Nano Material Applications in Fuel Cell

64 downloads 101586 Views 4MB Size Report
Fuel Cell Applications. • Heteropolyacid(HPA)-SiO. 2 nanoparticles for high temperature operation of a direct methanol fuel cell. • Preparation and ...
Nano Material Applications in Fuel Cell Dept. of Chemical Eng. Yonsei Univ. Prof. Y.G. Shul, H.S. Kim

Nano Materials in Fuel Cell

• Hydrogen Release Catalyst

• Novel Anode Catalyst • Organic-Inorganic Membrane

Fuel Cell Applications • Heteropolyacid(HPA)-SiO2 nanoparticles for high temperature operation of a direct methanol fuel cell • Preparation and characterization of new carbon for fuel cell application • Pulse Electrodeposition for Preparing PEM Fuel Cell Electrode • Investigation of alloy catalyst for accelerating hydrogen release from NaBH4

In this study

• Preparation nanohybride particle (HPA/SiO2) By micro emulsion technique

SiO2

. .. ... ....... ... .. .. . . .......... . . . .. . . .. ... ............... .......... . . . . . .... ...... . . . . . . . . . .. ... .. ............. ............ .. .. . . .. . .... ... .... . . .

Nano scale

Heteropoly acid • Characterization : TEM, Solid state NMR, TMP adsorption, N2 adsorption, FT-IR

Heteropolyacid-SiO2 nanoparticles

100 nm

TEM image of heteropolyacid-SiO2 nanoparticle (R=2, X=30%, 12hr)

R= [H2O]/[AOT] X=[Heteropolyacid]

100nm

TEM image of heteropolyacid-SiO2 nanoparticle (R=2, HPA 30%, 24hr)

31P

MAS NMR H3PW12O40•6H2O

Dehydration of heteropolyacid -15.6ppm

Heteropolyacid < nanoparticle < Bulk powder

Dehydration

Trapping of acidic proton to OH group Heteropolyacid

-15.3ppm 100nm

-15.1ppm

[ PW12O40 ]3−

500nm

-15.0ppm

H+ OH

H+ OH

H+ OH

Si

Si

Si

Bulk -10

-12

-14

-16

-18

-20

Chemical shift (δ, ppm)

Fig. 31P MAS NMR spectra of heteropolyacid and HPA/SiO2

Referenced from - M.Misono et al., J.Phys.Chem.B., 104 (2000) 8108 - F.Lefebvre et al., J.Chem.Soc.Chem.Commun, (1992) 756

13C

CP MAS NMR 27.9 ppm

(a)

18.2 ppm

11.4 ppm

54.0 ppm

(b)

60

50

40

30

20

10

0

Chemical shift (δ, ppm)

13C

CP MAS NMR spectra (a) thiol- and (b) sulfonic-functionalized heteropolyacid-SiO2 nanoparticle.

Preparation of inorganic particles in microemulsion Aerosol-OT O O O

H2O HPA

+ SO3 Na O

Sol-gel process Si(OR)4 + 4H2O → Si(OH)4 + 4ROH Si-OH + HO-Si → Si-O-Si + H2O

Cyclohexane TEOS

Surface area vs. nano HPA/SiO2

0.05

600

0.9

0.04

400

DV/DR (cm3/g)

2

BET Surface area (m /g)

500

Pore fraction

0.8

300

200

0

Pore ratio R < 1nm

0.6 0.5 0.4 0.3

R > 3nm

0.2

0.03

0.1 1

100nm HPA/SiO2 500nm HPA/SiO2 Bulk HPA/SiO2

0.02

Surface area

Bulk

2

3

500nm 100nm

Pore size distribution

0.01

100

0.7

0.00 1

HPA

2

Bulk

3

500nm

4

100nm

0

20

40

Pore size (A)

60

80

Application to DMFC Pressure gauge

Cell Fuel pump flowmeter

2way valve Needle valve 6 way valve Methanol 2M solution.

O2 Tank

Fuel heater

G.C

• Heteropolyacid → Proton conductivity • Silica particle → Methanol blocker

Polysulfone/nanoparticle composite membrane 100

(a)

1.4 ×10-3 S/cm

18

6.5×10-5 S/cm

(b)

16

80

Heteropolyacid-SiO2 nanoparticle

40

20

Methanol crossover rate (µmol / cm2 min)

14

60

Z''(ohm)

Sulfonated polysulfone membrane Composite membrane

Heteropolyacid-SiO2 nanoparticle

12 10 8 6 4 2

0 45

50

55

60

65

70

75

80

Z'(ohm)

85

90

95

100 105 110

0 20

40

60

80

100

120

Cell temperature (oC)

Complex impedance response(a) and methanol crossover rate(b) of the sulfonated polysulfone and sulfonated polysulfone / heteropolyacid – SiO2 nanoparticle composite membrane.

140

Nafion/nanoparticle composite membrane

100

10

Crossover rate (µmol/cm2*min)

2

conductivity x10 (S/cm)

8

6

Nafion membrane Composite membrane

(b)

(a)

A little decrease of proton conductivity

4

2

80

60

40

Reduction of methanol crossover 20

0

0 0

5

10

15

Content of nanoparticles (%)

20

25

0

20

40

60

80

100

120

140

Temperature (oC)

Proton conductivity(a) and methanol crossover rate(b) of the sulfonated polysulfone and sulfonated polysulfone / heteropolyacid – SiO2 nanoparticle composite membrane.

160

Nafion-HPA/SiO2 composite membrane (Nafion / sulfonated heteropolyacid-SiO2 nanoparticle composite membrane)

H2O

H3O+ 80 oC 160 oC 200 oC

50

Cell voltage (V)

Sulfonated heteropolyacid - SiO2 nanoparticle 60

40

2

0.6

Heteropolyacid - SiO2 nanoparticle

40

30

0.4

20 0.2

20

0 4000

10

0

0.0

3500

3000

2500

2000

1500

1000

-1

Wavenumber (cm )

FT-IR spectra of sulfonated heteropolyacid-SiO2 nanoparticle

Power density (mW/cm )

80

Transmittance (%)

60

0.8

100

0

50

100

150

200

250

Current density (mA/cm2)

DMFC performance of composite membrane

Improvement of DMFC performance by increasing the cell temperature

300

Research of carbon material application Caron structure

FC application

Performance

remark

Reference

Pt/CNT

PEMFC

0.7V, 0.7 mA/cm2 (50oC)

high electrocatalytic activity for oxygen reduction 3.6±0.3nm

J.of power sources 139(2005) 73

Pt/mesopor ous carbon (SBA-15)

DMFC

0.4V, 135 mA/cm2 (65oC)

Great potentiality for DMFC support Johnson Mattheyat 0.4V, 135 mA/cm2 (80oC)

J.Of power sources 130 (2005)

PtSn/ MWNT

DEFC

0.4V, 100 mA/cm2

Improvement in liquid mass transfer for catalyst3nm PtSn/XC-72 0.4V, 80 mA/cm2

Carbon 42 (2004)

Carbon fiber

Mg-H2O2 Semi-fuel cell

1.5V, 300mA/cm2

Similar reference with Pt-Ir on carbon paper Mg: anode Microfiber carbon :cathode cathode side: 0.20M H2O2

J.Of power sources 96 (2001) 240

Carbon nanocoil

DMFC

0.4V , 170mA/cm2 (60oC)

Great potentiality for DMFC support material

Angew. Chem 2003,115, 4488

Carbon nanohorn

DMFC

0.4V , 130mA/cm2

NEC

I-V curve for electrodes with commercial Pt/C and Pt/C+ Pt/ACF (900℃) 1.1 1.0

Commercial Pt/C Commertial Pt/C (70%)+ Pt/ACF(30%.400oC) Commertial Pt/C (70%)+ Pt/ACF(30%.900oC)

0.9

Voltage ( V )

0.8 0.7 0.6 0.5 0.4

Performance increasing

0.3 0.2 0.1 0.0 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Current density ( A/cm2 )

Current density ( mA/cm2 )

Commercial Pt/C

Pt/C+Pt/ACF (400℃)

Pt/C+Pt/ACF (900℃)

710

807

960

Cell Temp. : 80℃, Humidify condition : RH% 100 anode and cathode, Flow rate: Stoichiometry 1.5(Anode):2.0(Cathode)

Impedance for the electrodes manufactured with Pt/C, Pt/ACF(900℃) catalysts 0.10

0.30

o

Pt/ACF ( 400 C ) Pt/ACF ( 900oC )

0.08

Pt/ACF ( 400oC ) Pt/ACF ( 900oC )

0.25

-Z'' / O hm

-Z'' / O hm

0.20

0.06

0.04

0.15

0.10

0.02 0.05

0.00 0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Z' / Ohm

Impedance spectra at 0.7V

0.24

0.26

0.00 0.0

0.1

0.2

0.3

0.4

Z' / Ohm

Impedance spectra at 0.8V

0.5

Specific surface area and average pore diameter of the CNF treated by KOH

CNF

5H

Activation condition

Surf. area (m2 /g)

Avg. Pore diameter (Å )

No activation

107.60

62.21

750-1h

444.18

46.07

800-1h

509.95

48.80

900-1h

645.53

48.0

900-2h

460.10

44.33

Modified method

375.52

54.41

900-3h

341.87

62.37

950-1h

303.54

58.01

SEM - CNFs named 5H pristine

800-1h

900-2h

MDF(900-2h)

TEM - 60wt% Pt-Ru/CNF

A/(900-2h) (a)

B/(900-2h) (b)

50 nm

B/MDF(900-2h) (c)

50 nm

50 nm

Growth of nanofiber on ACF micropores

Surface and Pores of Activated Carbon Fiber

H2

C2H4

Impregnation of metal salt solution

a c b

a, b

Reduction in He/H2

Synthesis from C2H4/H2

inactive

Preparation of various carbon substrates • CNF/ACF

Fig. SEM images of carbon nano fibers grown on ACF

Preparation of platinum on ACF-CNFs TEM Image of Pt/ACF-CNFs

Fig. TEM images of Platinum oncarbon nanofibers grown on ACF

Preparation of platinum on ACF-CNFs XRD patterns of Pt/ACF-CNFs Pt(1 1 1)

P t/A C F -C N F s P t/C ( C o m m e r c ia l)

Pt(2 0 0) Intensity(a.u.)

Pt(2 2 0)

30

40

50

60

2 th e ta

Fig. XRD pattern of Pt/ACF-CNFs

70

80

Single cell performance 1.0 Pt/ACF-CNFs 30% Pt/C Pt/ACF-CNFs 20% Pt/ACF-CNFs 100%

0.9

Voltage(V)

0.8

0.7

0.6

0.5

0.4 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Current density(A/cm 2 )

Fig. The performance of Pt/ACF-CNFs used in anode catalyst Cell Temp. : 80℃, Humidify condition : RH% 100 anode and cathode, Stoichiometry anode: cathode = 1.5: 2.0 Membrane : nafion 112:, anode : 20%Pt/C, cathode : 20%Pt/C and 20%Pt/ACF-CNFs+20%Pt/C, Back pressure : 1bar

Pulse Electrodeposition for Preparing PEM Fuel Cell Electrode • Objectives

– Reducing cost of electrode by decreasing Pt loading – Decreasing particle size – localizing Pt on the surface of electrode in contact with membrane and increasing efficiency of Pt

• Advantages of pulse electrodeposition – Low cost – Easy of control – Versatility

Schematic Diagram of The Electrode Prepared by Pulse Electrodeposition Catalyst particle

Reactant gas Ion exchange membrane

Carbon clothe

Hydrophobic carbon layer

Hydrophilic carbon layer

Back-Scattered Electron Image and Pt Line Scan of The Cross Section of MEA using EPMA membrane

PC layer

E-TEK Pt/C layer E-TEK GDL

200.0

GDL

Pt

membrane ETEK layer GDL

100.0

PC deposition Pt/C layer 0.0 0.0

Distance Microne(µm)

161.0

ESEM Image and Pt Concentration Profile of the Cross Section of MEA Using EDX Spot Analysis 80

E-TEK electrode 60

Membrane

Pt wt%

PC deposition electrode 40

E-TEK electrode PC deposition electrode

20

0 0

2

4

6

8

10

Distance from membrane (µm)

12

14

Comparison of MEA performance between pulse electrodeposited electrode and TKK 1.0 2

TKK (0.4mg/cm ) 2 PC (0.32mg/cm )

0.9

Potential (V)

0.8

0.7

0.6

0.5

0.4

0.3 0.0

0.3

0.6

0.9

1.2

1.5

1.8 2

Current density (A/cm )

2.1

2.4

2.7

High Throughput Screening (HTS) test • Hydrogen release rate of metal catalysts can be measured without catalyst synthesis procedure • To apply metal alloy catalyst, amounts of precursor solutions can be mixed to accurate ratios.

Mixed Precursor Solution RuCl3 Co(NO3)2 FeCl2 ..

H2

NaBH4 Reduction

H2 Coolant

Hydrolysis

Schematic diagram of simplified HTS test microreactors

Coolant

-1 -1 ) (Lmin g ation Rate er en G n Hydroge

Ru:Co:Fe = 60:20:20 (wt%)

30

30

25

25

Rate Generation Hydrogen

-1 -1 ) (Lmin g

Hydrogen release test (Ternary alloy)

20 15 10 5 0

20 15 10 5 0

Ru

Ru

Co

Ni

Co

Fe

Hydrogen release rate of (a) Ru-Co-Ni, (b) Ru-Co-Fe from 10 wt% NaBH4 solution with 4 wt% NaOH (Temperature fixed to 25°C)

XRD Patterns • Co and Fe were not reduced completely when NaBH4 only was used for reduction. • After the additional reduction by using hydrogen, CoFe alloy were shown

CoFe2O4 RuCoFe

Intensity

(c)

(b)

(a)

30

40

50

60

70

2 theta

XRD Patterns of (a) Ru/ACF; (b) NaBH4-reduced Ru0.6Co0.2Fe0.2/ACF; (c) NaBH4 and H2-reduced Ru0.6Co0.2Fe0.2/ACF catalyst

RuCoFe/ACF nanocatalyst 100 (e)

80

3.0

(d) (c)

60

2.5 ln k

H2 Release Rate / L min-1gRu-1

3.5

(b)

40

(e)

2.0

(d)

(a)

(c)

1.5

20

(b)

1.0

(a)

0 10

15

20

25

30

35

40

3.20

3.25

3.30

T / oC

3.35

3.40

3.45

3.50

1000 / T

hydrogen release rate at 25 °C (Lmin-1gRu-1)

Activation Energy (kJmol-1)

H2

14.21

59.23

16 wt% Ru0.6Co0.2Fe0.2/ACF

H2

22.63

47.91

16 wt% Ru0.6Co0.2Fe0.2/ACF

NaBH4

34.37

50.54

13 wt% Ru0.75Co0.25/ACF

NaBH4 + H2

37.12

45.44

16 wt% Ru0.6Co0.2Fe0.2/ACF

NaBH4 + H2

41.73

44.01

catalyst

Reduction Agent

(a ) (b ) (c)

10 wt% Ru/ACF

(d ) (e )

Conclusions Nano materials may lead to drastic improvement in fuel cell application 1)Nanohybride electrolyte (HPA-SiO2+Nafion®) was effective for the high temperature operating of DMFC 2)New nano carbons are promising to enhance the catalytic activity in fuel cell 3) Nano alloy will be effective to release control of the H2 from chemical hydride (NaBH4, NH3BH3) 4) Electrodeposition is effective to reduce the amount of Pt loading

Acknowledgement

Backup slides

Impedance spectra

0.10 Pt/ACF-CNFs 30% Pt/C Pt/ACF-CNFs 20% Pt/ACF-CNFs 100%

-Z''/Ohm

0.08

Membrane resistance

0.063Ω

Interfacial resistance (Mixture ratio 20%Pt/C:20%Pt/ACF-CNFs)

0.06

0.04

0.02

0.00 0.05

0.10

0.15

0.20

Z'/Ohm

Fig. Impedance spectra of single cell

0.25

Only 20% Pt/C

0.069Ω

Only 20% Pt/ACF-CNFs

0.175Ω

2:8

0.096Ω

3:7

0.065Ω

Cyclic voltammogram 0 .4

0 .2

0 .0

i/A

-0 .2

-0 .4

-0 .6 P t/C P t/A C F -C N T s 3 0 %

-0 .8

-1 .0 -0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

E /V

Fig. Cyclic voltammograms of Pt/ACF-CNFs used oxygen

Technical Barriers of Electrodes for PEM Fuel Cells ¾ Electrode performance • 400 mA/cm2 at 0.8V with H2/Air and 1atm • Novel method of pulse electrodeposition • Pt-X alloy

¾ Material Cost • 0.2 g (Pt loading)/peak kW • Non-precious catalyst (Pt-free)

¾ Durability • 40,000 hours operation with