Neutron Optics and Polarization

81 downloads 136 Views 8MB Size Report
Neutron polarimetry. 6. Neutron spin transport/flipping. General references: V.F. Sears, Neutron Optics, Oxford 1989. Rauch and Werner, Neutron Interferometry,  ...
Neutron Optics and Polarization T. Chupp University of Michigan With assistance from notes of R. Gähler; ILL Grenoble

1.

Neutron waves

2.

Neutron guides

3.

Supermirrors break

4.

Neutron polarization

5.

Neutron polarimetry

6.

Neutron spin transport/flipping

General references: V.F. Sears, Neutron Optics, Oxford 1989 Rauch and Werner, Neutron Interferometry, Oxford 2000 Fermi: Nuclear Physics (notes by Orear et al. U. Chicago Press - 1949) QM Text (e.g. Griffiths)

Optics Optics: the behavior of light (waves) interacting with matter Waves characterized by wavelength λ Matter characterized by permeability κ, susceptibility µ, dissipation (ρ/σ) Interaction characterized by n (index of refraction); δ (skin depth)

Useful when " >> a (atomic spacing)

!

deBroglie: massive particles behave as waves

k=

2" p = # h

2 2

kB T = !

pc 2mc 2

2 2 4 # (hc) "2 = 2mc 2 k B T

mc2 = = 939.6 MeV

!

! MeV-fm = 1973 eV-Å hc = 197.3 v = 2200 m/s

!

λ = 1.8 Å

(thermal neutrons - 300° K)

Note also: " #

!

1 T

Wave Properties Ey

• Polarization • Reflection

• Refraction • Interference

Superposition

different x Vertically polarized light

mirror

i

meaning

(angle of incidence = angle of reflection)

r

i t

+

ni sin i = nt sin t n=c0/cc0=2.97x108 m/s = m λ=W sin θ

• Diffraction

The wave equations for light and matter waves in vacuum: k=

2" p = # h

EM wave equation (E, B)

Schrödinger equation

2 1 % # m $# 2 2 =0 Time dependent: " # $ !2 " # + 2i =0 2 c %t h $t r r r "( r ,t) = ak e i( k # r $% k t ) v v Time independent 2 2 " #( Helmholtz ! equation: ! r ) + k #(r ) = 0 Schroedinger equation

Dispersion relations:!

! Phase velocity:

!

2 E k2 = (hc) 2

2mE k = 2 h 2

" m 2c 2 " c v ph = 1+ 2 # k p kv

" v ph = = c k (E = h" )

!

(

E=

p 2c 2 + m 2c 4

)

Interactions V(r) v 2m v " #( r ) + 2 [ E $ V ( r )] #(r) = 0 Time independent Schroedinger equation h f (# ) ikv $ rv v ikz Incoming plane wave "( r ) = e + e Outgoing spherical wave r 2

!

!

1 2i# l f (" ) = (2l + 1)[e $1]Pl (cos" ) Partial waves % 2ik l ! 1 2i# 0 1 s-wave scattering f (" ) = [e $1] = 2ik [k cot #0 $ ik] "0 = #kro V(r)=0 at ro a

f (" ) = #a + ika 2 + O(k 2 ) !

!

f (" ) # $a

!

a=- δ__0 : scattering length k (-5 fm < a < 15 fm) ka=-δ0 ~ 10-4

Coherent Scattering Lengths _____ a b = A+1 A

element

b (fm)

H

-3.74

Be

7.79

C

6.65

Al

3.45

Si

4.15

Ti

-3.44

Fe

9.45

Co

2.49

Ni/58Ni

10.3/14.4

Cu/65Cu

7.72/10.6

Cd

4.87-0.7i

1 2i# 0 f (" ) = [e $1] 2ik

"0 = #ka

Index of refraction v 2m v 2 " #( r ) + 2 [ E $ V ( r )] #(r) = 0 h v v 2 2 " #( r ) + K #(r ) = 0

Time independent Schroedinger equation

2m v K = 2 [ E " V ( r )] ! h ! For light: c " c = K n k v In general, n is a tensor, i.e. V(r) ! V (r ) v n( r ) = 1" depends on propogation direction E ! 2"h 2 3 r r v V (r ) = # b$ ( r % ri ) Fermi Pseudopotenital m i ! be

Suggest Documents