Neutron Optics and Neutron Interferometry - Indiana University

8 downloads 296 Views 4MB Size Report
Oct 4, 2006 ... Neutron Optics and ... Neutron Optics ⇒ Analogy to Light Optics ..... Neutron Optics, Varley F. Sears, Oxford University Press, Oxford (1989).
Neutron Optics and Neutron Interferometry Helmut Kaiser IUCF

Outline:

Introduction Refraction Reflection Diffraction Interferometry

Appeared in “The New Yorker”, 1940

Message • Neutron Optics ⇒ Analogy to Light Optics ⎛ h⎞ λ = • Neutron is a de Broglie Matter Wave ⎜ ⎟ p ⎝ ⎠

• Neutron Interferometry ⇒ Unique technique for Probing and Elucidating Fundamental Quantum Mechanical Principles on a Macroscopic Scale

INTRODUCTION

Properties of the Neutron

Bound Coherent Scattering Lengths

b : phenomenological constant, determined by experiment

REFRACTION Strong nuclear interaction: 2 2 2π 2 k Vn = N bc , E = m 2m Vn λ 2 N bc n = 1− = 1− 2E 2π

Including absorption: 2π 2 Vn → V0 − iV1 =

m

N bc − i

2

Nσ r

λ Nσ r λ2N 2 ⎛ σr ⎞ n 1− bc − ⎜ + i , ⎟ λ π 2π 2 4 ⎝ ⎠ 2

with

σr = σa +σi

Snell’ law: n

K v sin φ0 = = , neutrons k v0 sin φ

n

K v0 c sin φ0 = = = , light k v v sin φ

I Transmission : T = = exp( − N σ t d ) I0

REFRACTION (cont.) Magnetic interaction: Vm = VZ + VS + VF = − μ ⋅ B −

mc

μ ⋅ (E × k ) −

μ 2mc

divE ,

Vm = VZ = − μσ ⋅ B , V + Vm b ± p(0) n± = 1 − n = 1− λ2N c , E 2π with p(0) = p = −

μA μ mB γ = − r e 2π N 2 2μ B

p : average magnetic scattering in forward direction B : mean magnetization ( magnetic field of the unpaired electrons ) μ = γμ N : neutron magnetic dipole moment

γ = −1.913 : gyromagnetic ratio e : nuclear magneton 2mc e2 = 2.818 fm : classical electron radius re = me c 2

μN =

Examples:

bc ± p

Fe : 9.54 ± 5.98 fm

μB =

e : Bohr magneton 2me c

Co : 2.54 ± 4.64 fm Ni : 10.31 ± 1.62 fm

μA =

B : average magnetic dipole moment 4π N per atom

REFLECTION Glancing incidence : θ → 0 Θ = 0 ↔ θ = θ‘

cos θ = cos θ c , cos Θ θ c : critical angle of total reflection n=

Rewriting Snell’s law

θ c = 1 − n2 Nbc



π

⇒ θ ≤ θc

Reflectivity and Transmissivity: I r = RI 0 and I t = TI 0 , with R + T = 1 sin θ − n sin Θ R= sin θ + n sin Θ Since n is close to 1 : R = 1 , 2

R=

for θ ≤ θ c

1 − 1 − (θ c θ )

2

1 + 1 − (θ c θ )

2

2

,

for θ > θ c

DIFFRACTION Branches of neutron scattering theory

• Diffraction from macroscopic objects • Diffraction from perfect crystals

Diffraction ⇒ Interference of coherent waves

Diffraction from macroscopic objects • • • • • •

Single and double slit diffraction (Frauenhofer) Edge diffraction (Fresnel) Grating diffraction Diffraction by planar structures → reflectometry Fresnel zone plates and supermirrors ............

Bragg planes

Diffraction from perfect crystals

Laue diffraction

Bragg planes

Bragg diffraction

Kinematic Bragg Diffraction

Kinematic Bragg Diffraction

Kinematic Bragg Diffraction

Kinematic Bragg Diffraction

Dynamical Diffraction Theory (Laue case)

H = Bragg vector 2π n H = d K 0 = internal forward scattered wave K H = external forward scattered wave

Bragg condition:

K H − K0 = H Solve Schrödinger Eqn. inside crystal:

(∇

2

+ k02 ) Ψ (r ) = v(r )Ψ (r ) with v(r ) = 4π ∑ bi δ ( r − ri ) = i

∑v n

Hn

eiH n ⋅r

Dynamical Diffraction Theory

α

β

α

β

internal wave function: Ψ ( r ) = ψ 0α eiK0 ⋅r + ψ 0β eiK0 ⋅r + ψ Hα eiK H ⋅r + ψ Hβ eiK H ⋅r

Dynamical Diffraction Theory ψ 0α =

1⎡ y ⎤ ⎥ A0 ⎢1 − 2 ⎢⎣ 1 + y 2 ⎥⎦

ψ 0β =

1⎡ y ⎢1 + 2 ⎢⎣ 1 + y2

⎤ ⎥ A0 ⎥⎦

ψ αH = − ⎢

1⎡ 1 2 ⎢⎣ 1 + y 2

⎤ ⎥ A0 ⎥⎦

1⎡ 1 ψH = + ⎢ 2 ⎢⎣ 1 + y 2

⎤ ⎥ A0 ⎥⎦

β

y=

k0 sin 2θ B δθ 2ν H

misset parameter

α

β

α

β

internal wave function: Ψ ( r ) = ψ 0α eiK0 ⋅r + ψ 0β eiK0 ⋅r + ψ Hα eiK H ⋅r + ψ Hβ eiK H ⋅r

Dynamical Diffraction Theory

Dynamical Diffraction Theory (Laue case)

Ψ trans (r ) = ψ tr 0 eik0 ⋅r + ψ tr H eikH ⋅r

Transmitted wave:



⎤ sin Φ ⎥ ei (φ1 −φ0 ) A0 1+ y2 ⎥⎦ ⎤ − i (φ +φ ) −iy sin Φ ⎥ e 1 0 A0 2 1+ y ⎥⎦

ψ tr 0 = ⎢cos Φ − ψ tr H

⎢⎣ ⎡ =⎢ ⎢⎣

iy

φ0 =

with

ν0D cos θ B

, φ1 =

⎛ 1 Φ = ⎜ν H ⎜ 1+ y2 ⎝

νHD cos θ B

⎞ D ⎟ ⎟ ⎠ cos θ B

“Pendellösung interference”

I 0 = ψ tr 0 Transmitted intensities:

2

⎡ 2 ⎤ y2 2 = A ⎢cos Φ + sin Φ ⎥ 1+ y2 ⎣ ⎦ 2 0

⎡ 1 ⎤ 2 2 sin Φ I H = ψ tr H = A02 ⎢ ⎥ 2 ⎣1 + y ⎦

Transmitted Intensities

For the 〈111〉 reflection in Si at λ=2.70 Å:

y = 1 ⇒ 0.9 arcsec

Angle Amplification

For small δ (~10 -3 arcsec):

Ω

δ

≈ 10 6

Dynamical Diffraction Theory (Laue case)

Dynamical Diffraction Theory (Bragg case)

y = −2πΔ e Δθ cos(θ B ) / λ Dispersion Equation:

Pendelloesung length ( = extinction length) Δ e

approximate:

Δe =

π sin(θ B ) λ Nbc e w

NEUTRON INTERFEROMETRY

Phase of the neutron wave function is directly accessible to experiment

Applications: Measurement of bc Optics experiments Quantum mechanics experiments

NEUTRON INTERFEROMETRY Basic Principle

I ∼ ψ I + ψ II

2

Phase shift : 1 χ = ∫ p ds =

2

2

= ψ I + ψ II + 2 ψ I ψ II

∫ k ds

Perfect-crystal interferometry: X-ray interferometry: Bonse and Hart (1965) Neutron interferometry: Rauch, Treimer and Bonse (1974)

NEUTRON INTERFEROMETRY Michelson Interferometer

Mach-Zender Interferometer

Practical Neutron Interferometer

Perfect Crystal LLL Neutron Interferometer

Bragg condition: nλ = 2d sin θ

d = lattice spacing

Perfect Crystal LLL Neutron Interferometer

Perfect Crystal LLL Neutron Interferometer

Perfect Crystal LLL Neutron Interferometer

Nuclear Phase Shift

Nuclear Phase Shift

Nbλ 2 index of refraction: n = 1 − 2π relative phase shift: Δχ = k0 − nk0 = Nbλ

D cos θ

Interferogram

Interferogram

O beam: I O = A [1 + f cos( χ 2 − χ1 ) ] IH

IO

H beam: I H = B − A f cos( χ 2 − χ1 )

contrast f =

Cmax − Cmin Cmax + Cmin

Precision Phase Shift Measurement

Δχ = Nbλ

D cos θ

Example: aluminum sample, λ = 2.70 Å, 〈111〉 reflection D = 100 μm ⇒ Δχ = 2π

Non-Dispersive Geometry

path length

=

D sin θ

Δχ = 2Nb d D independent of λ

Perfect Crystal LLL Neutron Interferometer

NIST perfect crystal silicon interferometers

Scattering length bc measurements

4π Rotational Symmetry of Spinors Rotation operator:

Rnˆ (α ) = e

Spin-1/2 particle:

S=

Rotations about z-axis:

1 2

σ

i − α nˆ ⋅ S

so

Rnˆ (α ) = e

⎛ e − iα / 2 Rz (α ) = ⎜ ⎝ 0

0 ⎞ ⎟ eiα / 2 ⎠

Rz (2π ) χ = − χ

Symmetry: Rz (4π ) χ = χ

α

− i nˆ ⋅σ 2

4π spinor symmetry Quantum mechanical principle:

ψ (α ) = ℜ (α )ψ (0)

spin ½

= e − iσ ⋅α / 2ψ (0) ⇒ ψ (2π ) = −ψ (0)

ψ (4π ) = ψ (0) ψ (t ) = e

− i Ht /

ψ (0) = e

− i μ ⋅ Bt /

ψ (0) = e

H = −μ ⋅ B = −μ σ ⋅ B

ψ (0) = ψ (α )

− iσ ⋅α / 2

Larmor precession angle:

α=



∫ B dt ≅

2μ B ds v∫

Larmor precession phase:

Δφ = ± 2πμn mn λ B /

2

Experimental result: α = (715.87±3.8)° Rauch et al., Phys.Lett. 54A, 1975 Werner et al., PRL 35, 1975

Spin Superposition Quantum mechanical principle: Quantum mechanical spin superposition (Wigner, Am J. Phys. 31 (1963)

Results:

Summhammer at al., PRA27, 1983

Quantum Phase Shift Due To Gravity (COW Experiments)

Δφ =

2πλ gA min mgrav h2

A = H = area of parallelogram

min = neutron inertial mass mgrav = neutron gravitational mass

test of weak equivalence principle at the quantum limit

Gravitationally induced quantum interference Quantum mechanical principle: Neutron moving in the gravitational field of the rotating Earth

mg M p2 −G −Ω⋅L H (r , p) = r 2 mi L=r×p g 0 (r ) = ΔΦ =

1

GM rˆ 2 r

β

∫ p ⋅ dr

p → −i ∇ → WKB → p = k Phase shift due to gravity

ΔΦ COW = Φ II − Φ I = −2πλ

mi mg h

2

gH 0 S sin β

α

ΔΦ (α ) = ΔΦ grav (α ) + ΔΦ bend (α ) ΔΦ bend (α ) = −(2π / λ )ΔL0 sin α

Colella, Overhauser, Werner, PRL 34, 1975 Staudenmann et al., PRA21, 1980

Results:

ΔΦ (α ) = q sin α 2 2 qgrav = (qexp − qSagnac )1/ 2 − qbend

qgrav (exp) = (60.122 − 1.452 )1/ 2 − 1.42 = 58.72 ± 0.03rad qgrav (theory ) = 59.2 ± 0.1rad Werner, Kaiser, et al., Physics B151, 1988

0.8%

Floating COW Experiment

D2O+ZnBr2

ρ(Si)=2.33g/cm3 ρ(D2O)=1.11g/cm3 ρ(ZnBr2)=4.20g/cm3

References to Neutron Optics: •

Neutron Optics, Varley F. Sears, Oxford University Press, Oxford (1989).



Neutron Interferometry – Lessons in Experimental Quantum Mechanics, Helmut Rauch and Samuel A. Werner, Oxford University Press, New York (2000).



“De Broglie wave optics: neutrons, atoms and molecules,” Helmut Kaiser and Helmut Rauch, in Optics (ed. H. Niedrig), Walter de Gruyter, Berlin (1999).