Neutrinoless double beta decay with SNO+

0 downloads 0 Views 5MB Size Report
SNO+ plans to begin taking data in 2014. The main purpose of the SNO+ experiment will be the search for neutrinoless double beta. Electron recoil en backg.
           Neutrinoless  double  beta  decay   ith  SNO+  Prospects SolarwNeutrino Nasim  Fatemighomi  for  the  SNO+  collabora@on  

Erin O’Sullivan, on beh

Queen’s  University,  Kingston,  Ontario,  Canada  

Queen’s University, Kingston, On

SNO+: A Multipurpose

Double  beta  decay     physics  

SNO+ Solar Neutrino Sens

The  SNO+   detector   Neutrino Detector

SNO+   situated   at  6800   underground   at  SNOLAB,   Situatedis   6800 feet underground in thefeet   SNOLAB facility in Sudbury, Ontario, the SNO+ is the nextof  the  experiment  is  to   Sudbury,   Ontario.    The  experiment primary   goal   generation of the SNO project. Still under construction, search   for  to0begin νββ  taking with   e-­‐loaded   liquid  scin@llator.     SNO+ plans dataTin 2014.

Discovery  of    neutrinoless  double  beta  decay  (0νββ)  will   answer:  

Advantages%of%130Te%

Ø  If  neutrinos  are  Majorana  or  Dirac   Ø  What  the  scale  of  the  neutrino  mass  is   Ø  If  neutrino  masses  follow  inverted  or  normal  hierarchy     ( A, Z ) → ( A, Z + 2) + 2e −

Acrylic Vessel - 12 m diameter

This  process  violates  lepton  number     conserva@on  and  the  rate  is  given  by:     hm⌫ i 2   0⌫ 1 4 (T ) = G0⌫ gA |M 0⌫ |2 | |   1/2 m

Other  physics  goals:   •  34%&natural&abundance&& Ø  Low  energy  solar  neutrinos     Ø  Reactor/geo  an@-­‐neutrinos     – Can&load&high&amount&of&natural&isotope& Ø  Supernova  neutrinos     – Rela6vely&inexpensive&compared&to&an&enriched& Where  T  is  the  half-­‐life,  G  is  the  phase  space  factor,  g  is  the  Axial-­‐Vector   coupling  constant  of  tisotope& he  weak  interac@on,    is  the  effec@ve  neutrino  mass.   •  2νββ&rate&is&low&(~&100&6mes& SNO+  Te-­‐loaded   liquid  scin9llator   LAB+PPO+Surfactant+H2O+Te Liquid  scin@llator  approach:     150 Ø  Economical  wsmaller&than& ay  to  build  a  detector  with  a  large  Nd)&  amount  of  0νββ  isotope   Ø  Low  background  environment  can  be  achieved  (purifica@on,     scaled PMT response self-­‐shielding   and  β-­‐α  rejec@on  techniques)   •  No&inherent&op6cal& At  its  ini@al  phase,  SNO+  plans  to  run  with  0.3%  natural  Te     absorp6on&lines& (~  790  kg  of   Te).     MSB Peryl The  advantage  of   Te  is:     Ø  High  natural  abundance   (34%)   – No&a&priori&limit&on&loading& The  Te-­‐loaded  cocktail:   Nd Ø  Low  two  neutrino  double  beta  decay  half-­‐life     Ø  LAB  +  wavelength  shiiers              (factor  of  100  lower  than Nd,  the  previous  isotope  of  choice)   Ø  H2O     concentra6on& Ø   No  natural  absorp9on  peaks   Ø  A  surfactant   (Liquid scintillator - 780 t LAB) Phototube sphere

1/2

Electron recoil energy spectrum of expected signal and backgrounds in the solar neutrino phase

- ~ 9500 20 cm Hamamatsu PMTs

Statistical errors (signal with backgrounds) o solar neutrino flux measurements after one years of running:

Water shielding

e

- 1700 t inner - 5300 t outer

(stat)! pep! 8B! 7Be! pp! CNO!

Urylon liner

A

- radon seal

The main purpose of the SNO+ experiment will be the search for neutrinoless double beta decay with tellurium-130.

1 year! 9.1%! 7.5%! 4%!

2y 6. 5. 2.

A few %?! ~ 15%?!

Assuming Borexino-level backgrounds are reached!

A description of the 3+1 light How behav sterile neutrino model

130

The 3+1 sterile neutrino model described here is for a very light sterile neutrino that would affect the Electon recoil energy spectrum of expected signal and backgrounds in the oscillation behaviour in the solar neutrinoless double beta decay phase neutrino energy range. It is based on The SNO+ liquid scintillator cocktail will consist of: 150 the 2+1 sterile neutrino model first Linear Alkylbenzene (a liquid scintillator) + PPO (a proposed in de Holanda and wavelength shifting fluor) + 130Te (in the neutrinoless Smirnov 2002, and more recently double beta decay phase only) A glossa Ø  Natural       2013D09D19& 9& Nasim&Fatemighomi,&Queen’s&University& explored in de Te   Holanda and model te Other SNO+ physics goals include: Smirnov 2010. This 3+1 sterile ν0: the m -low energy solar neutrinos, specifically the CNO and neutrino model accounts for the sterile n pep neutrinos (discussed in this poster) three active neutrinos and proposes α: the ac (analogo -reactor neutrinos: a measurement of neutrino mixing one sterile neutrino species (ν0) R: the r parameters which can mix with one of the active the activ How multi-component much of the Earth’s heatingscintillator is due * -geoneutrinos: Based on model extrapolating labo neutrino mass eigenstates (ν1). The differen to radioactivity? How much comes from the core and measurements of absorption, emission and intrinsic of ofboth 3+1 modellight takes yield the form the the Depicted inf how much from the mantle? survival prob but properly neutrino sur mixture and individual constituents. Validity2+1ofmodel, the model wasaccounts verifiedelectron by neutrinos: information on neutrinosurv Purifica@on:  mul9-­‐stage  dis9lla9on  of  the  liquid  scin9llator,  re-­‐crystalliza9on  o-supernova f  the  telluric   acid  gives using   nitric  acid   for θ13. LMA model matter interactions as well to as known the core-collapse The ana pep neu performance estimates scintillator experiments and from an (solid green). and  removing  surface  impuri@es  with  ethanol,  QuadraSil  scavengers  to  purify  the   surfactant     supernova mechanism

130

Backgrounds  

Studies suggest average light levels of ~200-300 hits/Me

8B  solar  neutrino  and  2νββ  

 

Internal  radioac9vity  and  cosmogenics:  reduced  by     Ø 

light production from one liter of scintillator contained in an acrylic co

Ø  In-­‐situ    analysis:  All  214Bi-­‐214Po  (238U)  and  212Bi-­‐212Po  (232Th)  events  that  are  in  two  separate  trigger  windows  can   deployed in the SNO detector during 2008. be  tagged  and  removed.  The  rest  of  the  events  (pile-­‐up)  are  removed  via  likelihood  ra9o  and  PMT  9me  residuals  

   External  γs  and  radon:        

60Co  was  removed  by  factor  of  

 Ø  Removing  background  events  by  fiducializa9on   Ø  PMT  9me  residuals  can  be  used  to  reduce    AV  208Tl   Ø  Reducing  radon  ingress  with  a  new  sealed  cover  gas  system  

>104  aier  two  passes        

  α-­‐n:    Neutrons  produced  by  210Po  and  214Po/212Po  α  interac@on   with  13C  can  interact  with  protons  and  give  2.2  MeV  γs.      

  Sensi9vity   with  0.3%  Te  loading    

Op@mized  region  of  interest      22.2  expected  background   events/year  

UK)CoOleading)Development)Group)

Expected Average Spectra of Contributing Backgrounds for Two Live Years of Data

SNO+  future  



25

90% CL T1/2 Sensitivity (10 y)

Ongoing R&D towards future SNO+ phases...

11 10 9

1st phase (now!)

8

5

0.3%

4 3

Expected  energy  spectrum  

1

1.5

2

2.5

3

3.5

4

4.5 5 Live time (y)

Half-­‐life  sensi@vity  @90%CL  

Figure 4: The sensitivity of SNO+ as a function of live time.

[1]  J.  Barea  et  al.  Phys.  Rev.  C  87,  014315  (2013)     [2]  J.  Ko@la,  F.  Iachello.    Phys.  Rev.C  85,  034316  (2012)     104 104   103 103 eV bin

Ø  200  hits/MeV  light  yield   Ø  Factor  of  50  reduc@on  of  BiPo  pile-­‐up   events   Ø  =200  meV[1][2]   Ø  3.5  m  fiducial  volume  cut  

Future phase

7 6

Sum

Sum, background 0ν β β (80 meV)

0.5%

1%

Increasing  sensi@vity  by  

3%

Jeff)Hartnell,)IoP/RHUL,)Apr.)'14)

Ø  Higher  loading   Ø  Increasing  light  yield:  improving  loading   techniques  and  using  higher  QE  PMTs   Ø  Using  a  low  background  bag  to  reduce   external  background    

5%

31)