Natural Organic Matter Reduction Fuels Anaerobic

0 downloads 0 Views 2MB Size Report
Natural Organic Matter Reduction Fuels Anaerobic Oxidation Of Methane. In Sediments From A ... processes[2] . ◙ Natural organic matter (NOM) a.k.a. humus, prevails in wetlands and participates .... Binding Energy (eV). Before incubation.
Natural Organic Matter Reduction Fuels Anaerobic Oxidation Of Methane In Sediments From A Tropical Wetland E. I. Valenzuela1*, A. Prieto-Davó2, N. E. López-Lozano1, A. Hernández-Eligio3, L. Vega-Alvarado4, K. Juárez3, A.S. García5, M. G. López5, F. J. Cervantes1*. 1División

de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C. 2Facultad de Química Unidad Sisal, Universidad Nacional Autónoma de México. 3Dpto. De Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. 4Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México.

[email protected] [email protected]

1. Introduction ◙ Wetlands release a

3rd

CO2

CO2

CH4

Tg/year)[1].

of total global CH4 emissions (164

ATMOSPHERE

CH4

CO2

O2

CO2 Aerobic methane oxidation

◙ Around ~50% of CH4 produced (in wetlands) is oxidized via anaerobic processes[2].

O2

◙ Natural organic matter (NOM) a.k.a. humus, prevails in wetlands and participates in biological oxidation/reduction processes[3].

Plant matter (high in carbon)

Hemicellulose, cellulose, starch, sugars, fats, proteins, amino acids…

Plant matter (high in carbon)

decay Biological and chemical transformations

Anaerobic methane oxidation (AOM)

◙ Due to is redox properties NOM could drive AOM by functioning as terminal electron acceptor (TEA) for methanotrophic biota (Fig. 1).

decay

Natural organic matter (NOM)

NOM driven AOM

NOM anaerobic oxidation

Objective: To document the CH4 anaerobic oxidation coupled to NOM reduction by means of isotopic tracing, spectroscopy and molecular tools.

Microcosms inoculation

AOM kinetics

• Amendment with 13CH4, humus and/or Na2MoO4.

• Gaseous and liquid measurements (Fig. A).

3. Results

𝐂𝐇𝟒

¹³CH₄ + SR-INH Killed

3

𝐒𝐎𝟐𝟒

𝐇𝐒

■ Sediment + HS

𝐇𝐂𝐎𝟑

♦ Sediment + HS + SR-INH

HS or NOM 7%

2 1

𝐇𝟐 𝐎

0

10

20

𝐂𝐇𝟒

Undetermined 90%

𝐍𝐎𝐌𝐨𝐱

𝐇𝟐 𝐎

𝐂𝐎𝟐

𝐍𝐎𝐌𝐫𝐞𝐝

0

pMC2A209 (Thaumarchaeota) unclassified..pMC2A209.

Anaerolineae

Others Others

Marine_Benthic_Group_B unclassified..Marine_Benthic_Group_B.

Bacteroidetes_vadinHA17

Methanogenium Methanogenium unclassified_SM1K20 unclassified..SM1K20.

Acidobacteria

Halomarina Halomarina

Parcubacteria_Incertae_Sedis

unclassified_Fe.A.9 (Euryarchaeota) unclassified..Fe.A.9.

unclassified_Aminicenantes Bacteroidetes_BD2.2 α-proteobacteria Cytophagia

Y Pixel

2162 2035 1978 1800

712 631 872

1407

40 4500

4000

3500

3000

2500

2000

1500

1000

500

-1

Wavelength (cm )

15

Binding Energy (eV)

4. Conclusions

◙ Presence and reduction of quinone moieties of sediment’s intrinsic NOM was detected displaying it’s availability and microbial utilization.

Take-home message!

5. Bibliography

Candidatus_Iainarchaeum Candidatus_Iainarchaeum

AOM supported by NOM reduction is a

Miscellaneous Euryarchaeotic Group unclassified..Miscellaneous_Euryarchaeotic_Group.MEG.. AMOS4A-452-E11 (Euryarchaeota) unclassified..SMS.sludge.7.

ε-proteobacteria

unclassified_SMS-sludge.7 (Euryarchaeota) unclassified..AMOS4A.452.E11.

Acidimicrobiia

unclassified..MHLsu47.B8A. unclassified_MHLsu47-B8A

Deferribacteres_Incertae_Sedis

Methanomicrobium Methanomicrobium

Latescibacteria_Incertae_Sedis unclassified_Atribacteria

unclassified_Group-C3 (Thaumarchaeota) unclassified..Group_C3.

Gemmatimonadetes Phycisphaerare

After incubation

◙ Known anaerobic methanotrophic biota (ANME) abundance was unexpectedly low (