection of rose­ root (Rhodio-

la rosea) in Norway studied by AFLP. Biochemical Systematics and Ecology 2008; 9:706–715. 9. Galambosi B, Galambosi Z, Slacanin I. Comparison of natural and culti­ vated roseroot (Rhodiola rosea L.) roots in Finland. Z ArzneiGewurzpfla 2007; 3:141–147. 10. Galambosi B, Galambosi Z, Hethelyi E, Szöke E, Volodin V, Poletaeva I, Iljina I. Importance and quality of roseroot (Rhodiola rosea L.) growing in the European North. Z Arznei-Gewurzpfla 2010; 4:160–169. 11. Kanum F, Singh Bawa A, Singh B. Rhodiola rosea: a versatile adap-

togen. Comprehensive Reviews in Food Science and Food Safety 2005; 4:55–62. 12. Perfumi M., Mattioli L. Rhodiola rosea L.: Promettente supporto per il tabagismo. Dati preclinici. In: Geraci A, Mondello F, Stringaro A, Editors. I Convegno Nazionale Sostanze naturali: dalla ricerca di base all’applicazione clinica. 2009; XI: 65. 13. Pignatti S. Flora d’Italia (Vol. I). Edagricole, Bologna 1982; 504. 14. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentie DH, Walters SM, Webb DA. Flora Europaea (Vol. 1). Cambridge University Press, London 1976; 363.

Addresses of the authors: N. Aiello, R. Bontempo, C. Vender Consiglio per la Ricerca e la sperimentazione in Agricoltura Unità di ricerca per il Monitoraggio e la Pianificazione Forestale Piazza Nicolini 6 38123 Villazzano (Trento) Italy G. Innocenti, S. Dall’Acqua Department of Pharmaceutical and Pharmacological Sciences University of Padova Via Marzolo 5 35131 Padova Italy Corresponding author: Nicola Aiello, [email protected]

Received: 24 July 2012 Accepted: 21 December 2012

Jahrzehntelanges Engagement für den Anbau von Arznei- und Gewürzpflanzen Professor Chlodwig Franz, Universitätsprofessor für Botanik und Lebensmittel pflanzlicher Herkunft und Vorstand des Institutes für Angewandte Botanik und Pharmakognosie der Veterinärmedizinischen Universität Wien, ist seit wenigen Monaten emeritiert.

Dies ist Anlass, ihm für ein jahrzehntelanges, erfolgreiches Engagement zu danken. Nach dem Hochschulstudium, welches er an der Universität für Bodenkultur Wien absolvierte, widmete er bereits

Z Arznei- Gewurzpfla | 18(1): 45–46 | © Agrimedia GmbH & Co. KG 2013

Abb. 1: Prof. Dr. Chlodwig Franz Fig. 1: Prof. Dr. Chlodwig Franz

45

Original contributions/Personalia

Aiello N et al. | Characteristics of Rhodiola rosea wild populations of Trentino, Italy