Neutrons for industry - EPJ Web of Conferenceswww.researchgate.net › publication › fulltext › Neutrons-

0 downloads 0 Views 2MB Size Report
Neutrons for industry - EPJ Web of Conferences › publication › fulltext › Neutrons-... › publication › fulltext › Neutrons-...by W Petry · ‎2015 · ‎Related articlesFree neutrons might be simply scattered by the atoms or the nuclei which they hit or induce
Neutrons for industry Winfried Petry Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany

1. Introduction Basic science with neutrons should be and certainly is curiosity driven. It is the uncommitted willingness of the scientist to explore the laws of nature beyond the already known which creates true innovation. Beyond this appraisal of western scientific culture there is ample of space and also a great need for the eventual transfer of innovation to products which may serve for the wealth of our society. This process asks for intense interaction between science and industry, i.e. researchers and engineers. Speaking with the language of engineers this process is classified in Technology Readiness Levels (TRL) to assess the maturity of evolving technologies during its development and are generally measured on a scale from 1 (basic technology research) to 9 (system test, launch & operation). Within the TRL-scale research with neutrons is dominantly located on the levels 1 to 3, i.e. basic research to first principle feasibility. However there are important examples where research with neutrons goes far beyond. Tailoring crank shifts for engines by measuring completely nondestructive internal stresses on an atomic scale certainly involves levels 7 to 8 (subsystem development). Checking routinely turbine plates for aircrafts and gas turbines by neutron tomography even goes beyond technology levels 9, i.e. manufactured products are routinely checked for quality. In some important cases neutrons are the means to produce materials modern society absolutely needs, i.e. most homogenously doped bulk silicon used in high voltage direct current electricity transport and hybrid cars. Radioisotopes such as 131 I, 99mTc, 177 Lu and 161 Tb can only be produced on a large scale using high neutron fluencies. • In a more systematic view industry uses neutron beams for • basic research directly driven by urgent questions raising from industrial applications of work pieces or functional materials • optimization of new materials with new/“better” functionalities • characterization of materials, understand the relation materials properties – functionality • product development • production. The uniqueness and often enough the superiority of neutrons for industrial applications with respect to other techniques lies in its ability to penetrate all kind of dense matter and at the same time to visualize with considerable contrast and sensitivity the different elements, magnetism, structures, segregation, This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/201510401001

EPJ Web of Conferences Table 1. Equivalence of energy, speed and wavelength for neutrons. cold neutrons thermal neutrons hot neutrons epithermal neutrons fast/fission neutrons

energy 0.1–20 meV 3–150 meV 40–103 meV 10−3 –1 MeV 0.5–20 MeV

temperature 25 mK 300 K 2000 ◦ C

velocity 600 m/s 2200 m/s 5000 m/s

wave length 0,2 2,5 nm 0,07–0,5 nm 0,028–0,14 nm

compounds, etc. on a scale ranging from sub-atomic distances to micrometers in objects which might be very small or very large. At the same time neutron scattering is able to reveal the dynamics of atoms, structures and magnetic moments, i.e. the internal motion of matter. For instance thermal neutrons (MeV range) easily penetrate 10 cm of massive steel and fast neutrons (2 MeV) easily penetrate massive hydrogen storages. Complementary to X-rays thermal neutrons have a particular high contrast with the lightest element, hydrogen. Thereby thermal neutrons reveal the dynamics of proton conductors for fuel cell applications. Therefore neutrons ideally allow the combination of completely non-destructive and in-situ / in-operando characterization of work pieces.

2. Neutron methods for industrial application There is a broad range how intense neutron beams or neutron fields can be used for industrial purposes. Free neutrons might be simply scattered by the atoms or the nuclei which they hit or induce a nuclear reaction. In the latter case the neutron is absorbed, the isotope/element transformed to another one and all kind of irradiation is created. The deposition of energy in the course of the nuclear reaction is far beyond of atomic and molecular binding energies causing defects and materials damage. Scattering applications need the consideration of neutrons as matter wave with wave-length in the order of atomic distances, therefore ideally suited to tell where the atoms are. These neutrons have thermal energies and are therefore sensitive probes for the internal motion of matter which itself is important for the functionality of materials. Radiography with neutrons combines both. The forward transmission through an object is determined by absorption, i.e. nuclear reaction and scattering processes. Table 1 gives a glance on the differ