Oct 4, 2006 ... Neutron Optics and ... Neutron Optics ⇒ Analogy to Light Optics ..... Neutron
Optics, Varley F. Sears, Oxford University Press, Oxford (1989).
Neutron Optics and Neutron Interferometry Helmut Kaiser IUCF
Outline:
Introduction Refraction Reflection Diffraction Interferometry
Appeared in “The New Yorker”, 1940
Message • Neutron Optics ⇒ Analogy to Light Optics ⎛ h⎞ λ = • Neutron is a de Broglie Matter Wave ⎜ ⎟ p ⎝ ⎠
• Neutron Interferometry ⇒ Unique technique for Probing and Elucidating Fundamental Quantum Mechanical Principles on a Macroscopic Scale
INTRODUCTION
Properties of the Neutron
Bound Coherent Scattering Lengths
b : phenomenological constant, determined by experiment
REFRACTION Strong nuclear interaction: 2 2 2π 2 k Vn = N bc , E = m 2m Vn λ 2 N bc n = 1− = 1− 2E 2π
Including absorption: 2π 2 Vn → V0 − iV1 =
m
N bc − i
2
Nσ r
λ Nσ r λ2N 2 ⎛ σr ⎞ n 1− bc − ⎜ + i , ⎟ λ π 2π 2 4 ⎝ ⎠ 2
with
σr = σa +σi
Snell’ law: n
K v sin φ0 = = , neutrons k v0 sin φ
n
K v0 c sin φ0 = = = , light k v v sin φ
I Transmission : T = = exp( − N σ t d ) I0
REFRACTION (cont.) Magnetic interaction: Vm = VZ + VS + VF = − μ ⋅ B −
mc
μ ⋅ (E × k ) −
μ 2mc
divE ,
Vm = VZ = − μσ ⋅ B , V + Vm b ± p(0) n± = 1 − n = 1− λ2N c , E 2π with p(0) = p = −
μA μ mB γ = − r e 2π N 2 2μ B
p : average magnetic scattering in forward direction B : mean magnetization ( magnetic field of the unpaired electrons ) μ = γμ N : neutron magnetic dipole moment
γ = −1.913 : gyromagnetic ratio e : nuclear magneton 2mc e2 = 2.818 fm : classical electron radius re = me c 2
μN =
Examples:
bc ± p
Fe : 9.54 ± 5.98 fm
μB =
e : Bohr magneton 2me c
Co : 2.54 ± 4.64 fm Ni : 10.31 ± 1.62 fm
μA =
B : average magnetic dipole moment 4π N per atom
REFLECTION Glancing incidence : θ → 0 Θ = 0 ↔ θ = θ‘
cos θ = cos θ c , cos Θ θ c : critical angle of total reflection n=
Rewriting Snell’s law
θ c = 1 − n2 Nbc
=λ
π
⇒ θ ≤ θc
Reflectivity and Transmissivity: I r = RI 0 and I t = TI 0 , with R + T = 1 sin θ − n sin Θ R= sin θ + n sin Θ Since n is close to 1 : R = 1 , 2
R=
for θ ≤ θ c
1 − 1 − (θ c θ )
2
1 + 1 − (θ c θ )
2
2
,
for θ > θ c
DIFFRACTION Branches of neutron scattering theory
• Diffraction from macroscopic objects • Diffraction from perfect crystals
Diffraction ⇒ Interference of coherent waves
Diffraction from macroscopic objects • • • • • •
Single and double slit diffraction (Frauenhofer) Edge diffraction (Fresnel) Grating diffraction Diffraction by planar structures → reflectometry Fresnel zone plates and supermirrors ............
Bragg planes
Diffraction from perfect crystals
Laue diffraction
Bragg planes
Bragg diffraction
Kinematic Bragg Diffraction
Kinematic Bragg Diffraction
Kinematic Bragg Diffraction
Kinematic Bragg Diffraction
Dynamical Diffraction Theory (Laue case)
H = Bragg vector 2π n H = d K 0 = internal forward scattered wave K H = external forward scattered wave
Bragg condition:
K H − K0 = H Solve Schrödinger Eqn. inside crystal:
(∇
2
+ k02 ) Ψ (r ) = v(r )Ψ (r ) with v(r ) = 4π ∑ bi δ ( r − ri ) = i
∑v n
Hn
eiH n ⋅r
Dynamical Diffraction Theory
α
β
α
β
internal wave function: Ψ ( r ) = ψ 0α eiK0 ⋅r + ψ 0β eiK0 ⋅r + ψ Hα eiK H ⋅r + ψ Hβ eiK H ⋅r
Dynamical Diffraction Theory ψ 0α =
1⎡ y ⎤ ⎥ A0 ⎢1 − 2 ⎢⎣ 1 + y 2 ⎥⎦
ψ 0β =
1⎡ y ⎢1 + 2 ⎢⎣ 1 + y2
⎤ ⎥ A0 ⎥⎦
ψ αH = − ⎢
1⎡ 1 2 ⎢⎣ 1 + y 2
⎤ ⎥ A0 ⎥⎦
1⎡ 1 ψH = + ⎢ 2 ⎢⎣ 1 + y 2
⎤ ⎥ A0 ⎥⎦
β
y=
k0 sin 2θ B δθ 2ν H
misset parameter
α
β
α
β
internal wave function: Ψ ( r ) = ψ 0α eiK0 ⋅r + ψ 0β eiK0 ⋅r + ψ Hα eiK H ⋅r + ψ Hβ eiK H ⋅r
Dynamical Diffraction Theory
Dynamical Diffraction Theory (Laue case)
Ψ trans (r ) = ψ tr 0 eik0 ⋅r + ψ tr H eikH ⋅r
Transmitted wave:
⎡
⎤ sin Φ ⎥ ei (φ1 −φ0 ) A0 1+ y2 ⎥⎦ ⎤ − i (φ +φ ) −iy sin Φ ⎥ e 1 0 A0 2 1+ y ⎥⎦
ψ tr 0 = ⎢cos Φ − ψ tr H
⎢⎣ ⎡ =⎢ ⎢⎣
iy
φ0 =
with
ν0D cos θ B
, φ1 =
⎛ 1 Φ = ⎜ν H ⎜ 1+ y2 ⎝
νHD cos θ B
⎞ D ⎟ ⎟ ⎠ cos θ B
“Pendellösung interference”
I 0 = ψ tr 0 Transmitted intensities:
2
⎡ 2 ⎤ y2 2 = A ⎢cos Φ + sin Φ ⎥ 1+ y2 ⎣ ⎦ 2 0
⎡ 1 ⎤ 2 2 sin Φ I H = ψ tr H = A02 ⎢ ⎥ 2 ⎣1 + y ⎦
Transmitted Intensities
For the 〈111〉 reflection in Si at λ=2.70 Å:
y = 1 ⇒ 0.9 arcsec
Angle Amplification
For small δ (~10 -3 arcsec):
Ω
δ
≈ 10 6
Dynamical Diffraction Theory (Laue case)
Dynamical Diffraction Theory (Bragg case)
y = −2πΔ e Δθ cos(θ B ) / λ Dispersion Equation:
Pendelloesung length ( = extinction length) Δ e
approximate:
Δe =
π sin(θ B ) λ Nbc e w
NEUTRON INTERFEROMETRY
Phase of the neutron wave function is directly accessible to experiment
Applications: Measurement of bc Optics experiments Quantum mechanics experiments
NEUTRON INTERFEROMETRY Basic Principle
I ∼ ψ I + ψ II
2
Phase shift : 1 χ = ∫ p ds =
2
2
= ψ I + ψ II + 2 ψ I ψ II
∫ k ds
Perfect-crystal interferometry: X-ray interferometry: Bonse and Hart (1965) Neutron interferometry: Rauch, Treimer and Bonse (1974)
NEUTRON INTERFEROMETRY Michelson Interferometer
Mach-Zender Interferometer
Practical Neutron Interferometer
Perfect Crystal LLL Neutron Interferometer
Bragg condition: nλ = 2d sin θ
d = lattice spacing
Perfect Crystal LLL Neutron Interferometer
Perfect Crystal LLL Neutron Interferometer
Perfect Crystal LLL Neutron Interferometer
Nuclear Phase Shift
Nuclear Phase Shift
Nbλ 2 index of refraction: n = 1 − 2π relative phase shift: Δχ = k0 − nk0 = Nbλ
D cos θ
Interferogram
Interferogram
O beam: I O = A [1 + f cos( χ 2 − χ1 ) ] IH
IO
H beam: I H = B − A f cos( χ 2 − χ1 )
contrast f =
Cmax − Cmin Cmax + Cmin
Precision Phase Shift Measurement
Δχ = Nbλ
D cos θ
Example: aluminum sample, λ = 2.70 Å, 〈111〉 reflection D = 100 μm ⇒ Δχ = 2π
Non-Dispersive Geometry
path length
=
D sin θ
Δχ = 2Nb d D independent of λ
Perfect Crystal LLL Neutron Interferometer
NIST perfect crystal silicon interferometers
Scattering length bc measurements
4π Rotational Symmetry of Spinors Rotation operator:
Rnˆ (α ) = e
Spin-1/2 particle:
S=
Rotations about z-axis:
1 2
σ
i − α nˆ ⋅ S
so
Rnˆ (α ) = e
⎛ e − iα / 2 Rz (α ) = ⎜ ⎝ 0
0 ⎞ ⎟ eiα / 2 ⎠
Rz (2π ) χ = − χ
Symmetry: Rz (4π ) χ = χ
α
− i nˆ ⋅σ 2
4π spinor symmetry Quantum mechanical principle:
ψ (α ) = ℜ (α )ψ (0)
spin ½
= e − iσ ⋅α / 2ψ (0) ⇒ ψ (2π ) = −ψ (0)
ψ (4π ) = ψ (0) ψ (t ) = e
− i Ht /
ψ (0) = e
− i μ ⋅ Bt /
ψ (0) = e
H = −μ ⋅ B = −μ σ ⋅ B
ψ (0) = ψ (α )
− iσ ⋅α / 2
Larmor precession angle:
α=
2μ
∫ B dt ≅
2μ B ds v∫
Larmor precession phase:
Δφ = ± 2πμn mn λ B /
2
Experimental result: α = (715.87±3.8)° Rauch et al., Phys.Lett. 54A, 1975 Werner et al., PRL 35, 1975
Spin Superposition Quantum mechanical principle: Quantum mechanical spin superposition (Wigner, Am J. Phys. 31 (1963)
Results:
Summhammer at al., PRA27, 1983
Quantum Phase Shift Due To Gravity (COW Experiments)
Δφ =
2πλ gA min mgrav h2
A = H = area of parallelogram
min = neutron inertial mass mgrav = neutron gravitational mass
test of weak equivalence principle at the quantum limit
Gravitationally induced quantum interference Quantum mechanical principle: Neutron moving in the gravitational field of the rotating Earth
mg M p2 −G −Ω⋅L H (r , p) = r 2 mi L=r×p g 0 (r ) = ΔΦ =
1
GM rˆ 2 r
β
∫ p ⋅ dr
p → −i ∇ → WKB → p = k Phase shift due to gravity
ΔΦ COW = Φ II − Φ I = −2πλ
mi mg h
2
gH 0 S sin β
α
ΔΦ (α ) = ΔΦ grav (α ) + ΔΦ bend (α ) ΔΦ bend (α ) = −(2π / λ )ΔL0 sin α
Colella, Overhauser, Werner, PRL 34, 1975 Staudenmann et al., PRA21, 1980
Results:
ΔΦ (α ) = q sin α 2 2 qgrav = (qexp − qSagnac )1/ 2 − qbend
qgrav (exp) = (60.122 − 1.452 )1/ 2 − 1.42 = 58.72 ± 0.03rad qgrav (theory ) = 59.2 ± 0.1rad Werner, Kaiser, et al., Physics B151, 1988
0.8%
Floating COW Experiment
D2O+ZnBr2
ρ(Si)=2.33g/cm3 ρ(D2O)=1.11g/cm3 ρ(ZnBr2)=4.20g/cm3
References to Neutron Optics: •
Neutron Optics, Varley F. Sears, Oxford University Press, Oxford (1989).
•
Neutron Interferometry – Lessons in Experimental Quantum Mechanics, Helmut Rauch and Samuel A. Werner, Oxford University Press, New York (2000).
•
“De Broglie wave optics: neutrons, atoms and molecules,” Helmut Kaiser and Helmut Rauch, in Optics (ed. H. Niedrig), Walter de Gruyter, Berlin (1999).