Yk (r) to the eigenfunction $(r) where in each k-piece the Y (r) is a linearcornbinationon ... racteristic aspect is that U (and hence Y(r)) depends on the free a parameter a. This var ..... que são po- tencias e logari tmos são usados como exemplos.
Revista Brasileira de Flsica, Volume 13, n? 1, 1983
New Appr~oachto Calculate Bound State Eigenvalues EDGARDO GERCK Instituto de Estudos Avançados, CTA, São José dos Campos, 12.200, SP, Brasil and Max Planck Institut fur Ouanlenoptik, 8046, Garching, M s t Germany
JASON A. C. GALLAS Departamento de Física, Universidade Federal de Santa &tarina, Florianbpolis, 88.000, SC, Brasil
and Max Planck Institut fur Quantenoptik, 8046, Garching, West Gerrnany and AUGUSTO E.d'OLIVEIRA
Instituto de Ffsica, Universidade Federal Fluminense, Niterbi, 24.000, RJ, Brasil Recebido em 10 de dezembro de 1982
Abstract A method o f s o l v i n g t h e r a d i a l schrgdinger equat i o n f o r bound s t a t e s i s discussed. The method i s based on a new piecewise represent a t i o n o f t h e second d e r i v a t i v e o p e r a t o r on a s e t o f f u n c t i o n s t h a t obey t h e boundary c o n d i t i o n s . T h i s r e p r e s e n t a t i o n i s t r i v i a l l y diagon a l i s e d and leads t o c l o s e d f o r m e x p r e s s i o n s o f t h e t y p e = ~ ( a+ b b + c / n + ...) f o r the eigenvalues. Examples a r e g i v e n f oEnr t h e= power-law and l o g a r i t h m i c p o t e n t i a l s .
1. INTRODUCTION
This paper discusses a method o f c a l c u l a t i n g t h e eigenvalues o f t h e r a d i a l ~ c h r g d i n c j e requation ( i n atomic u n i t s )
s u b j e c t tci t h e boundary c o n d i t i o n s '?(O) =
Y(m)
= 0, where
~ ( rmay ) in-
c l u d e t h e usual c e n t r i f u g a l terrn. A b r i e f v e r s i o n o f t h i s work appeared recent l y1 . The proposed approach i s based on a new piecewise t a t i o n of t h e d i f f e r e n t i a l o p e r a t o r
represen-
d2/&2 from eq. ( I ) on t h e s e t
Using t h i s piecewise r e p r e s e n t a t i o n
for
d 2 / d r 2 i n the pro-
posed appi-oach i s e q u i v a l e n t t o c o n s i d e r i n g a c o n t i n o u s l y and i n f i n i -
t e l y piecew i s e approximation Y ( r ) =
Yk ( r ) t o t h e e i g e n f u n c t i o n $ ( r )
( I ) , where i n each k - p i e c e t h e Yk
o f eq.
the set U
%
( r ) i s a linearcornbinationon
with k 6 N :
For any ~ ( r t)h a t i s a l i n e a r combination on t h e s e t ,U ,
the
unique two- point r e p r e s e n t a t i o n o f t h e o p e r a t o r d2/dr2 i s g i v e n by
as shown i n s e c t í o n 2. The i d e a l r e p r e s e n t a t i o n
of
the
operator
d2/dr2, i .e. t h e exact r e p r e s e n t a t i o n , would be g i v e n by i t s
expán-
s i o n on t h e complete s e t o f s o l u t i o n s o f eq. ( 1 ) . T h i s s e t i s o f couris U , c l e a r l y a good piecewise approxirnation t o t h e i d e a l s e t i f t h e parase i n f i n i t e and, a p r i o r i , unknown. Wenote t h a t t h e b a s i s s e t
ba-
meter a i s l a r g e r than zero. T h i s i s due t o t h e f a c t t h a t t h e Ua s i s s a t i s f i e s t h e boundary c o n d i t i o n o f eq. (1) a t i n f i n i t y .
The r e p r e s e n t a t i o n of t h e second d e r i v a t i v e o p e r a t o r
in
g i v e n b y e q . ( 3 ) has severa1 u n i q u e p r o p e r t i e s . T h e m a i n p r o p e r t y t h a t t h i s r e p r e s e n t a t i o n can be t r i v i a l l y d i a g o n a l i z e d . Another
U , is cha-
r a c t e r i s t i c aspect i s t h a t parameter a.
U (and hence Y ( r ) ) depends on t h e f r e e a This v a r i a t i o n a l parameter wi I 1 be determined by the me-
thod i t s e l f , through the s t a t i o n a r y c o n d i t i o n f o r
En
.
T h i s procedu-
r e w i l l enable us t o o b t a i n a n a l y t i c a l expressions f o r t h e lues o f eq. (1 ) , o f t h e form
En = E ( a n
+ b+
c/n
eigenva-
+ . . .) .
T h i s paper i s organized as f o l l o w s . S e c t i o n 2 presents method f o r a general p o t e n t i a l ~ ( r ) .S e c t i o n
the
3 deals w i t h t h e appl i -
c a t i o n o f the method t o power law and l o g a r i t h m i c p o t e n t i a l s ,
toge-
t h e r w i t h a comparison of known r e s u l t s f o r some p o t e n t i a l s now b e i n g s t u d i e d as p o s s i b l e models o f quark conf inement (/2/ and
references
t h e r e i n ) . The eigenvalues a r e g i v e n as a f u n c t i o n o f two parameters,a and b
,
i n each case. The d e t e r m i n a t i o n , o f these parameters i n
r a l i s t h e s u b j e c t o f s e c t i o n 4. i 84
I n s e c t i o n 5 t h e numerical
gene-
accuracy
o f t h e eigenvalues, f o r t h e same examples as i n s e c t i o n sed and compared w i t h known r e s u l t s .
3, i s d i s c u s -
The l a s t s e c t i o n c o n t a i n s a sum-
mary o f the important f e a t u r e s o f t h e method. 2. THE METHOD
The method proposed here i s based on the r e p r e s e n t n t i o n o f t h e second d e r i v a t i v e o p e r a t o r = (exp(-ar),
r.exp(-ar),
r2.exp(-w)),
with
two- point on
the
0 0 . The
piecewise set
main
Ua
--
reasons
f o r using t h i s p a r t i c u l a r set are:
( i ) Any element of U s a t i s f i e s t h e boundary c o n d i t i o n i n eq. a infinity.
(1) a t
( i i ) The s e t L ( u ~ )o f a11 t h e l i n e a r combinations o f t h e elements
of
U i r i closed t o t h e o p e r a t i o n d2/dr2. T h i s means t h a t t h e second a d e r i v a t i v e o f any l i n e a r cornbination o f t h e elements o f Ua i s i t s e ' l f a l i n e a r cornbination o f t h e elements o f U ., Foi- a f u n c t i o n
Y
i n L ( u a ) t h e two- point
d2/dr2 cai7 be found as t h e unique s o l u t i o n o f t h e
representation desired
of
identity
gi ven by
where p , q and t a r e c o n s t a n t s . These c o n s t a n t s a r e u n i q u e l y c a l c u l a t e d by r e q u i r i n g t h a t eq.(4) be v a l i d f o r each o f t h e t h r e e f u n c t i o n s , o f .U
The constantsare
Equation (6) means t h a t t h e d i s t a n c e between t h e must be
two
points
T h i s r e p r e s e n t a t i o n o f d2/dr20n U
C1
i s the cornerstone
of this
paper and i s g i v e n by 2
d2
-Y(r1 dr2 I n t h i s case,
=
2a Y(r-l/a)
-
a2 ~ ( r )
(9)
e
eq.
(9)
means
that
t h e second d e r i v a t i v e o f
Y E L ( u ~ ) i s g i v e n e x a c t l y a t any p o i n t r by a 1 i n e a r
combination of
t h e v a l u e s o f Y i t s e l f a t t h e two p o i n t s r - l / u and r , c o r r e s p o n d i n g t o p r o p e r t y ( i i ) above. For a f u r t h e r d i s c u s s i o n a b o u t
representa-
d 2 / d r 2 on Ua t h e r e a d e r i s r e f e r r e d t o t h e Append i x .
t ion o f
Introducing a g r i d r wri t e r
the
-
k - l - rk
w i t h f(O)
k
-
I/%,
on t h e space c o o r d i n a t e 0 s r rk-lf o r any k . N o t e t h a t $ i s an
preserving function,
may
i.e.
k > j irnplies t h a t f ( k ) > f ( j ) .
order
This g r i d
w i l l be d e t e r m i n e d by t h e method i t s e l f .
The w i d t h o f each k - p i e c e g i v e n by A r f i e s eq.(8),
%%=
i.e.
k
= ]f(k)-f(k-1)
1 , and may change w i t h k
satis-
s i n c e eq.
(9)
is
a two- point formula. From eqs.
Since f ( k )
(8) and (10) i t
, f(k-1)
o1 lows t h a t
one can r e a d i y show t h a t (see Append i x )
$(k
=ak
+
b+c/k
+
...
f ( k ) - f (k-1) where t h e severa1 a ,
b, c , e t c . a r e c o n s t a n t s and k = 1,2,
E q u a t i o n (12) shows t h a t f o r any f u n c t i o n f ( k ) i s true:
( i ) The h i g h e r
k - o r d e r a p p e a r i n g i n eq.
(12 ) i s one.
the
... . following
(i i ) As point number k increases, eq. (12) is approxirnately in k.
I
inear
For these reasons we rnay neglect the 0(l/k) contribution ineq. (12) and wr i te
This expression will play an important role in the
following
discussion. One should note that, in what follows, higher-order terms could have been used in eq. (13). Armed wi th eqs'. (9) and (13) we now turn to the problem o f calculating the n-th eigenvalue of a given potential ~ ( r )in eq. (1). To this end we use the two-point representation of d2/dr2 given by to consider the piecewise approximation
eq.
(9) in eq. (1)
and ak is yet a variational parameter, obtaining
for i< = 1,2,... where if r,,= O then Y(")(r0) = O or if ro#O is connected to the origin by eq. (~.5)(see ~p~endix).Equation (14) may also be written in rnatrix forrn: M = EY with Y T and M a bidiagonal matrix given by \
=
(Y(rl),
Y(ri),
w i t h no l i m i t imposed on i t s o r d e r . T h i s m a t r i x i s t h e r e p r e s e n t a t i o n o f t h e Hami l t o n o p e r a t o r o f eq. (1 ) and depends on t h e v a r i a t i o n a l parameters
a , , a,,
...
with constraints. the
n-
and t h a t a11 the eigenvalues of t h e eq. (14) a r e g i v e n t r i v i a l l y
by
We now n o t e t h a t , owing t o t h e b i d i a g o n a l form o f M, -eigenvector o f M has t h e f o l l o w i n g form
t h e main diagona 1 o f
3
:
M, w i t h no l i m i t imposed on i t s o r d e r .
Using the e i g e n f u n c t i o n form I(") eq. (14) and r e c a l l i n g eq.
( r k ) o f eq. (16) f o r k=n
in
(13) we g e t
where n i s t h e r a d i a l quantum number.
ince
Y (n) ( r ) i s a f u n c t i o n o f t h e v a r i a t i o n a l parameter the i s a ~ ' / a a = O and can be d i r e c t l y a?.n
v a r i a t i o n a l p r i n c i p l e f o r En p l ied t o eq. (17) g i v "'g
The above equation a l s o determines t h e parameters sis
Q i n any
k - p i e c e by means o f eq.
(A.8) from t h e Appendix
t h e r e f o r e corresponds t o t h e v a r i a t i o n a l p r i n c i p l e t o t h e whol e
a o f the ba-
aE/aa
=
O
Y (n) ( r ) .
The general procedure be i n g proposed here t? o b t a i n s t a t e s o f eq. (1) begins by s o l v i n g eq. the best
\
and
applied
(18) i n o r d e r
to
as d e f i n e d above. By s u b s t i t u t i n g t h i s an i n eq.
the bound determine
(17) one
o b t a i n s t h e eigenvalues as a known f u n c t i o n o f the constants a and b , name 1y
Thetieterminationofaand b sha 11 now compare eq.
isdiscussed i n s e c t i o n b .
( 1 9 ) f o r t h e power law and l o g a r i t h m i c
We poten-
t i a 1s w i t h Itnown r e s u l t s . 3. APPLICATION TO THE POWER-LOW AND LOGARITHMIC POTENTIALS
To f u r t h e r c l a r i f y t h e proposed method we now a p p l y i t t o some w e l l -known eigenproblems. The r e s u l t s o b t a i n e d a r e compared w i t h t h e exact ones, whenever possi b l e , o r t o approximations. For we o n l y analyse
s- states.
For t h e general power law p o t e n t i a l ~ ( r =) K and p # O,
r,
with
eq. (17) g i v e s (dropping the s u b s c r i p t n o f
From the s t a t i o n a r y c o n d i t i o n , pare w i t h eq.
simpl i c i t y
aEn/aa
n
= O,
p > -2
a )
i t follows
(com-
(18)) t h a t
S u b s t i t u t i n g back i n eq.
(201, one o b t a i n s
as t h e bound s t a t e eigenvalues o f t h e power law p o t e n t i a l , o r
i n terms o f ct o f eq. ( 2 1 ) . Using t h e same procedure f o r the l o g a r i t h m i c p o t e n t i a l = K R n ( r ) , one o b t a i n s the eigenvalues
En =
r
k n( e / K q
+
K !Ln ( a n
+
b)
~ ( r =)
I n T a b l e 1 we g i v e n as f u n c t i o n s o f a and b , t h e s o l u t i o n s f o r some p o t e n t i a l s w h i c h a r e nowadays o f i n t e r e s t f o r a q u a r k - q u a r k con-
f i n i n g model t o g e t h e r w i t h t h e g e n e r a l power law. The parameter a and
b a p p e a r i n g i n t h i s t a b l e a r e c a l c u l a t e d i n s e c t i o n 4 . However, as an example, t h e r e a d e r may r e c a l l t h a t f o r a = 1 and
b
= O
t h e Coulomb
e i g e n v a l u e s i n T a b l e 1 r e p r e s e n t t h e c o r r e c t b o u n d - s t a t e spectrum f o r any o r d e r n. I n T a b l e 1 two i m p o r t a n t f u n c t i o n a l r e l a t i o n s h i p s f o r t h e e i genvalues can be seen: w i t h t h e s c a l i n g parameter K and w i t h
(an+b).
The r e m a i n i n g p a r t o f t h i s s e c t i o n i s d e v o t e d t o a comparison o f t h e s e two a s p e c t s o f t h e f u n c t i o n E
=
n
~ ( a n + bw) i t h t h e known r e s u l t s . As a
s o u r c e o f known r e s u l t s we use t h e work o f Qu i g g and ~ o s n e r ~ . The K dependences o f
En g i v e n i n T a b l e 1 a r e a l l c o r r e c t ,
as
can v e r y e a s i l y be v e r i f i e d by r e s c a l i n g t h e ~chr:d i n g e r e q u a t i o n ( 2 ) . The f u n c t i o n a l dependence o f t h e e i g e n v a l u e s w i t h t h e quantum number a s g i v e n i n T a b l e ! i s e x a c t f o r t h e Coulomb, l i n e a r and
har-
monic p o t e n t i a l s . F o r t h e o t h e r cases no e x a c t s o l u t i o n s a r e known. However, a s can be seen f r o m eqs.
(4.33) and (4.59) f r o m
',
indeed show t h e same quantum number dependence a s t h e WKB
our resul t s ones. From
t h e above comparison one sees t h a t t h e proposed method r e p r o d u c e s t h e known f u n c t i o n a l dependences f o r t h e power l a w and l o g a r i t h m i c p o t e n t i a l s w i t h K and
n.
For o t h e r p o t e n t i a l s ,
the constants
a and b c o u l d
depend
on
t h e scaZing c o n s t a n t K. However, and h e r e we emphazise t h i s p o i n t , t h e f u n c t i o n a l dependence En = t ion
E(an + b ) i s a l w a y s t h e same i f t h e
func-
~ ( r does ) n o t change. T h i s can eas i ly be v e r i f i e d f r o m eqs. (17)
and ( 1 8 ) . T h i s means t h a t f o r any g i v e n p o t e n t ia1 t h e p o t e n t ia1 may o n l y change
a and b b u t n o t t h e
~ ( ra ) s c a l i n g o f f u n c t i o n En=E(an+b).
I n t h e n e x t s e c t i o n we d i s c u s s t h e c a l c u l a t i o n o f a and b .
4. CALCULATIONS OF A AND B
The p r o c e d u r e
described
i n the previous sections
ctosed-form expressions of the type
En
=
leads t o
E(an+b) f o r t h e e i g e n v a l u e s .
To d e t e r m i n e a and b , we s t u d y t h e b e h a v i o u r o f two e i g e n f u n c t i o n s a f t e r t h e o u t e r t u r n i n g - p o i n t .
the
first
I n o r d e r t o genera-
t e a c c u r a t e e i g e n f u n c t i o n s one u s u a l l y needs A r n c o r r e s p o n d s t o t h e
decaying
part.
4. E.Gerck and A.B.d l Ol i v e i r a , J.Comp.App1 .Math., Vol .6, 81 (1980). 5. The s q u a r e - r o o t p o t e n t i a l has a l s o been proposed t o model t h e quark -quark
intera~tion~'~.
6 . H.F.Carvalho, R.Chanda and A . B . d l O l i v e i r a , 679 (1978). See a l s o H.F.Carvalho, v e i r a , Proc.
I ENFPC,
R.Chanda,
Carnbuquira, MG,
L e t t . N u o v o Cimento, 22, E.Gerck and A.B.
Soc.Bras.de
F í s i c a , p.49
dlOli-
(1979).
7. H.F.Carvalho and A.B.d l Ol i v e i r a , L e t t . Nuovo Cimento, 33, 572(1982). RESUMO
Um método p a r a a s o l u ç ã o da equação r a d i a l de s c h r 8 d i n g e r par a e s t a d o s 1 igados 6 d i s c u t i d o . Baseia- se em uma nova r e p r e s e n t a ç ã o s e c c i o n a l ("piecewise") do o p e r a d o r d e r i v a d a segunda s o b r e um c o n j u n t o de funções que s a t i s f a z e m as c o n d i ç õ e s de c o n t o r n o . Essa r e p r e s e n t a ç ã o 6 d i a g o n a l i z a d a t r i v i a l m e n t e e conduz a expressões fechadas do t i p o = E ( a n + b + c/n + . . ) p a r a o s a u t o v a l o r e s . P o t e n c i a i s que são pot e n c i a s e l o g a r i tmos são usados como exemplos.
5
.