multi-objective optimal model for surface and ground-water

0 downloads 0 Views 681KB Size Report
In this paper, a multi-objective model is developed to maximize the minimum reliability of the system and to minimize the costs due to failure to supply water, ...
! "#$

%& NSGA-II + SGAs 7

4

7

,

(' 5

6) + 1

(IJ/M/F L K

)*% % & "' % !4

) 1 2 3

IJ/H/EF =

) 3

)

> O

.

E6F ?G' !H I 2 ?

0%

of

SI

D

0 "1 / "+ , ' - )" ." " # $ %&' ()* ! 2" , ' / !" " 4 ," 4 ) &' ; 4&' ()* %&' .) 9# 3 4 4 5&67 8 4 2 + ' >?4)"@ "$ " " 0 &"= 4 "#& " " ( !Q (0 > R S= /] ) " 6 (' > \

P ) 6 E

2

www.SID.ir

.

" ' ( &$% $ !"# '- % ./ $ 0 '- ' ! % %! &+ , 95 . 5 %5" ,267- 5 %8 %1 23 2- 4 $ 2 6 ; 2 < 3=>" - % %:'- 23 - 0 '- :4 & ./ $ 0 '- 2 6 + , , ?>"@ 01 2E=5 @ 5? D/ %3 & ? A .- B2C.- ,23 :5 HI 4 ' FG G 2 * % 2 $ '- % ./ 0 '- 7 9F3 95 . 2 % 2 +1 G & 2 20 '- % @J 23 . 2 $ ' ! %KL- % - 0 '- :- 95 9'- M %K '- % ./ 0 '% %! 01 7 9F3 95 0 '4 95 5 %$ 2N'$ & @ & #-) 0 '- ; - F; 2O . 2 2% 5! M % K 2 - 95 7 9F3 M 2 ( (... ' - % 23 . % 8 - +( G & :- M 2( % %! 6? 2 MR ; , %3 & 7 9F3 -% B 3 : 7/'* -S3 % ./ 0 'TU3 % - # 2 - 95 2 2- 0 '> . 2 - 95 ' - % 0 '- % @J 2# ! 0 '7 9F3 % %! '; 3 , /- * , X ] YZ[\ B W % A 23 V : ' - % ./ ( ) ./ 0 '- ^7.- * A 23 !3 B - . %8 95 "; _ * -S3 % ' - % % . 5 %8 %1 %N 2# 2'C- TU3 B '- % ./ ! 0 '% 2 '! %8 95 R - V 8 3R 5G 24 -% a ` - % B - YZbY B M > * '< .[Y] . 2 95 7 9F3 % %! c5? 2 ' ! 2N'- 24 c5? 2 # & @ & ./ #- * 'd B - * B2 O & 2 T - , /- . 5 %8 % N B 75 * 2 1 &B - f 5 . 2 -\ - V 8 B e '! .[g] . % '- % ./ ! 0 '% %! i k C 51 B - j > ,24 ghh[ B 0 '7 9F3 % %! '! % > H2, M 2( l 0 3B -* . ] '- % ./

SI

D

*

ch ive

of

% % ! + ( G 0 '- 2 %m; G ! C51 ; - " , /- * f 5 . 2 ' - % ./ 0 '23 23 - !C C#3 C 51 0 '- *5 %8 %N o2 M , /- % = .[\] % 8 c5? 2 2- !5 %n ; V: / * %p M 7 7.3 2' 3 s r q R &2] & > 2, 2 3 - ! * % 3c !& > " & > % & > t ;& > XX 5 & > 2- ; & XvR28 p? & uj % 5 %8 M 2 ( M , /- .[Yxkw] 2 .- F z % YZ[\ B ; 7 9F3 % %! % - y2C@ V : !" {4 ; 23 - & - 2'; 3 % 1 23 2- ' - % ./ 0 '- c5? j !"# % % ! % - & :- |=- ; l j M 2( 5 %8 0 '- !5 .23 ^ 7.3 * . V : 0 '; 'd B - 5@ &} C#3 !5 2, l Cc5? * -S 3 % T4 ' O +1 G - c 2O /~ #3 & 2# G & * -S3 V A63%' %m; G +1 G } C #3 !5 2, % %! B G #- %n * 3 ' ! B - +G % . * 3 & %8 X` ? 4% • $ 2 % '56- j 5 H c5 2p, ^ 7.3 * %p % ; Xa FG%- j 5 H c5 2p, ? 795 & ,2 - j 5 H c5 2p, B 6? %5" R %;J l * B 63 '.'- €, 1 B - f 5 . 23 2 2- 0 '- % - % 6 '- 2p, 23 % ' %T4 ' O . % 1 $ 0 '- 8 % 8c C 3 % - 5@ . %8 - ] C5@ 95 2' ! B - 5@

; 2 Xq • &

Ar

!

(NSGA-II) "#$ % & ' 9F5#- ! & 'd ' ! B - +G % Xi .- • & • 23 - F

5 Barlow 6 Rao 7 Vedula 8 Khare 9 Fredericks 10 Basagaoglu 11 Narayan Sethi 12 Non-Dominated Sorting Genetic Algorithm (NSGA-II) 13 Sequential Genetic Algorithm (SGA) 14 Weighted Sum Method 15

Epsilon-constraint Method

1 2 3 4

Buras Scott Aron Pulido

3

www.SID.ir

345

. -

,

3 'd M 2 ( 7 9F3 % %! B - ^ 7.3 * G 2 %m; G ' B l € 3%3 * . 7-% O %T4 ' O * -S3 V ~/#3 - 2 +1 G ' V l !5 2, #% %! %n ~/#3 & 2# G 23 , /- * . 2@ - c"d 2F/- 2. &} C#3 2" ; $ 0 '- % - c5? 2 2- !5 1 '- % ./ $ 0 '- } C#3 2N'!5 .M 2( * 0 '- } C#3 !5 2, * '< . 5 %8 %N % '- % ! 0 '- †I ./ ! 0 '- 5 ; 2 *5 % 8 % N F . %8 % 1 %N - l C - } C #3 ./ $ 0 '- ; * &M 2( * !C C#3 2, M V R € '!p V % #63 + , M - 'F - % 2 N'l%C- %5 ; > H2,2]H A% 23 2'C- TU3 M 2( - M - 5 * 'd J #3 2 5 3 %8 2# % ;J V R . 2 2- 0 '% %! _ & A% 23 ] !5 2, , /- 2 .- > H2,2]H > H2, ] B2-% , /- * . M 95- 23 A% % 95 2 5 3 2 % U5- y2C @ * * .2 ] + ( G %n '5&‡F5#] !'" 4 B - !5 .- l 0 3 &^ 7.3 # . %8 -

Ar

ch ive

of

* +1 + &

`

.2

SI

. /$ 0 1 2

'd F- >3 c5 2 p, X 23 2 + , 'd F- >3 c5 2p, , /&l * ' ! B 63 '.'- ] < 4 +] ?- +G R ; F] ? - ' 23 - 5G B -* . 95 d I> 2- c C3 ‚ & ' 63 ( @ p5 2 4 '5? C3 %5- 4 ! l 0 23 a % ghhh B > $ A 23 B - * . ' +G !'" 4 &j =; j 5 H c5 2 p, B - M=>"- +] ?- +G *" 4 'd '! B M=>"- .[Y[] %8 %:'- ; %>3 % M 6 .- R c:G : M 6 % 7- € '3 !p V % 8 -B - % .B - % B2O %3%

*

D

…(F1, F2, …,Fl) q ?4% • !6 ' !6 95 (Pt+1) % >3 % , +? ,23 • 3 23 FG%- * .N 3 ,23 ?4% • 3 5 &(N) , +? % 2V 2 - %; 2 - $ #5 , +? % !6 * , V 2- %; & 6 , +? 2- +; 3 2p 2 3 * ; 3 2( +; 3 2 % ... \ &g !6 € 3%3 … (N) ,23 , +? % ! &f 3 %pF B • …N 3 (Qt+1) % +? ,23 (Pt+1) .%N 2%>3 +; 3 5 3 x FG%- %>3 •

5

Non-dominated Fronts

NSGA-II

'd

' ! B - 5@

+ ()*

*

% + G %- & 2 - "- Y +„ 2O : % M 2( 'd '! B …N 3 (P0) C3 , +? ,23 kY i … ?4% • ! 2 W % , , +? 2 €3%- kg $ 2 % % ?4% • %3 € '5- 63 *5 %8 %N k\ …(... Y %3 * %5! % g & %3 * %5! % Y) ?4% • %pF 95 N 3 (Q0) % +? ,23 kw … ! f 3 &$ #5 V 2 - %; +; 2 T,23 B +? 23 kx : 2 - ,23 % M 2( +? & '5? % , (Rt) F? ,23 (Qt) % (Pt) , V 2- %; € ;%3 • … 2N 3 ?4% • ' 5 • W % (Rt) +? 2 €3% - • 1 2 3 4

Goal Attainment Method Multi-objective Evolutionary Algorithms (MOEAs) Deb Non-dominated Solution

4

www.SID.ir

l 03

F1 = Maximize (minimum Reliability ) m nz ns F2 = Minimize (DM tzs TAWtzs )2 + Loss Function t =1 z =1 s =1 ns

nz

ns

TAWtzs z =1 s =1

[(

E t = EVt × 10 × ( 3) × 10 3

(`)

DM tzs

z =1 s =1

5

S t +1 = max(min ((S t + I t

× S2t

) + (+ 0.023 × S

t

: !5

]

+ 0.4098)

R t ), S max ), Smin )

Et

(w)

max 1 t =1

TAWtzs = RS tzs + RG tzs

St ,0 × + Smin

nz

ns

z =1 s =1

(RStzs ARStzs )2 × + (RG tzs ARG tzs )2 ×

z 1 s

if z 1 s

z

z =1 s=1

,

TDFtzs = DM tzs

ARG tzs =

z =1 s =1

DM tzs

DM tzs

z =1 s=1

DM tzs

(e)

otherwise

S = IS(1),..., IS(ns )

(Z)

Output t A × Ss

Eff × Vt )

(Yh)

TDFtzs

Z = IZ(1),..., IZ(nz )

s 1

ARStzs

(Input t

(Input

z

DM tzs

z =1 s=1

Ar

Dh t (Vt ) =

(b)

s 1

DM tzs

Z = IZ(1),..., IZ(nz )

TSR t

ch ive

DM tzs ARStzs = TSR t

([)

, t = 1,..., m × y, z = 1,..., nz, s = 1,2,3

of

m

(x)

SI

TSR t = R t + Rtaleghan t + Rbin t

Loss Function =

.(a)

D

nz

Re liability t =

(Y)

Output + h max × A × Ss ) z 1 s TDFtzs Eff z=1s=1 , S = IS(1),..., IS(ns)

if Dh t z s 1 z=1s=1

z 1 s z=1s=1

TDFtzs

z s 1 z=1s=1

TDFtzs

h max

TDFtzs otherwise

(YY) V + , 2 20 '-

} C#3 % +; - Loss Function G l%C - & % !5 2, &( )

]

1

X

% U5€ „-%5- 2 F - c:G G : 2 - ‡ % 3 % M 2( o2 MR -

Million Cubic Meter (MCM)

5

www.SID.ir

&z 7/'-

s

DMtzs

- TAWtzs &z 7/'&%5- F - €?G % t #- % #63 - EVt &t #- c:G St &t @ - It &(c C3 % U5-) t #%@ $ c:G Rt (\h MCM) +1 G (gh[ MCM) %m; G Smin Smax & #- %n 7, O #- , 75 $ c :G - Rtaleghant &( 2 - % - B - % # )t &t * c:G Rbint &t } C#3 ./ $ +; - TRSt s # } C #3 ./ $ +; c:G RStzs &(c C3 % U5-) z 7/'- t s # } C#3 ' - % $ +; c:G RGtzs &(c C3 % U5-) z 7/'- t s # } C#3 ./ $ +; c:G ARStzs &(l C- 0 '- !5 2, *5 %8 %N ) z 7/'- t s # } C#3 ' - % $ +; c:G ARGtzs &(l C- 0 '- !5 2, *5 %8 %N ) z 7/'- t * ) % 0 23 2 c % K € %_ , , 5 %8 % N Yhhh % % Yh % % , , /&( s

SI

D

t

#

# } C#3 $ +;

t

ch ive

of

; - + M 2( * * 3 '! B $ 0 '& 5 & ! 2, l C- 0 '23 XX / ^ /- & 2 6 ; M 2( 2 - * -S3 ./ } C#3) 2# 4A % 23 ' - % $ 0 '.- *5 % 8 % N %@ !'% *% '. 2@ * -S 3 & ( - % 3 M % U3 l=5 @ - &i # %;J 2' 6 .95 ( '- % ./ ) } C#3 $ ARStzs) l C - 0 '!5 2, 0 '- !5 .RStzs) - ] ' ! B - ; C C#3 (ARGtzs . %8 ] r / V M 6 M 2( 6 .- &(RGtzs B% 5'; #%n .- 0 1 / * B V%3 ( Xvvv % % ;) € % _ 95 ; € % _ * '< . %8 - c / * B M 6 % 1 95 2 -& 2 c 2N'- ' - Xv % % ; * 3 /@ € %_* % ;J V R . 5 %8 ' ! } C #3 % 5 %8 %N .- * '< . % ; 2 M 2(* ' - % $ 0 '- l C' - % $ D/ %3 - M % U3 3 % 8 M 2( 28 . ' :3 %5- 5 a 5"8% $ %! E 7 T ! d >' 23 & ' - 2# ! 2 3 + 1 c :G & "; _ }, @ - & ' - % $ c :G M % U3 - * 3 % .(Xv / ) 95 ' - % $ 06'%

.

8 7

Ar

y @ ?G %. ^O '- , /23 , /- 2 .- ^ 7.3 * & 7/'5 & * -S 3 j {3 %5 A % 2 + , ˆ% ; 5 %! > + , .- * . $ #5 % % + .5- % @ !, 5 c; %3 & 2"; ;%% @J % % :'- % - * .(` +> ) ˆ% ;k % !3 2# 23 + 1 :5 '- % 2 < !"# % % * '< . %8 * . ! 23 + 1 % "; ^ 7.3 2- .- & 7 9F3 % %! % - 2N', /" ; 7/'- j & 5 7/'- j & %! 7/'- f'4 ^O '- * * -S 3 2. 2, . c ?73 5 '( 7/'- j .- * . ] ` X !, j >93 &0 '-

&s

# 2, - IS (s) &z 7/'- 2, - IZ(z) &z 7/'- t s # $ 26 ; +; c:G TDFtsz 2 # ' - % $ D/ %3 M % U3 - Dht(Vt) &%5- €?G % t V % :5 & ' - % M 2( 2# $ +; c:G Inputt & ' - % M 2( 2# %@ $ +; c:G Outputt & } C#3 $ 9- 95 ( Eff &0 %- %5-2F ; €?G% 2# G ?- A & 2# { % @J € %_ Ss &%5- ' - % $ D/ %3 - % U3 :- G hmax & ^O '- 3 nz 7/'- % 01 $ '';l%C- !"# 3 ns . -% ! - 3m

6

www.SID.ir

D Z

9,L-

./ $ 0 '- } C#3 l C-

1 9

- .B C "* 1

b

[

1 9 *

*

IJ5

4H5

"*.A )/

*

% -%

7, O B 75 A@ A@ * A 23

ˆ%; 2# = , 9 ' [Yb] (€ „-%5- 2 F -)

Ar

B

g\[/x k Yb/ee k Yxx/e[ k ghe k k \Z/w k xZg/x k YY [Ye/g[ [wg/Z kgw/[w

? 8 < 5 * : ; \

./ $ 0 '- l C- * -S3 2.

- .B C "* 1

, 75 $ - & %8 95 %- * % 1 23 2 - &$ 0 '- 23 Y\egke\

w

ch ive

*

"*.A )/

x

'- % ! 9 /8 "D E

, /- 2-

'- % e

* *

23

of

! 9 /8 "D E

- %

SI

$ 0 '-

g

Y

9 '

/ @8 = > ? 8 < 5 * * *

2,

* *

* *

: ; ./ $ 0 '' - % $ 0 '-

6K # 3 M =O 23 ' - % $ D/ %3 - Xati 3 Xasv B , !d j B2 O * B2 O * '- % #- 5 %5- XX/at . 2- € >- %5- 2 F - rt`/t B - %?; M % - * %@ W % ˆ%; 2# = _ 9,L- . " c] _ # ˆ '- a B M 6 , /- * 5 %8 %N $ 0 '-% 7, O ˆ% ; &( ./ 0 6'-) W2, d ˆ% ; @ : ^O '- &( ' - % 06'-) % ! d &( ./ #-) 01 5 '( " ; ^O '- & 5 & %! % + 5"-) .( , /- 2- .& _2G 0 '- 2 6 ; 23 ^ 7.3 * . 95 W2, d @ ' - _2G % 0 'V R &$% $ * -S 3 % ; : * '
? 8 h/[Y [/xe h/Zb Y\/Yx Y/he Yw/e h/Zb Y[/ww Y/hx Y\/Yx h/Ze Y[/ww Y/Yb Yw/e h/b[ Yw/e h/e\ YY/xY Y/Y[ Yw/e h/bY Y\/Yx h/xe Yw/e

-

A 25- R 9 ' .

LK

< K

Y/[w h/Z[ h/eZ h/ZZ h/ZZ h/eb

-

A 25-

8

www.SID.ir

a

(0 1

5

)

b

15280 15250

>1

15220 15190 15160 15130 15100 0.655

0.66

0.665

0.67

0.675

0.68

I$ < @\ (] ^

% T4 ' O +1 G

/#3 whh

- * ' ! B 63 '.'- , ()* %

c

% &, Š j % ' ! B - 5 &+G • * ' ! f 5 †I . %8 * 3 ' ! % 7% 7- ,23 , % 7- 2 ' B B A63%* . 95 V B ' ! % & H% % C3 B - . - %N 2-% + >3 3 0 c †I 5 l & 95 SGA B2 O % ;J V R . %8 B j3 B - €, 1 - - V 8 M 2 ( ; 2 B Xv -% } C #3 ' ! % 7- ? 7- % . '! B 95 SGA B - f 5 &NSGA-II 'd B - +( G . %8

P &

< !K O

* 3 ' ! B - %3% .( - * 3 % X 95 % %! 5 % '56- } C#3 B 0 '23 - } C #3 - &B - * . M 6 . %8 - * 3 3 A % *5 %8 %N 2 2` ' ! % 7- >' 23 . - j3 B - * %p % N 2 - !5 .- - 3 & !'" 4 B ˆ %#5 * A 23 J #3 B >' ' 0 '4 G c5? % T4 ' O %:'- B & %8 % %! 5 ? 7- 2 2F] ?- +G ; !'" 4 B - f 5 .( 23 - +1 G 2 2 ' . 8 < 4* • ˆ% ; %! $% $ * -S 3 %T4 ' O Zg % % € 3%3 SOP B 95 "; # 95 % 7- * ; 3 2( . ( xY ( . 2 2@ ( [h ( Zb % % € 3%3 NSGA-II B % 95 2-B ; ' " ? 7- * . - '- % ./ $ 0 '7 9F3 % %! 23 - !'" 4 B 95 %p M 6 } C #3 2 B 5- ' - % $ 0 '- c5? 4 ] B 63 '.'- .( ' O % * '< . %8 0 c M 2( l 0 23 &NSGA-II B - A 23 * +( Gf 5 . % j3 B - €, 1 %6 ; 5 p' B 63 '.'- ! 2 > B . " \ +> 2@ %- *

40

80

15900 15800

>1

160

280

400

Ar

16000

ch ive

of

B - A 23 % * 3 '! B 23 $ 0 '- } C #3 ' ! % 7- 2 3 - NSGA-II SGA B -+ G % . 2 * 3 '- % ./ % 5 ? G + F.3 5 NSGA-II B 95 '! ] f 5 . %8 M 2( V 2- %; wh V 2- %; ; - " w +„ + 1 M % U3 &l * B 63 '.'- & %>3 \hh % whh 3 * + ( 2 M % U3 * ; 2O & - " ! 23 3 % 5 ; whh geh 5, G 6? ! 23 + 1 M % U3 '.'- * &whh %3 , /- * T ,. " & whh 3 * ' ! B 63 '.'- * 3 % 95 2- V 2- %; 3 . $ #5 whh % % c5? /#3 - % T4 ' O

D

)

SI

(0 1 2

15700 15600 15500 15400 0.6

0.61

0.62

0.63

0.64

0.65

I$ < @\ (] ^

+1 G

~/#3 - * B 63 '.'?G + F.3 7 ()* V 2- %; 6? % T4 ' O

1 2

Standard Operation Policy (SOP) Single Period

9

www.SID.ir

D

.

ch ive

- *

.

< # 5

@;5

% NSGA-II B - % whh 23 . % 8 - + ( G \ +> ] B 63 '.'- & %>3 Yhhh 5 % 2- B - % - * ? 7[ M - NSGA-II B - ; - " & ' ! % 7' ! Š $2 x\ M - SGA B ? 4% • $ 2 % '56- B - R 23 %p " * ; '5 c5 2 p, ? 7- l * ' ! B 63 '.'- ] . FG%- j 5 H < 'd ; 2 "- 23 - \ +> 23 * '< * -S 3 % T 4 ' O +1 G & % 2 - $ 0 '- c5? VR ; - & 8 !"# 0 '- 2 2- !5 .%5" ~/#3 - c5? . B & 2 2- $ 0 '- B 3 : 2N'- & & % 2-c C3 % U5?G - * 3 % % % ! % -B } C#3 ' ! % 7! M % U3 B -% FC M 2( !'" 4 7 9F3 3 GAC1 %5- 4 !F„ * . %8 c %3 x +„ ^ /} C#3 ' ! ' - % $ - ' " GAC6 7 9F3 M 2 ( B %! - , /- 2- %!

SI

'< . ' % . %! ./ $ 0 '- ' ! } C#3 0 '- ' ! } C #3 - : M 6 GAI SAA &GAA 0 '- ' ! } C #3 -& " # '- % $ $ 0 '- ' ! } C#3 " # ./ $ . '( # ' - % ‡ F5#- B2C } C #3 ' ! % 7- M % U3 ? 7A% 2 $2 F/- + , 5? 3 +C ; - " %5 ; ?G 2# % - & > H2,2]H * * 2 @% % 2- l 0 23 6? G +C * ' - % $ 0 '% ; '. - j } C#3 ' ! % 7- ! 23 + 1 G 3 7 9F3 95 23 ; !"# &x +> 23 * '< & %3R 2, } C #3 2 0 '?G . 2 ' 2@ 0 '% %5" ?G 95 2@ * -S3 % ' - % 06'- !'3 ; !"# ! %G ? 23 + 1 B2C - 3 ' c5? ~/#3 % 82 F 2 N'% . %_ % %!

of

SAC2 SAC1 *

- *

- %p

@;5

1 J

. - *

- *

.

1 J

> $

Ar

< #!

@;5

‡F5#- B2C

@;5

1 J

'- %

./ $ 0 '- } C#3 ' ! % 7- M % U3

1 J

O (e*

10

www.SID.ir

! ! &K h ! g ;H5 < >

ib &K h ! g ;H5 < >

= > ? 8 * K!

18

14 12 10 8 6 4 2 0 11

21

31

41

51

61



71

81

91 101 111

SI

1

D

(f D)

< 4 ) g ;H5 < >

16

ˆ%; %! '- % ./ $ 0 '- ' ! } C#3 - P ()* ( +> B 63 '.'- /7 j ) , Yh j O NSGA-II B

' ! B 63 '.'23 % 8c C 3 % N ' l C# % % 23 c5? ~/#3 - *5 % 8 %N >' 5? &$ * -S3 + 3 l C- 0 '- 2, 2 2- 0 '- !5 .$ 0 '- } C #3 ' ! -& - d * -S3 . 2 }#" -% O '- % ./ ˆ% ; %! % 7 9F3 M 2 ( * -S3 2. 2 2' . c %3 [ +> • 2 + , %! * ; 23 - +> * 23 * -S3 +- ; 2O ! - %m; &} C#3 B 2, 2, ; 6'- A 23 2 - % m; * -S 3 * z2 _2- * . 5 %8 M 2( &( ./ 06'-) 2 %3R 2 2- 0 '- - 5? c C3 % U5- % y2C@ # ; 2O ! "! } C#3 2, * -S 3 } C #3 !5 2, 01 + , "; . - 2@% %5 ;

Ar

ch ive

of

% 7- ] % ? 4% • $ 2 % '56' ! c5 2p, % 7- % = %5 ; - M 23 - & 2 95 ' ! * 3 % l * B 63 '.'- &c C3 % U5- ' ! ] '! * '< . 2 ] l ?G V% 8 B2C 5 ; - " 7 9F3 B - A 23 2# % - & > H2,2]H $2F/- A % + , % T 4 ' O +1 G) l 0 23 6? %5 ; ?G % 7- 2 2 @% ($ 0 '- ; .~/#3 j 2@ ' ! 7- ! 23 + 1 G 3 G 5 % '.'- % 01 c C3 % U5- M % U3 95 . '5? 95 >- & 7/'< 'd ; 2 3 - B 63 %3R 5 2 $ 0 '7 9F3 %5" ? G } C #3 ' ! % 7- & } C #3 5 %8 M 2 ( , /- . 2 ' 2@ 2@% 0 '% 95 $ 0 '- % < 'd ; - " ^ 7.3 * % %! * p 7 9F3 % %! ' ! % &c5? %T4 ' O % = 23 - %8 5 3 ' - % $ 0 '- y2C@ 2 2- 0 '4 % %! % * ‚ 3 ! 2 3+ 1 G 5 p } C #3 %p ' & 5 . 2 - * -S3 F A % $ 0 '23

C N

Q

$ 0 '7 9F3 % %! % - % , - ^ 7.3 * B - % + ( G f 5 . %8 * 3 ' - % ./ < 'd ; - " 'd j3 M 2( 5 % -

11

www.SID.ir

h'

R

Ar

ch ive

of

SI

D

1- Buras, N. (1963). “Conjunctive operation of dams and aquifers.” J. of the Hydraulics Division, 89 (6), 111-132. 2- Aron, G., and Scott, V.H. (1971). “Dynamic programming for conjunctive water use.” J. of the Hydraulics Division, 97 (5), 705-721. 3- Pulido-Velázquez, M., Andreu, J., and Sahuquillo, A. (2006). “Economic optimization of conjunctive use of surface water and groundwater at the basin scale.” J. of Water Resources Planning and Management, 132 (6), 454-467. 4- Barlow, P.M., Ahlfeld, D.P., and Dickerman, D.C. (2003). “Conjunctive-management models for sustained yield of stream-aquifer systems.” J. of Water Resources Planning and Management, 129, (1), 35-48. 5- Rao, S.V.N., Murty Bhallamudi, S., Thandaveswara, B.S., and Mishra, G.C. (2004). “Conjunctive use of surface and groundwater for coastal and deltaic systems.” J. of Water Resources Planning and Management, 130, (3), 255-267. 6- Vedula, S., Mujumdar, P.P., and Chandra Sekhar, G. (2005). “Conjunctive use modeling for multicrop irrigation.” Agricultural Water Management, 73, 193-221. 7- Khare, D., M.K. Jat, Ediwahyunan. (2006). “Assessment of counjunctive use planning options: A case study of Sapon irrigation command area of Indonesia.” J. of Hydrology, 328, 764-777. 8- Zahraie, B., Karamouz, M. Eslami, A., Kerachian, R. (2006). “GA model for crop pattern and conjunctive use management in varamin plain in Iran.” Proceedings of 7th ICCE Conference, Tehran, Iran. 9- Afshar, A., Ostadrahimi, L., Ardeshir, A., and Alimohammadi, S. (2008). “Lumped approach to a multi-period–multi-reservoir cyclic storage system optimization.” Water Resources Management, DOI: 10.1007/s11269-008-9251-y. 10- Fredericks, J., Labadie, J., and Altenhofen, J., (1998). “Decision support system for conjunctive stream-aquifer management.” J. of Water Resources Planning and Management, 124 (2), 69-78. 11- Basagaoglu, H., Marino, M.A., and Shumway, R.H. (1999). “Delta-form approximating problem for a conjunctive water resource management model.” Advances in Water Resources, 23, 69-81. 12- Karamouz, M., Mohammad Rezapour Tabari, M., and Kerachian, R. (2007). “Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources.” J. of Water International, 32 (1), 163-176. 13- Karamouz, M., Mohammad Rezapour Tabari, M., Kerachian, R., and Zahraie, B. (2005). “Conjunctive use of surface and groundwater resources with emphasis on water quality.” World Water and Environmental Resources Congress 2005, Raymond Walton, Anchorage, Alaska, USA. 14- Narayan Sethi, L., Panda, S.N., and Nayak, M.K. (2006). “Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India.” Agricultural Water Management, 83 (3), 209-220. “. ( )

*+ ' (, & -

%

,

.

- / 01

! " #

%$&' .2

” .(

# 2 , 67%8 0

). -9:5 '

14' $ -52-,-3

16- Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). “A fast elitist non-dominated Sorting genetic algorithm for multi-objective optimization: NSGA-II.” Kanpur Genetic Algorithm Laboratory (KanGAL) Report 200001, Indian Institute of Technology, Kanpur, India. )DEFG & H GECEFG & H I& JK 2 # 2-1 = ? @ &' < A# B @-7C-. .( >) .=/ & & -: < % ; .2

#

12

www.SID.ir

Suggest Documents